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ABSTRACT

Context. It is well established that the atomic interstellar hydrogen is filling the galaxies and constitutes the building blocks of
molecular clouds.
Aims. To understand the formation and the evolution of molecular clouds, it is necessary to investigate the dynamics of turbulent and
thermally bistable as well as barotropic flows.
Methods. We perform high resolution 3-dimensional hydrodynamical simulations of 2-phase, isothermal and polytropic flows.
Results. We compare the density probability distribution function (PDF) and Mach number density relation in the various simulations
and conclude that 2-phase flows behave rather differently than polytropic flows. We also extract the clumps and study their statistical
properties such as the mass spectrum, mass-size relation and internal velocity dispersion. In each case, it is found that the behavior
is well represented by a simple power law. While the various exponents inferred are very similar for the 2-phase, isothermal and
polytropic flows, we nevertheless find significant differences, as for example the internal velocity dispersion, which is smaller for
2-phase flows.
Conclusions. The structure statistics are very similar to what has been inferred from observations, in particular the mass spectrum, the
mass-size relation and the velocity dispersion-size relation are all power laws whose indices well agree with the observed values. Our
results suggest that in spite of various statistics being similar for 2-phase and polytropic flows, they nevertheless present significant
differences, stressing the necessity to consider the proper thermal structure of the interstellar atomic hydrogen for computing its
dynamics as well as the formation of molecular clouds.
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1. Introduction

Understanding the interstellar turbulence is of great impor-
tance in the context of molecular cloud and star formation. As
such, many theoretical studies and numerical simulations have
been performed during the last decades (see e.g. the reviews
by MacLow & Klessen 2004; Scalo & Elmegreen 2004; and
Elmegreen & Scalo 2004). So far, most of the studies have con-
sidered isothermal flows. Although this constitutes a reasonable
assumption for the densest parts of the molecular clouds, it is
not an appropriate assumption for the description of the interstel-
lar atomic hydrogen, which is 2-phase in nature (e.g., Dickey &
Lockman 1990; Field et al. 1969; Wolfire et al. 1995), and there-
fore for the formation of molecular clouds. Indeed, recent works
(Hennebelle & Inutsuka 2006; Vázquez-Semadeni et al. 2007;
Heitsch et al. 2008a; Hennebelle et al. 2008; Banerjee et al.
2009) have investigated the possibility that molecular clouds are
multi-phase objects. It seems therefore important to understand
the dynamical properties of a turbulent 2-phase medium as the
interstellar atomic gas.

Various studies have been already performed along this line.
This includes 1D calculations (Hennebelle & Pérault 1999;
Koyama & Inutsuka 2000; Sánchez-Salcedo et al. 2002; Inoue
et al. 2006), 2D calculations (Koyama & Inutsuka 2002; Audit &
Hennebelle 2005; Heitsch et al. 2005, 2006) and 3D calculations

(Kritsuk & Norman 2002; Gazol et al. 2005; Vázquez-Semadeni
et al. 2006). The influence of the magnetic field on the dynamics
of a thermally bistable flow has been investigated by Hennebelle
& Pérault (2000), Piontek & Ostriker (2004, 2005), de Avillez
& Breitschwerdt (2005), Hennebelle & Passot (2006), and more
recently by Inoue & Inutsuka (2008), Hennebelle et al. (2008),
Heitsch et al. (2009), Inoue et al. (2009) and Gazol et al. (2009).

In a previous study, Hennebelle & Audit 2007, (hereafter
HA07) and Hennebelle et al. (2007), we have investigated the
dynamics of 2-phase flows by the means of bidimensional high
resolution numerical simulations. We have studied in particu-
lar, the properties of the dense and cold clumps formed out of
the warm gas by thermal instability, showing that they present
many similarities with observed clumps. In the present paper,
we investigate the properties of clumps formed in more realistic
3D simulations. To better understand the influence of the 2-phase
physics and since the nature of the inter-clump gas within molec-
ular clouds is not well known (see Sect. 4.1 for a discussion), we
also perform isothermal and polytropic simulations with iden-
tical setups as the 2-phase ones, but for the thermal properties.
We then compare the results obtained for the various types of
simulations.

The plan of the Paper is the following. In the second section
we describe the numerical experiments we perform, in the third

Article published by EDP Sciences Page 1 of 12

http://dx.doi.org/10.1051/0004-6361/200912695
http://www.aanda.org
http://www.edpsciences.org


A&A 511, A76 (2010)

section we present the global properties of the numerical sim-
ulations including the density probability distribution function
(PDF) and the Mach number-density distribution. The fourth
section is devoted to the clump properties including their mass
spectrum, velocity dispersion and mass-size relation. In the fifth
section we summarize our results and conclude the Paper.

2. Initial conditions and method

The equations are identical to those used in our previous stud-
ies and can be found in Audit & Hennebelle (2005), (here-
after AH05). However, one difference with the study performed
by HA07 is that we do not include thermal conduction in the
3D runs. As emphasized in HA07, it does not have a major ef-
fect except on the very small scale structures which due to insuf-
ficient numerical resolution are not in any way described in the
present simulations.

