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ABSTRACT

Measurements of correlation functions and their comparison with theoretical models are often employed in natural sciences, includ-
ing astrophysics and cosmology, to determine best-fitting model parameters and their confidence regions. Due to a lack of better
descriptions, the likelihood function of the correlation function is often assumed to be a multi-variate Gaussian. Using different
methods, we show that correlation functions have to satisfy constraint relations, owing to the non-negativity of the power spec-
trum of the underlying random process. Specifically, for any statistically homogeneous and (for more than one spatial dimension)
isotropic random field with correlation function ξ(x), we derive inequalities for the correlation coefficients rn ≡ ξ(nx)/ξ(0) (for in-
teger n) of the form rnl ≤ rn ≤ rnu, where the lower and upper bounds on rn depend on the r j, with j < n, or more explicitly
Ξn− {ξ(0), ξ(x), ξ(2x), . . . , ξ([n − 1]x)} ≤ ξ(nx) ≤ Ξn+ {ξ(0), ξ(x), ξ(2x), . . . , ξ([n − 1]x)} . Explicit expressions for the bounds are ob-
tained for arbitrary n. We show that these constraint equations very significantly limit the set of possible correlation functions. For one
particular example of a fiducial cosmic shear survey, we show that the Gaussian likelihood ellipsoid has a significant spill-over into
the region of correlation functions forbidden by the aforementioned constraints, rendering the resulting best-fitting model parameters
and their error region questionable, and indicating the need for a better description of the likelihood function. We conduct some simple
numerical experiments which explicitly demonstrate the failure of a Gaussian description for the likelihood of ξ. Instead, the shape of
the likelihood function of the correlation coefficients appears to follow approximately the shape of the bounds on the rn, even if the
Gaussian ellipsoid lies well within the allowed region. Therefore, we define a non-linear and coupled transformation of the rn, based
on these bounds. Some numerical experiments then indicate that a Gaussian is a much better description of the likelihood in these
transformed variables than of the original correlation coefficients – in particular, the full probability distribution then lies explicitly
in the allowed region. For more than one spatial dimension of the random field, the explicit expressions of the bounds on the rn are
not optimal. We outline a geometrical method how tighter bounds may be obtained in principle. We illustrate this method for a few
simple cases; a more general treatment awaits future work.
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1. Introduction

One of the standard ways to obtain constraints on model pa-
rameters of a stochastic process is the determination of its two-
point correlation function ξ(x) from observational data, where
x is the separation vector between pairs of points. This observed
correlation function is then compared with the corresponding
correlation function ξ(x; p) from a model, where p denotes the
model parameter(s). A commonly used method for this com-
parison is the consideration of the likelihood function L(ξ|p),
which yields the probability for observing the correlation func-
tion ξ(x) for a given set of parameters p. It is common (see
Seljak & Bertschinger 1993, for an application to microwave
background anisotropies; Fu et al. 2008, for a cosmic shear anal-
ysis; or Okumura et al. 2008, for an application to the spatial
correlation function of galaxies) to approximate this likelihood
by a Gaussian,

L({ξ(xi)}|p)

∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣−1
2

N∑
i, j=1

[
ξ(xi) − ξ(xi; p)

]
Cov−1

i j

[
ξ(x j) − ξ(x j; p)

]⎤⎥⎥⎥⎥⎥⎥⎦ , (1)

where it has been assumed that the random field is homogeneous
and isotropic, so that the correlation function depends only on
the absolute value of the separation vector. Furthermore, it has
been assumed that the correlation function is obtained at discrete

points xi; for an actual measurement, one usually has to bin the
separation of pairs of points, in which case xi is the central value
of the bin. In (1), Cov is the covariance matrix of the correlation
function between any pair of separations xi, x j.

In Hartlap et al. (2009) we have investigated the likelihood
function for the cosmic shear correlation function and found that
it deviates significantly from a Gaussian. This study relied on
numerical ray-tracing simulations through the density field ob-
tained from N-body simulations of the large-scale structure in
the Universe.

