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ABSTRACT

Aims. Several authors have claimed to detect a significant cross-correlation between microwave WMAP anisotropies and the SDSS
galaxy distribution. We repeat these analyses to determine the different cross-correlation uncertainties caused by re-sampling er-
rors and field-to-field fluctuations. The first type of error concerns overlapping sky regions, while the second type concerns non-
overlapping sky regions.
Methods. To measure the re-sampling errors, we use bootstrap and jack-knife techniques. For the field-to-field fluctuations, we use
three methods: 1) evaluation of the dispersion in the cross-correlation when correlating separated regions of WMAP with the original
region of SDSS; 2) use of mock Monte Carlo WMAP maps; 3) a new method (developed in this article), which measures the error as
a function of the integral of the product of the self-correlations for each map.
Results. The average cross-correlation for b > 30 deg is significantly stronger than the re-sampling errors – both the jack-knife and
bootstrap techniques provide similar results – but it is of the order of the field-to-field fluctuations. This is confirmed by the cross-
correlation between anisotropies and galaxies in more than the half of the sample being null within re-sampling errors.
Conclusions. Re-sampling methods underestimate the errors. Field-to-field fluctuations dominate the detected signals. The ratio of
signal to re-sampling errors is larger than unity in a way that strongly depends on the selected sky region. We therefore conclude that
there is no evidence yet of a significant detection of the integrated Sachs-Wolfe (ISW) effect. Hence, the value of ΩΛ ≈ 0.8 obtained
by the authors who assumed they were observing the ISW effect would appear to have originated from noise analysis.
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1. Introduction

Several authors (Fosalba et al. 2003; Vielva et al. 2006;
Cabré et al. 2006; Raccanelli et al. 2008; Ho et al. 2008;
Granett et al. 2008) have claimed that there is a significant
cross-correlation between cosmic microwave background
radiation (CMBR) anisotropies and the density of galaxies,
which is interpreted as the integrated Sachs-Wolfe (ISW)
effect. An anticorrelation caused by the Sunyaev-Zel’dovich
effect would also be expected on scales smaller than ∼1◦,
but this is negligible when averaging large regions of the sky
(Hernández-Monteagudo & Rubiño-Martín 2004). The con-
clusion of these authors is that the measured cross-correlation
should be interpreted as a detection of the ISW effect within a
ΛCDM-cosmology and it serves to constrain the value of the
cosmological parameters.

We reanalyze whether this correlation exists by consider-
ing galaxies observed by the Sloan Digital Sky Survey (SDSS),
taking particular care in the calculation of the cross-correlation
errors. The root mean square (rms) of the cross-correlation
for distant, widely different areas of sky (here called “field-to-
field” errors) infer much larger errors than those calculated us-
ing re-sampling cross-correlations techniques i.e., when these
are determined in different strongly overlapping and thus not
independent subsamples of a given sample (re-sampling er-
rors). We conclude that measurements of the errors in the cross-
correlation function for overlapping sub-fields lead to an under-
estimate of the true scatter in the signal.

2. Data

We consider two types of data for the two fields that we cross-
correlate:

1. Microwave temperature anisotropies (δT ) from the 5th year
WMAP release (Hinshaw et al. 2009). We use the V-band
(61 GHz) data because of its lower level of pixel noise. We
checked that the results of this paper are approximately sim-
ilar if we use the W-band (94 GHz) data. There is no need to
subtract foreground Galactic contamination because this is
not correlated with galaxy counts (corrected for extinction),
and because this is small in off-plane regions. In any case, the
published foreground corrections might not be enough accu-
rate (López-Corredoira 2007). We assign the same weight to
each WMAP pixel of equal size.

2. Galaxy counts (G) are obtained from the survey SDSS, pho-
tometric catalog, data release DR7 (Abazajian et al. 2009).
They cover an area 11 663 deg2 (28% of the sky) mostly in
the northern Galactic hemisphere. We did not use the striped
region data with b < 30◦ to ensure low Galactic extinc-
tion and avoided negative latitudes because these are small
isolated regions dominated by edge effects. We used only
galaxies with r magnitudes in the range [18, 21] (Galactic-
extinction corrected) (within these limits galaxy counts are
complete) and “clean photometry” according to an SDSS al-
gorithm (e.g., we removed sources close to saturated objects
with contamination of their by other objects), and avoiding
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the borders by ∼0.3 deg. In this situation, the total used area
is 7 349 deg2 (18% of the sky), containing 2.2, 6.4 and 17.1
million galaxies in the r magnitude ranges [18,19], [19,20],
and [20,21], respectively.