We use the HERACLES code to perform the simulation.
This is a second order Godunov-type hydrodynamical code. The
size of the computational domain is 15 pc and the resolution
ranges from 6003 to 12003 cells, leading to a spatial resolution
of 2.5×10−2 to 1.25×10−2 pc. Let us recall that the highest reso-
lution run, in HA07, had 10 0002 cells corresponding to a spatial
resolution of 2 × 10−3 pc. As stated in HA07, the resolution has
a strong influence on the results and must be sufficient to cover
a large dynamic of spatial scales. Typically, 25002 to 50002 cells
were needed to get some reliable numerical convergence even
if no strict numerical convergence could be obtained. Therefore,
the present runs are likely to be affected by insufficient numer-
ical resolution. However, we stress that it is nowadays difficult
to do much bigger runs in 3D than the one we perform. We still
believe, that investigating the 3D effects is worthwhile even with
a relatively low resolution. One should keep in mind this restric-
tion when looking at the results.

Since our primary goal is to investigate the exact influence
of the equations of state on the dynamics of the flow, we have
done simulations of 2-phase flows (using the cooling function
described in AH05) and using an isothermal equation of state
with a temperature of 100 K. Finally, since it has been found
that the effective polytropic index of the cold gas is about 0.7, we
have performed a simulation using a polytropic equation of state
with a polytropic index of γ = 0.7. For this run the temperature
is given by

T = 100 K
(

ρ

100 cm−3

)−0.3
· (1)

For all the simulations, the boundary conditions consist in an im-
posed converging flow (see AH05, Folini & Walder 2006) at the
left and right faces of the amplitude Vin � 15 km s−1 (which cor-
responds to �1.5×Cs,wnm where Cs,wnm is the sound speed of the
warm neutral medium) on which fluctuations of various ampli-
tudes have been superimposed. We stress that since the mean ve-
locity is the same for all the runs, this implies that while 2-phase
simulations are mildly transsonic (this is of course no longer the
case for the cold gas produced in these simulations) with a Mach
number ofM � 1.5, the isothermal and barotropic ones are very
supersonic with Mach numbers of the order of 10. The initial
conditions are also identical to the one used in AH05, that is to
say a uniform low density gas of a density of nin � 0.8 cm−3,
which is also the density of the incoming flow for all the runs.
In the 2-phase case, this gas is at thermal equilibrium and corre-
sponds to warm neutral medium (WNM) (i.e. has a temperature
of about 8000 K).

Table 1. Fraction of unstable and cold gas as a function of the shear.

Cold Cold Mean value of
+ Unstable gas the shear (Myr−1)

ε = 1 0.570 0.121 12.4
ε = 2 0.569 0.039 15.0
ε = 4 0.358 0.002 23.4

For the three types of simulations, the ram pressure of the
incoming flow is thus ninmpV2

in = ninmp × (1.5 × Cs,wnm)2 �
2.15 × kbninTWNM � 1.4 × 104kb K cm−3, where TWNM is the
temperature of the WNM which is of the order of 8000 K, kb is
the Boltzmann constant and mp the mean molecular weigth. In
the 2-phase case, the thermal pressure of the diffuse gas injected
inside the box is about (3/2)kbninTWNM � 1.2 × 104kb K cm−3,
while it is (3/2)kbnin× (100K) � 150kb K cm−3 in the isothermal
case. The latter is thus roughly 80 times smaller than the former.

For the four other faces, outflow conditions have been set up,
implying that the flow can escape the computational box across
these four faces. The advantage of this setup, which consists in
focusing on a peculiar large scale event, is clearly the spatial res-
olution of the cold neutral medium (CNM) structures. In partic-
ular, considering a turbulent forcing would require a larger box
to produce large scale events at the scale of the WNM cooling
length, therefore increasing the size of the computational cells.
We stress that this is different from polytropic flows in which
there is no cooling length to be considered.

The simulations are then run until a statistically stationary
state is reached. This constitutes a difference with other related
works (e.g., Koyama & Inutsuka 2002; Heitsch et al. 2006),
which investigate the development of the thermal and dynami-
cal instabilities. In order to reach the statistically stationary state
more rapidly, we start with a coarser numerical resolution, and
we then double it once statistical stationarity has been reached.

To study the influence of various physical parameters, and
more specifically of the cooling function, we have performed
several runs assuming different thermo-dynamical properties for
the gas. First of all, we have done three runs with a 2-phase flow
using the heating/cooling function presented in AH05. For these
three runs, the amplitude of the velocity fluctuations imposed
on the boundary was given by ε = 1, 2 and 4 corresponding
to modulations of the order of 10%, 20% and 40% respectively
(see AH05 for details). The effect of varying the amplitude of
the fluctuations imposed on the boundaries is to increase the tur-
bulence in the box. To quantify this effect, we have computed
the mean shear for each value of ε. The average shear is com-
puted in the following way: in each cell, we compute the veloc-
ity stress tensor (i.e., ∂xiV j). We then diagonalize the symmetric
trace-free part of this tensor, and the shear is defined as the root-
mean square of the obtained eigenvalues. We finally compute the
average over all cells in the simulation. Table 1 gives the value
of the mean shear for ε = 1, 2 and 4. The isothermal run was
done using ε = 2 for the boundary conditions.