In this paper, we will show that the likelihood function of the
correlation function cannot be a Gaussian. In particular, we show
that any correlation function obeys strict constraints, which can
be expressed as

Ξn− {ξ(0), ξ(x), ξ(2x), . . . , ξ([n − 1]x)} ≤ ξ(nx)

≤ Ξn+ {ξ(0), ξ(x), ξ(2x), . . . , ξ([n − 1]x)} (2)

for arbitrary x and integer n; these constraints can be derived by
several different methods. With one of these methods, one can
derive explicit equations for the upper and lower bounds in (2)
for arbitrary values of n. The basic reason for the occurrence of
such constraints is the non-negativity of the power spectrum, or
equivalently, the fact that covariance matrices of the values of a
random fields at different positions are positive (semi-)definite.
For n ≤ 3, such constraints were derived by Kurchan (2002).
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The outline of the paper is as follows: in Sect. 2, we obtain
bounds on the correlation function using the Cauchy-Schwarz
inequality, as well as making use of the positive definiteness
of the covariance matrix of random fields. It turns out that the
latter method gives tighter constraints on ξ; in fact, these con-
straints are optimal for one-dimensional random fields. We show
in Sect. 3 that these bounds significantly constrain the set of
functions which can possibly be correlation functions. Whereas
the bounds obtained in Sect. 2 are valid for any dimension of
the random field, they are not optimal in more than one dimen-
sion; we consider generalizations to higher-order random fields,
and to arbitrary combinations of separations xi in Sect. 4. In
Sect. 5 we introduce a non-linear coupled transformation of the
correlation coefficients based on the bounds; for the case of a
one-dimensional field, all combinations of values in these trans-
formed quantities correspond to allowed correlation functions
(meaning that one can find a non-negative power spectrum yield-
ing the corresponding correlations). Hence, a Gaussian proba-
bility distribution of these transformed variables appears to be
more realistic than one for the correlation function itself. This
expectation is verified with some numerical experiments which
are described in Sect. 6. Furthermore, we show that for a fidu-
cial cosmological survey the Gaussian likelihood for the correla-
tion function can significantly overlap with the region forbidden
by (2), depending on survey size and number of separations at
which the correlation function is measured. We conclude with a
discussion and an outlook to future work and open questions.

2. Upper and lower bounds on correlation functions

Consider an n-dimensional homogeneous and isotropic random
field g(x), with vanishing expectation value 〈g(x)〉 = 0, and with
power spectrum P(|k|) and correlation function

ξ(x) =
∫

dnk
(2π)n

P(|k|) exp (−ik · x) , (3)

which depends only on the absolute value of x, due to the as-
sumed isotropy. This relation immediately shows that

− ξ(0) ≤ ξ(x) ≤ ξ(0), (4)

owing to P(k) ≥ 0 and
∣∣∣exp (−ik · x)

∣∣∣ ≤ 1. However, the lower
bound in (4) is not an optimal one for more than one dimen-
sion. In two dimensions, the integral over the polar angle can be
carried out, yielding

ξ2−D(x) =
∫ ∞

0

dk k
2π

P(k) J0(kx), (5)

where J0 is the Bessel function of the first kind of zero order.
Since J0(x) has an absolute minimum at x ≈ 3.83 with J0,min ≈
−0.4028 (see also Abrahamsen 1997), the non-negativity of P(k)
implies that ξ2−D(x) ≥ J0,min ξ2−D(0). Similarly, in three dimen-
sions one has

ξ3−D(x) =
∫ ∞

0

dk k2

2π2
P(k) j0(kx), (6)

where j0(x) = sin x/x is the spherical Bessel function of zero
order. Since j0(x) has an absolute minimum at x ≈ 4.493
of j0min ≈ −0.2172, the non-negativity of P(k) implies that
ξ3−D(x) ≥ j0,min ξ3−D(0).

In the following, we will concentrate mainly on the one-
dimensional case and write

ξ(x) =
∫ ∞

0
dk P0(k) cos(xk). (7)

However, higher dimensions of the random field are included in
all what follows, since by specifying x = (x, 0, . . . , 0) in (3),
we find

ξ(x) =
∫

dnk
(2π)n

P (k) exp (−ik1x)

=

∫ ∞

0
dk1 cos(k1x)

2
(2π)n

∫
dk2 . . . dkn P (k1, k2, . . . , kn) , (8)

which thus takes the same form as (7). Thus, the n-dimensional
case can be included in the same formalism as the one-
dimensional case; note that for this argument, the random field is
not restricted to be isotropic. However, as we shall discuss later,
the resulting inequalities will not be optimal for isotropic fields
of higher dimension.

In the foregoing equations, P(k) can correspond either to the
power spectrum of the underlying random process, or the sum
of the underlying process and statistical noise. Furthermore, the
power spectrum can also be the square of the Fourier transform
of the realization of a random process in a finite sample volume.
In all these cases, the non-negativity of P(k) applies, and the con-
straints on the corresponding correlation function derived below
must hold.