3. Methods

By defining the galaxy count (G) density contrast to be δG(θ) =
(G(θ) − 〈G〉)/〈G〉, and denoting by δT (θ) = T (θ) − T0 the fluctu-
ations in the CMBR with respect to the average temperature T0,
the cross-correlation function can be written as

ωTG(θ) ≡ 〈δT (θ)δG(0)〉. (1)

The estimator of Eq. (1) computes the cross-correlation to be the
average over all pixels with separations θ ± (Δθ/2), where Δθ is
the step between successive values of θ. In what follows, we set
Δθ ≈ 0.29 deg.

There are two kinds of errors in the cross-correlation, associ-
ated with two distinct ways of constructing sub-fields over which
they are computed (Sylos Labini et al. 2009):

1. Re-sampling errors: for point distributions, there is a compo-
nent of the total error that is caused by the finiteness of the
number of points and is closely related to that given by the re-
sampling techniques (Betancort-Rijo 1991); however, here,
in the correlation of two continuous fields, the association is
not at all clear. These may be estimated with a re-sampling
technique, for instance jack-knife or bootstrap. In the latter
case, we calculate ns times the cross-correlation by remov-
ing each time a different fraction 1/ns of the N pixels. By
using the bootstrap method, we also calculate a number ns of
times the cross-correlation that each time chooses the same
number N of pixels from the original sample, but randomly
selected (so that there are some pixels that are selected sev-
eral times, while others are not selected at all). Both in boot-
strap and jack-knife, we then calculate the rms of these ns re-
samplings, which provides our error. We use ns = 10, which
implies that the relative error in the rms is (2ns)−1/2 ∼ 20%
for Gaussian errors. We note that for both techniques the
ns determination have been performed on overlapping sub-
samples, and they are thus not independent.

2. Field-to-field fluctuations: these are caused by intrinsic fluc-
tuations in both the large-scale structure of galaxies and the
microwave temperature field. We propose three methods for
estimating these fluctuations:
(a) Different fields: We cross-correlate the G field in the

full area with a different field δT∗ of the same power
spectrum as the original WMAP data, although un-
correlated with G. One simple way of applying this
method is assigning to δT∗ the value of its own WMAP
data but in other regions of the sky that are com-
pletely separated. For instance, we define δT∗(l, b) =
δT (l + β,−b) with different values of β (we consider
ns = 10 different values: β = 2iπ/ns, i = 1 to ns),
and calculate the rms for the ns realizations. In this
case, we use a small enough number (ns) of regions,
so the relative error in the rms is (2ns)−1/2 ∼20% for
Gaussian errors. The cross-correlations at scales 60–
180◦ might produce some signal, but this would be
small, given that the self-correlation of δT is almost zero
for θ > 60◦ (Copi et al. 2009). The possible large-scale
cross-correlations of the different fields infer that this es-
timation of the rms value is a conservative upper-limit
value.
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Fig. 1. Log-log of the self-correlations of the fields δG and δT .

(b) Monte Carlo simulations of WMAP: We generate a num-
ber of Monte Carlo realizations of WMAP by using the
software “synfast” to generate random mock maps of
anisotropies corresponding to the theoretical power spec-
trum (Hinshaw et al. 2009) filtered for the V-band. We
perform ns = 100 realizations, and then calculate the
rms of their cross-correlation with the fixed SDSS galaxy
counts map. The relative error in the rms is (2ns)−1/2 =
7%.

(c) Integral of the self-correlations: A calculation of the
field-to-field variance in the cross-correlation of two
non-correlated fields can be given by (see Appendix A)

σ2
ωTG

(θ) = 2〈ωTT (θ1,2)ωGG(θ3,4)〉4,θ , (2)

where 〈(...)〉4,θ stands for the average extended over all
groups of four pixels (1,2,3,4) in a region in which the
separation between pixels 1,3 and 2,4 is between θ−Δθ/2
and θ + Δθ/2, θ1,2 is the separation of pixels 1,2, θ3,4 is
the separation of pixels 3,4, and ωTT and ωGG are the
self-correlations, respectively, for the fields δT and δG.
We note that with this method we assume that δT and δG
are uncorrelated (as in Monte Carlo simulations); there-
fore, σ refers to the limits of pure non-correlated fields
within the corresponding probabilities (68%). In addi-
tion, we note that we use the self-correlations that we
measure in our fields (see Fig. 1), i.e., we have only one
realization. Cosmic variance would introduce some extra
uncertainty.