3. Global statistics

3.1. General morphology of the flow

Figure 1 shows the maximum of the density field along the lines
of sight at a particular time step after statistical stationarity has
been reached in the box for the 2-phase run in the case ε = 1.
The morphology is rather complex. The cold gas seen in white
and yellow is very fragmented and very structured. The warm
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Fig. 1. Maximum density values along the lines
of sight at one time step of the 12003 2-phase
simulation. The brighter spots correspond to a
density exceeding 100 cm−3 embedded into a
pervasive material at a density of a few cm−3.

and diffuse gas appears to be intrusive. This is qualitatively sim-
ilar to the structure observed in 2D simulations (see AH05 and
HA07), although some differences can be seen. For example, the
2D simulations seems to be more filamentary. It is worth to re-
call at this stage, however, that the resolution is five to ten times
smaller in this run than in the highest resolution run presented
in HA07.

Figure 2 diplays density isosurfaces and velocity streamlines
at the same time step. The large isosurface corresponds to a den-
sity of 5 cm−3 and therefore traces mainly the WNM compressed
by the ram pressure of the converging flow. The white clumps
correspond to a density of 500 cm−3 and therefore mainly show
the dense CNM structures confined by the thermal and the ram
pressure of the surrounding WNM. The streamlines show that
the velocity field is nearly laminar in the WNM and becomes
very turbulent inside the compressed layer and therefore also
around the CNM structures. This is similar to what is reported by
Heitsch et al. (2006, 2008b) who point out the influence of the
Kelvin-Helmholtz instability as a plausible source of turbulence
within the forming cloud.

Figure 3 displays density maps of a slice of the 2-phase run
(left) and of the isothermal one (right). The visual aspect of the
density field in these two simulations is quite different. First of
all, while the dense isothermal flow tends to be distributed in a
large fraction of the box, most of the dense gas in the 2-phase
flow is concentrated in a thin layer located at the onset of the
two converging flows. This is partly due to the thermal pressure
which is higher in the 2-phase case than in the isothermal gas
and can efficiently push the gas outside the computing box (as
discussed later the total mass is indeed higher in the isothermal
case than in the 2-phase case). Still, we have also performed runs

with periodic boundary conditions along the y and z-directions
which show the same trends, although slightly reduced. We think
consequently that other dynamical processes such as the devel-
opment of the non-linear thin shell instability (Vishniac 1994)
are also playing a role here. Indeed, for this instability to de-
velop, the slab must be locally displaced by at least a distance
similar to its thickness. As a consequence, the non-linear thin
shell instability develops only, or at least is much stronger, when
the incoming flows are supersonic. While in the 2-phase case
the flows are transsonic (since the sound speed of the WNM is
about 10 km s−1), they are highly supersonic (M � 10) in the
isothermal case.

Second of all, one sees spheroid structures, in the 2-phase
case, with some filaments surrounded by a more diffuse medium.
In the isothermal case, the density structures are largely im-
printed by bow shocks, and clumps can hardly be seen. As we
will see further on the density PDF and Mach number distribu-
tion are indeed very different in both cases. But, these large dif-
ferences are not so obvious anymore when looking at the statis-
tics of dense structures.

3.2. Pressure and density distributions

Figures 4 show a bidimensional pressure-density histogram. The
solid line is the thermal equilibrium curve, the two dashed-dotted
lines correspond to a constant temperature (T = 5000 and 200 K)
and the dashed line corresponds to the Hugoniot curve. As in
previous studies (Vázquez-Semadeni et al. 2003, AH05), we see
that if most of the gas lies near the two branches of equilibrium
(T � 8000 K for the WNM and T � 50−100 K for the CNM),
a significant fraction is nevertheless in the thermally unstable

Page 3 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912695&pdf_id=1


A&A 511, A76 (2010)

Fig. 2. Density isosurface and velocity stream-
lines at one time step of the 12003 2-phase sim-
ulation. The large isosurface corresponds to a
density of 5 cm−3 and the white clumps to a
density of 500 cm−3. One can see from the
streamlines that the velocity fields is laminar
in the warm neutral medium (WNM) and be-
comes very turbulent in and around the cold
neutral medium (CNM) structures.

Fig. 3. Density cut through the simulations. The left plot corresponds to the 2-phase run and the right one to the isothermal run. Bright regions
correspond to a density between 20 cm−3 and 100 cm−3, while the pervasive grey area corresponds to a density of a few cm−3.

domain. As pointed out in AH05, there is a clear correlation be-
tween the level of turbulence and the fraction of this thermally
unstable gas, indicating that turbulence is the main cause for the
existence of this gas. This can be seen in Table 1, where the
fraction of cold and unstable gas is given for each 2-phase runs

as well as the mean value of the shear. It is clear that the shear
inhibits the formation of cold structures. For the two runs with
the lowest value of ε (ε = 1 and 2), we find, as in AU05, that
the amount of cold and unstable gas is independant of the turbu-
lence, but that the formation of cold gas is strongly inhibited by
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Fig. 4. Distribution of mass in the density-pressure plan. The solid line
corresponds to the thermal equilibrium curve, the dashed curve corre-
sponds to the Hugoniot-curve of shocked gas and the dashed-dotted
lines are the isothermal curves at T = 5000 K and T = 200 K, and
finally the region between the dotted curves is the region where the gas
is thermally unstable.

the shear. In other words, the shear does not prevent the forma-
tion of thermally unstable gas, but does prevent the formation of
cold dense gas out of the thermally unstable gas.