2.1. Constraints from the Cauchy-Schwarz inequality

Making use of the Cauchy-Schwarz inequality,
[∫ ∞

0
dk f (k) h(k)

]2

≤
∫ ∞

0
dk f 2(k)

∫ ∞

0
dk h2(k), (9)

we obtain by setting f (k) =
√

P0(k) and h(k) =
√

P0(k) cos(xk)
that1

ξ2(x) ≤ ξ(0)
∫ ∞

0
dk P0(k) cos2(xk)

= ξ(0)
∫ ∞

0
dk P0(k)

1 + cos(2xk)
2

=
ξ(0)

2
[
ξ(0) + ξ(2x)

]
, (10)

where we made use of the identity cos2 a = [1 + cos(2a)] /2.
Together with (4) we therefore obtain the constraint equation

− ξ(0) +
2ξ2(x)
ξ(0)

≤ ξ(2x) ≤ ξ(0). (11)

The interpretation of this constraint can be better seen in terms
of the correlation coefficient rn ≡ ξ(nx)/ξ(0), which is defined
for an arbitrary x. Then, (11) reads

− 1 + 2r2
1 ≤ r2 ≤ 1. (12)

This result can be interpreted as follows: if two points separated
by x are strongly correlated, 1 − r1 � 1, then the value of the
field at a position 2x must equally be correlated with that at x,
which implies that also the correlation between the point 2x and
the origin must be large. If the field at x is strongly anticorrelated
with that at the origin, 1 + r1 � 1, than the field at 2x must be
similarly anticorrelated with that at x, implying a strong corre-
lation between the point 2x and the origin. The smaller |r1|, the
weaker is the constraint (12).

Making use of the identity

[cos a + cos(2a)]2 = [1 + cos a] [1 + cos(3a)] ,

1 Note that this choice is possible because the power spectrum is
non-negative!
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and applying the Cauchy-Schwarz inequality with f (k) =√
P0(k)

√
1 + cos(xk) and h(k) =

√
P0(k)

√
1 + cos(3xk), we

find that
[
ξ(x) + ξ(2x)

]2 ≤ [
ξ(0) + ξ(x)

] [
ξ(0) + ξ(3x)

]
. (13)

A second inequality is obtained by using in a similar way the
identity

[cos a − cos(2a)]2 = [1 − cos a] [1 − cos(3a)] .

Both of these inequalities are summarized in terms of the corre-
lation coefficient as

− 1 +
(r1 + r2)2

(1 + r1)
≤ r3 ≤ 1 − (r1 − r2)2

(1 − r1)
· (14)

Further inequalities involving ξ(mx), with m ≥ 4 being an inte-
ger, can be derived in this way. Making use of the relations

[cos a + cos(n − 1)a]2 = [1 + cos(na)] [1 + cos(n − 2)a];

[cos a − cos(n − 1)a]2 = [1 − cos(na)] [1 − cos(n − 2)a]

for n ≥ 2, and employing the Cauchy-Schwarz inequality in the
same way as before, we find

− 1 +
(r1 + rn−1)2

1 + rn−2
≤ rn ≤ 1 − (r1 − rn−1)2

1 − rn−2
, (15)

where the special case n = 3 has been derived already. We have
thus found a set of inequalities for all correlation coefficients rn.
In the next section, we will obtain bounds on the correlation
function using a different method, and will show that these ones
are stricter than those in (15).

2.2. Constraints from a covariance matrix approach

We will proceed in a different way which is more straightfor-
ward. Consider a set of N points xm = mx, with m integer and
0 ≤ m ≤ N − 1. The covariance matrix of the random field at
these N points has the simple form

Ci j = 〈g(ix) g( jx)〉 = ξ(|i − j|x). (16)

As is well known, the covariance matrix must be positive semi-
definite, i.e., its eigenvalues must be non-negative. Dividing C
by ξ(0) > 0, we define

Ai j = Ci j/ξ(0) = r|i− j|, (17)

and the eigenvalues of A must obey λi ≥ 0. For N = 2, the
eigenvalues read λ1,2 = 1 ± r1, yielding

|r1| ≤ 1, (18)

i.e. we reobtain (4). For N = 3, the eigenvalues read

λ1 = 1 − r2 , λ2,3 =
2 + r2 ±

√
8r2

1 + r2
2

2
,

and the conditions λ j ≥ 0 can be solved for r2, yielding (12).
The four eigenvalues of A in the case N = 4 are

λ1,2,3,4 = 1 ± 1
2

[
r1 + r3 ±

√
5r2

1 − 8r1r2 + 4r2
2 − 2r1r3 + r2

3

]
,

and the conditions λi ≥ 0 after some algebra can be brought
into the form (14). For N ≥ 5, the eigenvalues of A have a more

complicated form; they are obtained as solutions of higher-order
polynomials (see below).