4. Results
In Fig. 1, we plot the self-correlations. In Fig. 2, we show the de-
termination of the cross-correlation function for different ranges
of magnitude, and the errors computed by using re-sampling er-
rors and field-to-field determinations. On the one hand, the er-
rors computed by both the bootstrap and the jack-knife method
are of the same order, and on the other hand the three “field-
to-field” methods yield similar results, which however are much
larger than the re-sampling errors. The “Different fields” method
yields in general a slightly lower rms than the integral of the
self-correlations, possibly because of small positive large-scale
correlations, which slightly reduce the dispersion, as mentioned
in discussing “different fields” in Sect. 3. The “Monte Carlo”
method might yield slightly higher values of rms than the inte-
gral of the self-correlations due to the larger amplitude of the
low-multipoles in the theoretical power spectrum.

The field-to-field fluctuations obtained by using independent
determinations of the cross-correlation function are similar to
the amplitude of the detected signal or even larger. Figure 3
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Fig. 2. Cross-correlation function ωTG WMAP-SDSS (black line) for galaxies with b < 30◦ and in the magnitude range 18 < r < 19 (left panel),
19 < r < 20 (center panel), and 20 < r < 21 (right panel). The rms value calculated by resampling errors and field-to-field fluctuations are also
plotted.
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Fig. 3. Cross-correlation (ωTG) WMAP-SDSS, 20 < r < 21: the aver-
age of the whole selected SDSS-DR7 area, and the average for |l| < 108◦
and 108◦ < |l| < 180◦; error bars represent jack-knife re-sampling er-
rors.

illustrates this point by showing that there are no positive av-
erage cross-correlations in a sky region of area more than half of
the full angular coverage.

From all these analyses, we cannot exclude the value of |ωTG |
being compatible with zero for any θ within field-to-field fluc-
tuations. Thus we conclude that there is no significant cross-
correlation detection. This situation is similar to that found for
the SDSS 3D self-correlation by Sylos-Labini et al. (2009), who
also demonstrated that the field-to-field fluctuations are of the
order of the signal in the previously announced discovery of
baryon acoustic oscillations and large-scale anticorrelations.

5. Comparison with previous works

Other authors who calculated the cross-correlation between
WMAP and SDSS galaxy counts measured a significant signal.
For instance, Cabré et al. (2006) measured a value of ωTG(3◦) ∼
0.5 μK and a significant positiveωTG for all angles lower than 20
degrees for the subsample 20 < r < 21 over 5500 square degrees
of SDSS-DR4. Giannantonio et al. (2008) obtained a value of
ωTG(3◦) ∼ 0.3 μK for the subsample 18 < r < 21 of SDSS-DR6,
excluding the southern Galactic hemisphere and high Galactic
extinction regions. In addition, they found a significant positive
signal out to θ = 8 degrees. Their values are more or less compat-
ible with our estimate of the cross-correlation function, within
the re-sampling error bars and taking into account that their
subsamples are slightly different. However we do not measure

significant cross-correlations, whereas these authors do a result
we cannot explain.

Cabré et al. (2006) and Giannantonio et al. (2008) performed
Monte Carlo simulations using mock maps, and obtained simi-
lar values or ones only slightly larger than a jack-knife. We do
not know whether these disagreement are caused by mistakes
in their calculations or whether their claim is that re-sampling
errors represent the full errors. Other authors used only jack-
knife technique errors (e.g., Sawangwit et al. 2009). A similar
problem may affect the results of Raccanelli et al. (2008), who
measured the cross-correlation between NVSS radio sources and
WMAP anisotropies. Raccanelli et al. (2008) calculate the error
in simulating 1000 mock NVSS maps by randomly distributing
the unmasked pixels of the true NVSS maps. We are concerned
that this process might destroy part of the self-correlation of each
map, and that the errors might not represent the full field-to-field
fluctuations. There has been considerable discussion of these
errors (Cabré et al. 2007; Giannantonio et al. 2008). However,
against their claims one can infer from the analyses of this pa-
per that: i) jack-knife or bootstrap methods do not calculate the
whole error; ii) the level field-to-field fluctuations is as large as
the measured average signal. In addition, our conclusion is that
the signal is largely dependent on the specific sub-region cho-
sen. We find that in the large area of |l| < 108◦, b > 30◦ (3906
square degrees available with SDSS-DR7, more than half of the
sample) we do not measure any signal, so the average signal of
the entire sample must be caused by a fluctuation.