For ε = 4, the shear is so strong that cold structures can
hardly form. For this reason, we emphasize the ε = 1 case which
contains a larger fraction of CNM providing better statistics on
the dense gas than the other cases. In the Appendix the results
corresponding to the ε = 2 case are displayed.

The PDF of the density for the 2-phase, isothermal and
polytropic runs are plotted on Figs. 5−7, respectively. The den-
sity PDF, P(n), of the isothermal simulations has been stud-
ied by various authors (e.g. Padaon et al. 1997; Passot &
Vázquez-Semadeni 1998) and has been found to be lognormal.
More precisely, the following formula has been proposed:

P(n) =
a√

2πσ2
exp

(
− (ln(n) − ln(n̄) − 0.5σ2)

2σ2

)
(2)

with σ2 = ln(1 + b2M2). The fits shown in the figures were
obtained using the parameters given in Table 2. The dotted line
in Fig. 6 corresponds to n−3/2.

As found by previous authors, the isothermal PDF is well
fitted by this lognormal distribution, eventhough we get slightly
larger wings. This may be due to our forcing, which is not ap-
plied in the Fourier space and in the solenoidal modes as is the
case in most of the compressible simulations which have been
performed. Indeed, Federrath et al. (2008) find that while forc-
ing in the compressible modes rather than in the solenoidal ones,
large non-Gaussian wings develop. Since our forcing is exerted
from the boundaries as a converging flow and therefore, at the
scale of the box at least, mainly in the compressible modes, it
seems likely to us that such an effect is certainly pertinent to our
simulation. The value of the b parameter, namely b = 0.33 is also
reminiscent of the values quoted in the literature (e.g. Federrath
et al. 2008).

In the γ = 0.7 polytropic case, the low density part of the
PDF is well fitted by a lognormal distribution, while for higher
density the PDF is a power law whose exponent is about −1.5.
Such power laws have been numerically found and explained
in Passot & Vázquez-Semadeni (1998) for 1D simulations. It
is typical of very compressible fluids (γ < 1) and is a direct
consequence of the thermal pressure term. Indeed, for γ = 0.5,

Fig. 5. Probability distribution function of the density for the isothermal
run. The dashed line is a lognormal fit.

Fig. 6. Probability distribution function of the density for the polytropic
run. The dashed line is a lognormal fit, while the dotted line is a power
law fit.

Passot & Vázquez-Semadeni (1998) report an exponent of
about −1.2, which appears to be close to our result. Since the
value of the exponent that we inferred here agrees with their es-
timate, it seems that the 3D effects are not altering their conclu-
sion. Note that the value of the b parameter quoted in Table 2 is
only indicative, since as seen from Fig. 6 the lognormal distri-
bution does not provide a good fit to the high density part of the
PDF.

For the 2-phase run, we obviously cannot get a lognormal
PDF, since the PDF is bimodal, by definition. It is interesting to
investigate to what extend the cold gas can be fitted by a log-
normal distribution. Table 2 gives the parameter values. Note
that the Mach number has been estimated by selecting computa-
tional cells of density larger than 20 cm−3. As can be seen, the
high density part of the cold gas density distribution is reason-
ably reproduced by a lognormal fit. This is a little surprising to us
since the effective polytropic index of the CNM is smaller than
one and indeed not far from 0.7, as can be seen in Fig. 4. We
speculate that the numerical resolution of the CNM structures
available in the present simulations is not sufficient to describe
this behavior. We note however that the low density part of the
CNM, ranging from �10 cm−3 up to the peak at �300 cm−3,
is not well described by a lognormal distribution. This clearly
raises the question of what density PDF should be considered in
models of molecular clouds.
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Fig. 7. Probability distribution function of the density for the 2-phase
run.

Table 2. Parameters used for the fit of the density pdf.

n̄ M b
2-phase 280 2.48 0.26

Isothermal 6.5 3.49 0.33
polytropic 3.6 2.95 0.4

Finally, it is worth noting that the mean density, or equiva-
lently the total mass in the box is different for the three types
of flows. While for the 2-phase flow, the mean density is about
2 cm−3, its value is about 3.5 cm−3 for the barotropic flow
and 6 cm−3 for the isothermal case. This is a natural conse-
quence of the average temperature being higher in the 2-phase
case than in the barotropic flow, which itself has a higher tem-
perature than the isothermal flow. Indeed, since the temperature
in our isothermal run is uniformly low compared to the dynami-
cal pressure, the interclump gas cannot significantly confine the
clumps, which are therefore re-expanding once the shock that
has compressed them has decayed. For this reason, the density
of the interclump gas is larger in the isothermal case than in the
2-phase case.