However, we do not need an explicit expression for the
eigenvalues, but only need to assure that they are non-negative.
This condition can be formulated in a different way. The eigen-
values of the matrix A are given by the roots of the characteristic
polynomial, which is the determinant of the matrix λδi j − Ai j.
For a given N, this polynomial is of order N in λ and of the form

λN +

N−1∑
k=0

bkλ
k. (19)

The coefficients bk of the polynomial are functions of the rk,
as obtained from calculating the determinant. On the other hand,
they can be expressed by the roots λk of the polynomial; for ex-
ample, for N = 3, one finds that

λ3 +

2∑
k=0

bkλ
k = λ3 − (λ1 + λ2 + λ3)λ2

+ (λ1λ2 + λ1λ3 + λ2λ3)λ − λ1λ2λ3.

The condition that all λk ≥ 0 is then equivalent to the condition
that b2 ≤ 0, b1 ≥ 0, and b0 ≤ 0. It is easy to show that these
conditions lead to the constraint (12), together with |r1| ≤ 1.

This procedure can be generalized for arbitrary N: the con-
dition that all eigenvalues of the correlation matrix A are non-
negative is equivalent to requiring that the coefficients of the
characteristic polynomial (19) satisfy bN−n ≤ 0 if n is odd, and
bN−n ≥ 0 if n is even. The explicit calculation of the charac-
teristic polynomial by hand becomes infeasible, hence we use
the computer algebra program Mathematica (Wolfram 1996).
For successively larger N, we calculate the characteristic poly-
nomial. As we will show below, the characteristic polynomial
factorizes into two polynomials; if N is even, it factorizes into
two polynomials of order N/2, whereas if N is odd, it factorizes
into polynomials of order (N±1)/2. The condition that all eigen-
values are non-negative is equivalent to the condition that the
roots of both polynomials are non-negative; this condition can
be translated into inequalities for the coefficients of the polyno-
mials in the same way as described above.

We illustrate this procedure for the case N = 5. The charac-
teristic polynomial in this case becomes(
λ2 + b1λ + b0

) (
λ3 + c2λ

2 + c1λ + c0

)
, (20)

with

b1 = r2 + r4 − 2,

b0 = (1 − r2)(1 − r4) − (r1 − r3)2,

c2 = −3 − r2 − r4,

c1 = 3(1 − r2
1) − 2r1r3 − r2

3 + 2r4 + r2(2 + r4) − 2r2
2,

c0 = (2r2
1 − 1 − r2)r4 + r2

3 + 2r1r3(1 − 2r2
2)

+ 2r2
2(1 + r2) − r2 + r2

1(3 − 4r2) − 1.

The conditions b1 ≤ 0, c2 ≤ 0 and c1 ≥ 0 are satisfied, irre-
spective of the value of r4, owing to |rn| ≤ 1 for all n, and the
inequalities obtained before for rn, n ≤ 3. Thus, these three in-
equalities do not yield additional constraints of r4. Those come
from requiring b0 ≥ 0 and c0 ≤ 0. Both coefficients are linear
in r4, which allows us to write the conditions explicitly,

− 1 +
r2

1(1 − 4r2) + 2r2
2(1 + r2) + 2r1r3(1 − 2r2) + r2

3

1 − 2r2
1 + r2

≤ r4 ≤ 1 − (r1 − r3)2

(1 − r2)
· (21)
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Alternatively, one can use the function InequalitySolve of
Mathematica for the five inequalities for the four coefficients, to
obtain the same result.

We see that the upper bound in (21) agrees with that obtained
from the Cauchy-Schwarz inequality – see (15) – but the lower
bounds differ. Hence, for n = 4 the bounds on rn derived from
the two methods are different, and that will be the case for all
n ≥ 4. This is not surprising, since the Cauchy-Schwarz inequal-
ity does not make any statement on how “sharp” the bounds are,
i.e., whether the bounds can actually be approached. One can ar-
gue, using discrete Fourier transforms, that the bounds obtained
from the covariance method are “sharp” (for a one-dimensional
field) in the sense that for each combination of allowed rn, one
can find a non-negative power spectrum corresponding to these
correlation coefficients – the bounds can therefore not be nar-
rowed further.