One remarkable aspect of the analysis of WMAP/SDSS-
DR4 is that Cabré et al. (2006) obtain a 3.6σ detection for
20 < r < 21, while Giannantonio et al. (2008) with a wider areal
coverage (SDSS-DR6) and broader range of magnitudes, 18 <
r < 21, achieve only a 2.3σ detection. This decrease in the sig-
nificance is unexpected if the signal were real. We also note that
some authors calculated the combined signal to noise ratio of
different cross-correlations in different samples, obtaining val-
ues over 4σ, by summing them quadratically (Cabré et al. 2006).
This is incorrect because they do not take into account the cor-
relation between the samples, thus neglect an important part of
the estimated error.

A higher significance in the cross-correlation of
WMAP/SDSS is claimed to be obtained (Granett et al. 2008)
when only super-clusters/super-voids are correlated with
WMAP instead of the entire SDSS survey: a value of 4.4σ.
Apart from our questions raised above, we are also concerned
about possible a posteriori fitted parameters used to obtain this
correlation. For instance, Granett et al. (2008) separate regions
of the sky centered on super-clusters with radii of 4 degrees; we
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ask why 4 degrees? These authors illustrate that the significance
is only 3.5σ for radius 3 deg or 3.8σ for 5 deg. The significance
also changes with the number of superclusters/supervoids
selected, being 4.4σ with N = 50 but only 2.8σ with N = 70.
A signal to noise ratio of 2–3σ is provided by other authors
without any selection of super-clusters, so they appear to have
considered both a radius and number of superclusters/supervoids
that achieves the maximum increase in the signal to noise ratio
(from 2–3 up to to 4.4).

We note that Bielby et al. (2010) measured the correlation of
WMAP anisotropies with emission-line galaxies selected photo-
metrically from SDSS and inferred a non-significant correlation,
with large field-to-field errors comparable to those we obtain
(we are cautious in interpreting their result, however, because
the cross-correlation in the different subfields are not indepen-
dent and this affects the way in which they have been using to
determine the rms). They claim that their result implies that pos-
sibly emission line galaxies are more strongly clustered and less
correlated with microwave anisotropies, something that is not
entirely clear to us. In our opinion, the results of Bielby et al.
(2010) of non-significant cross-correlation may be correct and
there is unlikely to be a difference in the interaction of galaxies
with the background CMBR that is caused entirely by them hav-
ing emission lines. Sawangwit et al. (2010) failed to measure a
significant cross-correlation between the luminous red galaxies
of SDSS-DR5 and WMAP. On the other hand, they found some
positive correlation of WMAP with 2SLAQ survey, and nega-
tive correlation of WMAP with the AAOmega survey. Analyses
by Hernández-Monteagudo (2008) demonstrated that the cross-
correlation of WMAP/SDSS-DR4 should have at least within a
signal/noise ratio of 0.7–1.7, much lower than the significance
obtained by the authors cited above. These results might be in-
terpreted as independent confirmations of our results here.

Apart from those analyzing data from SDSS, previous stud-
ies reach the general conclusion that the ISW effect was not de-
tected significantly in: (1) cross-correlations with X-ray XRB,
Boughn & Crittenden (2003) claiming an absence of the ISW
using X-ray data; (2) near-infrared 2MASS, Francis & Peacock
(2009) not finding any corresponding ISW signal; or (3) radio
sources NVSS, Hernández-Monteagudo (2009) casting doubt on
the correlation between WMAP and NVSS radio sources, since
the cumulative signal to noise ratio of the cross-correlation with
multipoles l < 60 is lower than 1, and the ISW itself, since the
signal to noise ratio should be around 5 theoretically.