3.3. Distribution of Mach numbers with density

Figures 8 and 9 show the mass distribution in the density-Mach
number plan for the 2-phase and the isothermal flow respec-
tively. The isothermal case is very similar to what has been pre-
viously reported by Kritsuk et al. (2007) and Federrath et al.
(2009a,b). The Mach number is essentially not correlated with
the density, with a possible weak anti-correlation.

The two phases can clearly be seen in Fig. 9, and the Mach
number varies with the density as aboutM ∝ ρ0.5. This appears
to be roughly consistent with the idea that the velocity dispersion
weakly depends on the density, while the temperature is roughly
proportional to 1/ρ. This last relation naturally follows from a
nearly isobaric model.

Although the two distributions are significantly different, an
interesting question is whether the cold gas itself behaves in the
2-phase run thermally and dynamically, as an isothermal or a
polytropic gas. As already discussed in the previous section and
is also evident from Fig. 9, this is obviously not the case for
the low density part of the dense gas distribution. The question
whether the dense clumps have similar properties for both types
of flows is investigated in the next section.

Fig. 8. Mass distribution in the density-Mach number plan for the
isothermal flow. The mass excess around n = 0.8 cm−3 and M �
15−20 corresponds to the input flow.

Fig. 9. Mass distribution in the density-Mach number plan for the
bistable turbulent flow with ε = 1. The black line corresponds to
M ∝ ρ0.5.

4. Properties of CNM structures

In this section, we examine the properties of the dense structures.
As in AH05, they are extracted by a simple clipping algorithm
using a density threshold, ns. In the 2-phase case, three values
of ns are explored, namely 10, 30 and 100 cm−3. While the first
value lies in the thermally unstable domain, the two others cor-
respond to gas in the cold phase. As for the previous section,
we also show corresponding results for isothermal gas. In the
isothermal runs the value ns = 10 cm−3 is too low to allow for
structure extraction and therefore only ns = 30 and 100 cm−3 are
used. This can be clearly seen from Fig. 5, which shows that the
density peak is close to 10 cm−3.

Let us recall that we present the structure properties obtained
in the ε = 1 case for the 2-phase run and ε = 2 for the isothermal
run. The reason is that there are more structures in the ε = 1
than ε = 2 case, giving better statistics, while the distributions
are otherwise similar. The corresponding figures for the 2-phase
ε = 2 case are shown in the Appendix.

4.1. Relevance of comparison with observations

The question which set of data our results should be compared
to is not entirely straightforward. Strictly speaking, the 2-phase
simulations should be compared with HI data such as the ones
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Fig. 10. Mass distribution of the structures identified in the 2-phase sim-
ulations (A1) with a density threshold nc = 10 cm−3. The solid black
line shows the 12003 simulation while the red dotted line shows the
6003 simulation. The black straight line shows a clump mass spectrum
dN/dM ∝ M−1.8.

obtained in the Millenium survey (Heiles & Troland 2003). This
comparison, which was the main purpose of the study performed
by Hennebelle et al. (2007), has turned out to be restricted. The
reason is that the distance of HI clouds is usually unknown be-
cause HI is ubiquitous within the Galaxy. Thus, size and mass
spectrum in particular, cannot be easily computed. Extragalactic
studies such as the one performed by Kim et al. (2007) can get
rid of this difficulty, but the scales that one can probe in nearby
galaxies is much larger than the ones tackled in our simulations.

On the other hand our results are not restricted to 2-phase
flows since isothermal and barotropic cases are also considered.
These thermal approximations are thought to be fairly reason-
able to describe the dense part of molecular clouds (i.e. denser
than 103 cm−3) and have been used in many studies. Thus it is
both interesting and justified to compare the statistics inferred
from these numerical simulations with the statistics which have
been observationally inferred for molecular clouds.

Finally, the nature of the interclump medium within molec-
ular clouds is still very uncertain. Williams et al. (1995) studied
the Rosette molecular cloud in detail and conclude that in this
cloud, the interclump medium is a mixture of atomic gas (the
density, 2−4 cm−3, which they quote traditionally corresponds to
either warm or thermally unstable HI gas as seen in Fig. 4) and
very diffusive H2. Recent theoretical studies (e.g. Hennebelle
et al. 2008; Heitsch et al. 2008a,b; Banerjee et al. 2009) at-
tempting to form molecular gas from the diffusive atomic gas,
argue that WNM persists between the clumps inside the molec-
ular clouds. If this assumption is correct, it would imply that
molecular clouds are also 2-phase objects, with dense molecular
gas embedded into a warm and diffuse atomic phase. For this rea-
son, we believe that with due caution comparisons between our
2-phase results and some statistics inferred for molecular clouds
are also relevant.