It should be noted that in the cases given above, the lower
(upper) bound on rn is a quadratic function in rn−1, and its
quadratic term cr2

n−1 has a positive (negative) coefficient c. This
implies that the allowed region in the rn−1 − rn-plane is convex;
indeed, as we will show below, the allowed n-dimensional region
for the r1, . . . , rn is convex.

The procedure illustrated for the case N = 5 holds for larger
N as well: only the coefficients of λ0 in the two polynomials
yield new constraints on the correlation coefficient rN−1, and
these two coefficients are linear in rN−1, so the constraints for
rN−1 can be obtained explicitly. This then leads us to conclude
that the positive-definiteness of the matrix A for a given N is
equivalent to the positivity of the determinants of all submatri-
ces which are obtained by considering only the first n rows and
columns of A, with 1 ≤ n ≤ N. We will make use of this property
in the next subsection.

For larger N, the upper and lower bounds are given by quite
complicated expressions, so we refrain from writing them down;
however, using the output from Mathematica, they can be used
for subsequent numerical calculations. A much more convenient
method for calculating the upper and lower bounds explicitly
will be obtained below.

To summarize, the procedure outlined gives us constraints on
the form

rnl ≤ rn ≤ rnu, (22)

where the lower and upper bounds are function of the rk, k < n,
and satisfy −1 ≤ rnl ≤ rnu ≤ 1. For n ≤ 4, the bounds rnl and rnu
have been written down explicitly above.

The existence of these upper and lower bounds on rn, and
thus on the correlation function, immediately implies that the
likelihood function of the correlation function cannot be a
Gaussian, since the support of the latter is unbounded. This does
not imply necessarily that the Gaussian approximation is bad; if
the Gaussian probability ellipsoid described by (1) is “small” in
the sense that it is well contained inside the allowed region, the
existence of the bounds alone yields no estimate for the accuracy
of the Gaussian approximation. We will come back to this issue
in Sect. 6.

Whereas the expressions for rnl and rnu for larger n become
quite long, we found a remarkable result for the difference Δn ≡
rnu − rnl. This is most easily expressed by defining the functions

Fn(r1, . . . , rn) = (rnu − rn)(rn − rnl). (23)

Then, for odd n

Δn(r1, . . . , rn−1) = 2

⎛⎜⎜⎜⎜⎜⎜⎝
(n−1)/2∏

k=1

F2k

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

(n−1)/2∏
k=1

F2k−1

⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (24)

and for even n,

Δn(r1, . . . , rn−1) = 2

⎛⎜⎜⎜⎜⎜⎜⎝
n/2∏
k=1

F2k−1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

n/2−1∏
k=1

F2k

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (25)

This result has been obtained by guessing, and subsequently ver-
ified with Mathematica, up to n = 16, using the explicit expres-
sions for the bounds derived next. We will make use of these
properties in the Sect. 3.

2.3. Explicit expression for the bounds

We will now derive an explicit expression for the upper and
lower bounds on the rn. In doing so, we will first show that
the determinant of the matrix A for N points factorizes into two
polynomials, both of which are linear in rN−1. Then we make
use of the fact that the positive definiteness of A is equivalent to
having positive determinant of all submatrices obtained from A
by considering only the first n rows and columns, n ≤ N; how-
ever, these submatrices of A correspond to the matrix A for lower
numbers of points, and their positive determinant is equivalent to
the upper and lower bounds on the rn for n ≤ N − 2. Hence, by
increasing N successively, the constraints on rN−1 are obtained
from requiring det(A) ≥ 0.

The determinant of a matrix is unchanged if a multiple of
one row (column) is added to another row (column). We make
use of this fact for the calculation of det A, by carrying out the
following four steps:

1. We add the first row to the last, obtaining the matrix A(1) with
elements

A(1)
i j = Ai j + δiNA1 j.

2. We subtract the last column from the first,

A(2)
i j = A(1)

i j − δ1 jA
(1)
iN .

3. The second row is added to the (N − 1)-st one, the third row
is added to the (N − 2)-nd one, and so on. For N odd, this
reads

A(3)
i j = A(2)

i j +

(N−3)/2∑
k=1

δ(N−k)iA
(2)
(1+k) j,

whereas for N even, the sum extends to (N − 2)/2.
4. Finally, the (N − 1)-st column is subtracted from the second

one, the (N − 2)-nd column is subtracted from the third one,
and so on, which for odd N reads

A(4)
i j = A(3)

i j −
(N−3)/2∑

k=1

δ(1+k) jA
(3)
i(N−k),

whereas for even N the sum extends to (N − 2)/2.