6. Conclusions

We concluded that there is no significant cross-correlation be-
tween the CMBR temperature anisotropies of WMAP and the
galaxy counts of the SDSS, and any claims to have detected
the ISW effect on the basis of significant cross-correlation are
unjustified. Field-to-field fluctuations dominate the detected sig-
nals. Any detection of signal is very dependent on the selected
region of the sky. Other authors erroneously claimed to have de-
tect significant correlations because they had used a particular
sky region with a fluctuation that is not representative of the av-
erage sky or because they had underestimated the statistical er-
rors by using non-independent re-samplings. If our conclusion is
correct, the value of ΩΛ ≈ 0.8 obtained by those authors based
on the assumption of observing the ISW effect would have been
one induced by noise. Its value would be coincident with the ex-
pected value for ΛCDM by chance, and in the spirit of accepting

a scientific result when it indeed produces numbers expected
a priori.
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Appendix A: Field-to-field errors
in the cross-correlation as an integral
of the self-correlations for two uncorrelated fields1

We consider two continuous random scalar fields, FA and FB,
in a space with d dimensions and any topology. Without loss
of generality, we shall assume that the mean values (over re-
alization) of both fields is zero and they are not correlated:
〈FA〉 = 〈FB〉 = 〈FAFB〉 = 0. On the other hand, the values
of each field at two different points x1, x2 are not independent
random variables:ωA/B(x1, x2) = 〈FA/B(x1)FA/B(x2)〉, where the
average is over realizations. In practice, in most interesting cases
the fields are statistically homogeneous and ergodic, so that ω
depends only on x1 − x2, and the correlation may be defined
as spatial averages, which is the useful definition since in most
cases only one realization is available. If the fields are also sta-
tistically isotropic, ω depends only on r ≡ |x1 − x2|. For the fol-
lowing derivation, we shall assume homogeneity and isotropy;
the full expression might easily be recovered if needed.

We first derive the “field-to-field error” (i.e., the true error)
for the zero lag estimator:

E[ωAB(r = 0)] =
1
N

N∑
i=1

FA(i)FB(i), (A.1)

where FA/B(i) ≡ FA/B(xi). We have replaced the d-dimensional
volume integral over the sample with a sum over N equal volume
cell indexed by i and centered on xi. We would have to multiply
the contribution of the field for each pixel by a weight equal to
the volume of the pixel in the case of non-equal volume cells.

For the variance in Eq. (A.1), we have:

σ2
ωAB

(r = 0) = 〈E2〉 − 〈E〉2 = 〈E2〉, (A.2)

since, by construction, the mean value of E over realizations,
ωAB, is assumed to be zero. Developing the square of expres-
sion (A.1), and taking its average, we have:

〈E2〉 = 2
N2

〈 N∑
i, j

FA(i)FB(i)FA( j)FB( j)

〉
. (A.3)

In principle, the factor of 2 should not be there in the case i = j,
but this will be negligible in the limit of arbitrarily small cells.

Now, since the fields FA and FB are uncorrelated

〈FA(i)FB(i)FA( j)FB( j)〉 = 〈FA(i)FA( j)〉〈FB(i)FB( j)〉
= ωA(ri j)ωB(ri j), (A.4)

1 By J. Betancort-Rijo.
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where ri j ≡ |xi − x j|. Thus, we have

σ2
ωAB

(r = 0) = 2〈ωA(r)ωB(r)〉
≡ 2

V2
s

∫ ∫
sample

ωA(r12)ωB(r12)dd r1dd r2, (A.5)

where Vs represents the volume of the sample.
The correlation estimator for any non-zero lag is

E[ωAB(r0)] =
1

N2

N∑
i, j/ri j=r

FA(i)FB( j), (A.6)

where r0 − Δr/2 < r < r0 + Δr/2. Following Eq. (A.6) using the
same procedure as for Eq. (A.1), one obtains

σ2
ωAB

(r0) = 2〈ωA(r12)ωB(r34)〉4,r0 ≡

2
∫ ∫

sample/r13=r,r24=r
ωA(r12)ωB(r34)dd r1dd r2dd r3dd r4∫ ∫

sample/r13=r,r24=r
dd r1dd r2dd r3dd r4

· (A.7)

Equation (A.7), and its particular case, Eq. (A.5), infer the vari-
ance over realizations of the estimator of the correlation between
two uncorrelated fields A, B when any new global realization of
both fields is carried out. In the case when we fix the realization
of one of the fields while changing the other, Eq. (A.7) is
also valid but the self-correlation of the fixed realization must
be calculated by averaging over pixels in this fixed realiza-
tion, rather than over realizations. Now, since the estimated
self-correlation may fluctuate above and below the universal
(mean of all realizations) value, it is clear that the variance in

the estimator of the cross-correlation of A and B when one of
them is kept fixed may be slightly above or below the one corre-
sponding to the case when both fields fluctuate.
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