4.2. Clump mass spectrum

Figures 10−12 show the mass spectrum for the structures ex-
tracted from the 6003 and 12003 2-phase simulations and with a
density threshold ns respectively equal to 10, 30 and 100 cm−3.
While the low mass part of the distributions (<10−3 solar masses)
is spoiled by the numerical resolution, the high mass part
(>0.1 solar masses) suffers from poor statistics due to the finite
size of the box. However, as can be seen by comparing the re-
sults of the 6003 and the 12003 simulations, numerical conver-
gence seems to be nearly reached for intermediate masses. The

Fig. 11. Same as Fig. 10 for a density threshold of nc = 30 cm−3.

Fig. 12. Same as Fig. 10 for a density threshold of nc = 100 cm−3.

Fig. 13. Same as Fig. 10 for the isothermal simulation and a density
threshold of nc = 30 cm−3.

mass spectrum in this range of masses approximately follows
N(M) ∝ M−1.8 for the three density thresholds. It is therefore
very similar to what has been inferred in the 2D simulations pre-
sented in HA07. It is also similar to the mass spectrum inferred
by Dib et al. (2008).

Figure 13 shows the mass spectrum in the isothermal case for
nc = 30 cm−3. The distribution is rather similar to the 2-phase
case except for the interesting fact that more small scale struc-
tures are found. We interpret this as a consequence of the ef-
fective (or numerical) Field length preventing the formation of
CNM structures of a particular size too close to the mesh. As for
the 2-phase case, the mass spectrum between 10−3 and 10−1 solar
masses is a power law whose exponent is close to 1.8.

Let us recal that in HA07 we propose a theory to explain the
mass spectrum of the CNM structures which predicts γ = 16/9
in 3D and is therefore compatible with the numerical results.
This theory, which is based on the Press & Schecter (1974) for-
malism and assumes that the structure mass spectrum reflects
the density fluctuations arising in the trans-sonic WNM, has
been recently extended by Hennebelle & Chabrier (2008) to the
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supersonic case. In particular, the exponent of the structure mass
spectrum is related to the exponent of the powerspectrum of
log(ρ), n′, through the relation:

dN
dM
∝ M−β = M−2+ n′−3

3 . (3)

In order to verify this relation, we have computed the power-
spectrum of log(ρ). The 2-phase case is presented in Fig. 14,
while the isothermal one is shown in Fig. 15. The value of the
exponent is measured to be about 3.3, while as in Kritsuk et al.
(2007) we identify a bottleneck in which the exponent is slightly
shallower. This value of the exponent is similar to what is re-
ported in Schmidt et al. (2009), though slightly smaller, since
they infer a value closer to 3.8. We speculate that this maybe due
to our boundary conditions, since in a significant fraction of the
computational box the flow is not fully turbulent.

Taking n′ � 3.3, we get with Eq. (3), β � 1.9 which appears
to be compatible with the mass spectrum inferred from the simu-
lations. Taking into account the value inferred by Schmidt et al.
(2009), i.e. n′ = 3.8, we get β � 1.75. We also note that the
theory presented in HA07 and in Hennebelle & Chabrier (2008)
predicts that the mass spectrum exponent should not depend on
the density threshold, which seems to be compatible with the re-
sults displayed in Figs. 10−12. Note that with larger values of
nc, the mass spectrum we get is not sufficiently accurate to ob-
tain a reliable estimate of the exponent. Finally, the mass spec-
tra obtained for different values of ε, the fluctuation amplitude
imposed at the boundaries, are very similar to the mass spectra
presented above, as shown in the Appendix.

It is remarkable that the mass spectra obtained under dif-
ferent conditions of forcing and for different thermodynamical
behaviors are so similar particularly because significant density
PDF have been inferred. Indeed, this strongly suggests that tur-
bulence, whose behavior tends to be universal, is mainly respon-
sible of the shape of the mass spectrum as indicated by Eq. (3).

The value of β inferred from the simulations is also com-
patible with the value quoted in various observational studies
(e.g. Blitz 1993; Heithausen et al. 1998) for the CO clumps.
Interestingly enough, the structure masses in the sample of
Heithausen et al. (1998) are as small as one Jupiter mass and
consequently compatible with the mass of the structures formed
in our simulations. Although a straightforward comparison and
therefore conclusion should be taken with care at this stage as the
present work focuses on HI and does treat neither the formation
of H2 nor the formation of the CO molecule, the universality of
the mass spectrum that we observed in our simulations suggests
that these processes probably do not affect the mass spectrum
significantly. We also note that in a recent study Kim et al. (2007)
inferred similar values for the HI clouds in the small magellanic
cloud. But the mass of these clouds (104−6 solar masses) is much
larger than the mass of our simulated clouds.

4.3. Clump mass-size relation

In this section, we investigate the mass-size relation. As in
HA07, the size is defined by computing the inertia matrix and
taking its largest eigenvalue. Note that we have tried other
choices, as for example the geometric means of the three eigen-
values but it does not impact the results significantly.

Figure 16 shows the mass versus size relation for the CNM
structures extracted from the 12003 cells simulations for a value
of nc = 30 cm−3. Structures obtained with nc = 10 and 100 cm−3

show very similar behaviors and are therefore not displayed here
for conciseness. This is also the case for the structures formed in

Fig. 14. Compensated power spectrum Pkkn′ of the logarithm of the den-
sity with n′ = 3.3 for the weakly turbulent simulation. The two dashed
horizontal lines correspond to slopes of −3.3 and −3.1.