These steps are illustrated for the case N = 7 in Fig. 1. For
N even [odd], this results in a matrix A(4) which contains in the
lower left corner a N/2 × N/2 ((N − 1)/2 × (N + 1)/2) sub-
matrix with elements zero. Therefore, the determinant of A(4)

factorizes into the determinants of two N/2 × N/2 matrices
(of a (N − 1)/2 × (N − 1)/2 and of a (N + 1)/2 × (N + 1)/2 ma-
trix). Thus,

det(A) ≡ det
(
AN

)
= det

(
A(4)

)
= det

(
UN

)
det

(
VN

)
, (26)
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 r1 r2 r3 r4 r5 r6

r1 1 r1 r2 r3 r4 r5

r2 r1 1 r1 r2 r3 r4

r3 r2 r1 1 r1 r2 r3

r4 r3 r2 r1 1 r1 r2

r5 r4 r3 r2 r1 1 r1

r6 r5 r4 r3 r2 r1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 r1 r2 r3 r4 r5 r6

r1 1 r1 r2 r3 r4 r5

r2 r1 1 r1 r2 r3 r4

r3 r2 r1 1 r1 r2 r3

r4 r3 r2 r1 1 r1 r2

r5 r4 r3 r2 r1 1 r1

r6 + 1 r1 + r5 r2 + r4 2r3 r2 + r4 r1 + r5 r6 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − r6 r1 r2 r3 r4 r5 r6

r1 − r5 1 r1 r2 r3 r4 r5

r2 − r4 r1 1 r1 r2 r3 r4

0 r2 r1 1 r1 r2 r3

r4 − r2 r3 r2 r1 1 r1 r2

r5 − r1 r4 r3 r2 r1 1 r1

0 r1 + r5 r2 + r4 2r3 r2 + r4 r1 + r5 r6 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − r6 r1 r2 r3 r4 r5 r6

r1 − r5 1 r1 r2 r3 r4 r5

r2 − r4 r1 1 r1 r2 r3 r4

0 r2 r1 1 r1 r2 r3

0 r1 + r3 r2 + 1 2r1 r2 + 1 r1 + r3 r2 + r4

0 r4 + 1 r1 + r3 2r2 r1 + r3 r4 + 1 r1 + r5

0 r1 + r5 r2 + r4 2r3 r2 + r4 r1 + r5 r6 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − r6 r1 − r5 r2 − r4 r3 r4 r5 r6

r1 − r5 1 − r4 r1 − r3 r2 r3 r4 r5

r2 − r4 r1 − r3 1 − r2 r1 r2 r3 r4

0 0 0 1 r1 r2 r3

0 0 0 2r1 r2 + 1 r1 + r3 r2 + r4

0 0 0 2r2 r1 + r3 r4 + 1 r1 + r5

0 0 0 2r3 r2 + r4 r1 + r5 r6 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. For N = 7, the original covariance matrix A is shown, together
with four transformations of it, described in the text, which leave the
determinant unchanged.

where we explicitly indicate the number N of points, and thus
the dimensionality of A, with a superscript, and where for even
N, UN and VN are N/2 × N/2 matrices with elements

UN
i j = r|i− j| − rN+1−i− j; VN

i j = r|i− j| + ri+ j−1, 1 ≤ i, j ≤ N/2, (27)

whereas for odd N, UN and VN are (N − 1)/2 × (N − 1)/2 and
(N + 1)/2 × (N + 1)/2 matrices, respectively, with elements

UN
i j = r|i− j| − rN+1−i− j, 1 ≤ i, j ≤ (N − 1)/2;

VN
i j = r|i− j| + (1 − δ1i) ri+ j−2, 1 ≤ i, j ≤ (N + 1)/2. (28)

Since UN
11 = 1− rN−1, and the (N/2−1) × (N/2−1) (for N even;

for N odd this is a [(N−1)/2−1]× [(N−1)/2−1]) submatrix ob-
tained by cancelling the first column and row of UN is just UN−2,
we can write

det
(
UN

)
= (1 − rN−1) det

(
UN−2

)
+ det

(
ŪN

)
, (29)

where ŪN is the matrix which is obtained from UN by set-
ting ŪN

11 = 0. The upper bound for rN−1 is found by setting

det
(
UN

)
≥ 0, which yields

rn ≤ rnu = 1 +
det

(
Ūn+1

)
det

(
Un−1) , (30)

where we set n = N − 1. Analogously, the final element of VN

reads VN
mm = 1 + rN−1, where m = N/2 for even N, and m =

(N + 1)/2 for odd N. Therefore,

det
(
VN

)
= (1 + rN−1) det

(
VN−2

)
+ det

(
V̄N

)
, (31)

where V̄N is obtained from VN by setting Vmm = 0; the lower
bound for rN−1 is then obtained by setting this expression to
zero, or

rnl = −1 −
det

(
V̄n+1

)
det

(
Vn−1

) · (32)

Since det
(
UN

)
is a linear function of rN−1, it must be of the

form det
(
UN

)
= c(rN−1 − d), where the coefficients c, d are in-

dependent of rN−1. The value of d yields the root of det
(
UN

)
,

and is thus the upper bound on rN−1. The coefficient c follows
from (29); therefore,

det
(
Un+1

)
= (rnu − rn) det

(
Un−1

)
. (33)

The analogous result holds for the VN , i.e.

det
(
Vn+1

)
= (rn − rnl) det

(
Vn−1

)
. (34)

These recursion relations then yield the explicit expressions

det
(
UN

)
=

N/2∏
k=1

(
r(2k−1)u − r2k−1

)
;

det
(
VN

)
=

N/2∏
k=1

(
r2k−1 − r(2k−1)l

)
(35)

for N even, and

det
(
UN

)
=

(N−1)/2∏
k=1

(
r(2k)u − r2k

)
;

det
(
VN

)
=

(N−1)/2∏
k=1

(
r2k − r(2k)l

)
(36)

for N odd. This yields for the determinant of the matrix AN the
explicit expression

det
(
AN

)
=

N/2∑
k=1

F2k−1, det
(
AN

)
=

(N−1)/2∑
k=1

F2k (37)

for even and odd N, respectively. Accordingly, the width Δn =
rnu − rnl of the allowed range of rn then becomes

Δn = 2
det

(
AN

)
det

(
AN−1

) , (38)

where we made use of (24) and (25).
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3. How strong are the constraints?

We shall now investigate the question how constraining the con-
straints on the correlation function or, equivalently, the corre-
lation coefficients are. In order to quantify this question, we
imagine that the correlation function is measured on a regu-
lar grid of separations nx, and from that we define as before
rn = ξ(nx)/ξ(0). Due to (4), |rn| ≤ 1 for all n. We therefore
consider the set of functions defined by their values on the grid
points, and allow only values in the interval −1 ≤ rn ≤ 1
for all n. Let M be the largest value of n that we consider;
then the functions we consider are defined by a point in the
M-dimensional space spanned by the rn. This M-dimensional
cube has sidelength 2 and thus a volume of 2M . We will now
investigate which fraction of this volume corresponds to corre-
lation functions which satisfy the constraints derived in the pre-
vious section.

A related question that can be answered is: suppose the
values of rk, 1 ≤ k ≤ n are given; what fraction of the
(M − n)-dimensional subspace, spanned by the rk with n + 1 ≤
k ≤ M corresponds to allowed correlation functions? For exam-
ple, if r1 = 1, then all other rk = 1, and hence the condition
r1 = 1 is very constraining – the volume fraction of the subspace
spanned by the rk with k ≥ 2 is zero in this case.

Mathematically, we define these volume fractions as

VMn =

∫ r(n+1)u

r(n+1)l

drn+1

2

∫ r(n+2)u

r(n+2)l

drn+2

2
. . .

∫ rMu

rMl

drM

2

=

M∏
k=n+1

∫ rku

rkl

drk

2
· (39)

The factor 1/2 in each integration accounts for the side-length of
the (M − n)-dimensional cube, so that the VMn are indeed frac-
tional volumes. VMn depends on the rk with k ≤ n; in particular,
VM0 ≡ VM is the fractional volume which is allowed if all con-
straints are taken into account. From the definition of the VMn it
is obvious that the following recursion holds:

VMn =

∫ r(n+1)u

r(n+1)l

drn+1

2
VM(n+1). (40)

We can therefore calculate the VMn iteratively, starting with

VM(M−1) =

∫
drM

2
=
ΔM

2
=
FM−1FM−3 . . .

FM−2FM−4 . . .
, (41)

where we have skipped the integration limits; here and in the
following, an integral over rn always extends from rnl to rnu. Here
we made use of (24) or (25), depending on M. The dots indicate
that factors are added until F1 or F2 is reached.

It should be noted that the only dependence of VM(M−1) on
rM−1 is through the factor FM−1. Therefore, the next recursion
step reads

VM(M−2) =

∫
drM−1

2
VM(M−1)

=
1
2
FM−3FM−5 . . .

FM−2FM−4 . . .