Fig. 15. Compensated power spectrum Pkkn′ of the logarithm of the den-
sity with n′ = 3.3 for the isothermal simulation. The two dashed hori-
zontal lines correspond to slopes of −3.3 and −3.1.

Fig. 16. Mass versus size relation for the CNM structures extracted from
the 2-phase 12003 cells simulations.

simulations with a larger fluctuation amplitude of ε = 2 as can be
seen in the Appendix. The straight line represents a linear fit of
the whole distribution. The slope is about 2.2. As can be seen, it
represents well the distribution over the whole range of masses.

Figure 17 shows the mass versus size relation for the struc-
tures of the isothermal simulation. The slope is about 2.25 and
therefore very similar to the 2-phase case. The shape of the
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Fig. 17. Mass versus size relation for the structures extracted from the
isothermal 12003 cells simulations.

Fig. 18. Velocity dispersion versus size relation of the CNM structures
extracted from the 2-phase 12003 cells simulations for nc = 10 cm−3.

distribution is slightly different from the 2-phase case and tends
to be closer to a straight line. The similar behavior obtained for
isothermal and 2-phase flows again suggests that turbulence is
the main mechanism responsible of the structure’s shape. The
slope of 2.25 derived from our simulation is very close to what
is reported in Kritsuk et al. (2007) and Federrath et al. (2009a,b)
although they use different definitions and algorithms than us.

Finally, it is worthwhile to recall that the value of 2.3 has
been obtained by Heithausen et al. (1998) and Kramer et al.
(1998) for the CO molecular clumps. Using a larger sample of
data, Falgarone et al. (2004) also conclude that M ∝ L2.3 is more
compatible with the data than the relation M ∝ L2, originally
quoted by Larson (1981).

4.4. Velocity dispersion within structures

Figures 18−20 show the total internal velocity dispersion versus

size for the CNM structures, i.e.
√
δV2

x + δV2
y + δV2

z as a func-

tion of L for nc equal to respectively 10, 30 and 100 cm−3 in the
2-phase case, where δV is the velocity with respect to the struc-
ture mean velocity. The straight line represents a linear fit of the
distribution. While the relation σ � 3.3 km s−1 (L/1 pc)0.53 is
inferred for nc = 10 cm−3, we find σ ∝ 2 km s−1 (L/1 pc)0.43

for nc = 30 cm−3 and σ ∝ 1.2 km s−1 (L/1 pc)0.33 for nc =
100 cm−3. It is interesting to note that for the three values of nc,
ncσ

2(L) is roughly the same, i.e. 10×3.32 � 30×22 � 100×1.22.
This suggests that kinetic energy tends to be equally distributed

Fig. 19. Same as Fig. 18 for nc = 30 cm−3.

Fig. 20. Same as Fig. 18 for nc = 100 cm−3.

Fig. 21. Velocity dispersion versus size relation of the structures ex-
tracted from the 12003 cells isothermal simulations for nc = 30 cm−3.

in the volume rather than in the mass of the flow. Moreover,
it is also interesting to note that this dynamical or turbulent
pressure is of the same order as the thermal pressure and in-
coming ram pressure. Indeed, for nc = 100 cm−3 the thermal
pressure of the clump is about 104kb K cm−3, since the temper-
ature is about 50−100 K, while the turbulent pressure is about
1−1.5× 104kb(L/1pc)2 K cm−3, and as calculated previously the
ram pressure of the incoming flow is about 2 × 104kb K cm−3.
Note that in the velocity dispersion all the motions have been
counted irrespectively of the fact that there could be solenoidal,
converging or diverging modes. A straighforward interpretation
of this velocity dispersion as a turbulent pressure is therefore not
possible and certainly not accurate within a factor of a few.
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Fig. 22. Velocity dispersion versus size relation of the structures ex-
tracted from the 12003 cells isothermal simulations for nc = 100 cm−3.

Figures 21, 22 show the total velocity dispersion versus size
for nc equal to respectively 30 and 100 cm−3 in the isother-
mal case. In both cases, we find a similar relation of about
σ � 5 km s−1 (L/1 pc)0.55 although for nc = 100 cm−3, there are
no clumps of a size bigger than 0.5 pc and very few with a size
bigger than 0.3 pc. Interestingly, this is a different behavior than
for the 2-phase case, since the energy is now more concentrated
in dense regions.

These results suggest that 2-phase and isothermal flows be-
have somehow differently. In particular, since the velocity dis-
persion is about two to three times higher while the forcing is
identical in both cases, energy is more efficiently injected into
the dense clumps in isothermal flows than it is in 2-phase flows.
Three not exclusive interpretations sound possible to us. First,
in the 2-phase flow, energy is efficiently radiated, in particu-
lar during the transition between the warm and the cold phase,
where the effective adiabatic exponent is negative. Second, in the
2-phase flows, the clumps are long-living since they are bound
by the external pressure. Thus, after a crossing time most of the
turbulent motions initially present in the structure have dissi-
pated. This is different from the isothermal case in which the
structures do not survive more than an expansion time since they
are not confined by the external thermal pressure. Third, since
the dense structures possess sharp edges in the 2-phase flow
while in the isothermal one, the transition between dense and
rarefied gas is continuous, the coupling between the dense mate-
rial and the external medium is weaker for the former than for the
latter. In particular, it sounds likely that sound waves are more ef-
ficiently reflected by the stiff discontinuities in the 2-phase case.
Making a quantitative estimate of these effects is difficult at this
stage.

The value of the exponent 0.3−0.5 in this relation is again
remarkably similar to what is inferred observationally in our
galaxy (e.g., Larson 1981; Roy et al. 2008). It agrees also with
the index of the velocity power law, P(v), being in the range 11/3
to 4 as inferred from many numerical simulations (e.g., Kritsuk
et al. 2007). Let us recall that if σ ∝ Lη and P(v) ∝ k−α, then
α − 3 = 2η.

We note however that while the slope of the velocity-size
relation is approximately correct, its value itself may be too
high. Indeed one infers from observations of the CO clumps, the
value 1 km s−1 for the line width, which corresponds to about
0.4 km s−1 for the velocity dispersion along the line of sight and
therefore to about �0.8 km s−1 for the total velocity dispersion
assuming isotropy, which is smaller than what we infer here by
a factor 1.5 to 3 in the 2-phase case and about five to six in the

isothermal one. Note that since the density of the CO clumps
is of the order of 3000 cm−3, the comparison cannot be more
than indicative at this stage. We also note that the velocity dis-
persion decreases with increasing density in our 2-phase sim-
ulations, suggesting that the velocity dispersion could be very
similar to what has been inferred by Larson (1981) for denser
clumps. Since the velocity dispersion directly depends on the
forcing, another possibility is that the forcing is a little too strong
and should be reduced to better fit the mean ISM conditions.

5. Conclusion

We perform 3D high resolution numerical simulations of con-
verging flows using either a standard interstellar atomic cooling
function or an isothermal or a polytropic equation of state with
an adiabatic index of γ = 0.7.

We investigate the density PDF and Mach number-density
relation, showing that as expected the thermal behavior of the
gas has a drastic influence. While we find as previous authors,
that the isothermal runs tend to produce lognormal density dis-
tributions when the adiabatic exponent is smaller than one,
namely γ = 0.7, we find that the density distribution follow a
power law for high densities confirming the result of Passot &
Vázquez-Semadeni (1998). The 2-phase case is very different
though the high density part of the distribution could reason-
ably be described by a lognormal distribution. We stress that a
higher numerical resolution may well change this conclusion.
However, the distribution of the low density (say in the range
10−300 cm−3) cold gas departs significantly from it, making the
use of the lognormal density distribution unclear as an adequate
choice for molecular clouds.

We compute the mass spectrum of the clumps for various
density thresholds, and also the mass-size relation and the inter-
nal velocity dispersion-size relation. We find that the three dis-
tributions agree reasonably well with the statistics inferred for
the interstellar clouds (e.g. Heithausen et al. 1998). In particu-
lar, the three distributions are well fitted by a power law whose
exponent values are close to the observed ones. While the first
two appear to be reasonably similar for isothermal and 2-phase
flows, we find that the internal velocity dispersion is about two
to three times larger for the clumps of the isothermal simulation
than for the ones of the 2-phase case, suggesting that energy is
less efficiently injected into the dense clumps in 2-phase flows
than it is in isothermal ones.

Altogether, these results confirm the claim made in HA07
that 2-phase flows behave differently than isothermal flows.
Although it appears to us that higher resolution simulations
should be performed to further assess this conclusion, the present
study suggests that the 2-phase nature of the flow may have sig-
nificant implications even for the physics of high density gas.
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Appendix A: Statistics for clumps
in the ε = 2 simulation

Here, for the sake of completeness, we give the various statistics
of the clumps formed in the simulation performed with ε = 2.
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Fig. A.1. Mass distribution of the structures identified in the 2-phase
simulations (A2) with a density threshold nc = 10 cm−3. The solid black
line shows the 12003 simulation, while the red dotted line shows the
6003 simulation. The black straight line shows a clump mass spectrum
dN/dM ∝ M−1.8.

Fig. A.2. Same as Fig. A.1 for a density threshold nc = 30 cm−3.

Fig. A.3. Same as Fig. A.1 for a density threshold nc = 100 cm−3.

Fig. A.4. Mass versus size relation for the CNM structures extracted
from the 12003 cells simulations with ε = 2 for nc = 10.

Fig. A.5. Same as Fig. A.4 for nc = 30 cm−3.

Fig. A.6. Same as Fig. A.4 for nc = 100 cm−3.

Fig. A.7. Velocity dispersion versus size relation of the CNM structures
extracted from the 2-phase 12003 cells simulations for nc = 10 cm−3.

Fig. A.8. Same as Fig. A.7 for nc = 30 cm−3.
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Fig. A.9. Same as Fig. A.7 for nc = 100 cm−3.
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