∫
drM−1 FM−1

=
1
2
FM−3FM−5 . . .

FM−2FM−4 . . .
Δ3

M−1 B(2, 2)

= 22B(2, 2)

(FM−2FM−4 . . .

FM−3FM−5 . . .

)2

, (42)

Fig. 2. Upper panel: volume fraction VM (Eq. (46)) as function of the
number M of separations for which the correlation function is mea-
sured. Lower panel: V1/M

M as function of M. One sees that the typical
linear dimension of the allowed region decreases with M, meaning that
the strong decrease of VM with M is not just an effect of the dimension-
ality of the volume considered.

where B(x, y) = Γ(x) Γ(y)/Γ(x + y) is the beta-function, and we
used the relation∫ b

a
dx (b − x)n(x − a)n = (b − a)1+2n B(1 + n, 1 + n). (43)

For the next step we notice that the only dependence of VM(M−2)
on rM−2 is through the function FM−2, which therefore lets us
write

VM(M−3) =

∫
drM−2

2
VM(M−2)

= 2B(2, 2)

(FM−4FM−6 . . .

FM−3FM−5 . . .

)2 ∫
drM−2

2
F 2

M−2

= 26 B(2, 2) B(3, 3)

(FM−3FM−5 . . .

FM−4FM−6 . . .

)3

, (44)

where we made again use of (43). Based on these results, we can
now obtain a general expression,

VM(M−n) = 2n(n−1)

⎡⎢⎢⎢⎢⎢⎣
n∏

k=2

B(k, k)

⎤⎥⎥⎥⎥⎥⎦
( FM−nFM−n−2 . . .

FM−n−1FM−n−3 . . .

)n

, (45)

which can be proved by induction. In particular, the VM ≡ VM0
are given as

VM = 2M(M−1)

⎡⎢⎢⎢⎢⎢⎣
M∏

k=2

B(k, k)

⎤⎥⎥⎥⎥⎥⎦ . (46)

The values of VM up to M = 20 are shown in Fig. 2. As can be
seen from the upper panel, the admissible volume very quickly
decreases as M increases. For comparison, in the lower panel we
show V1/M

M , i.e. the typical diameter of the allowed region.

4. Generalizations

The considerations of the previous sections were restricted to
correlation functions as measured at equidistant points xn = nx.
In some cases, however, it may be advantageous to drop this
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constraint, e.g., to consider the correlation function at loga-
rithmically spaced points. Furthermore, as mentioned before,
tighter constraints on the correlation function are expected to
hold in the multi-dimensional case. We shall consider these as-
pects in this section, presenting another method for deriving
constraints which yields the optimal constraints for arbitrar-
ily spaced points xn in one- or higher-dimensional fields. But
before, we briefly consider the covariance method for higher
dimensions.

4.1. Higher-dimensional fields: the covariance method

As was noted above, the inequalities for the correlation func-
tions have been obtained with a one-dimensional random field in
mind. Whereas we have shown that all the bounds on correlation
functions are also valid for higher-dimensional fields, they are
not assumed to be “optimal” – the reason is that the equivalent
one-dimensional power spectrum defined in (7) was assumed to
be totally arbitrary, except from being non-negative, whereas for
isotropic fields in higher dimensions, it will obey further con-
straint relations due to the (n− 1)-dimensional integration in (8).
A first indication that the bounds can be improved has been
seen with the lower bounds on the ratio ξ(x)/ξ(0), which turned
out to be larger for two and three dimensions than for a one-
dimensional field. The foregoing constraints on the correlation
function are re-obtained with the covariance matrix approach
in higher dimensions if the set of points are placed equidistant
along one direction. New (and stronger) constraints are expected
from this method if the distribution of points makes use of these
higher dimensions.

As a first example, we consider a two-dimensional (or
higher-dimensional) field and place three points in an equilat-
eral triangle of side-length x. The separation between any pair of
points is then x, and the covariance matrix of these three points,
normalized by ξ(0), then reads

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 r1 r1
r1 1 r1
r1 r1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

The eigenvalues of this matrix are λ1,2 = 1 − r1, λ3 = 1 + 2r1,
and requiring their non-negativity leads to

− 1/2 ≤ r1 = ξ(x)/ξ(0) ≤ 1 (47)

for all x. The lower bound is somewhat smaller than the one ob-
tained earlier for two-dimensional random fields, ξ(x)/ξ(0) >∼
−0.403, but significantly larger than that obtained for the
1D case, ξ(x)/ξ(0) ≥ −1. Next we consider a set of three points
forming a triangle of which two sides have length x, and the third
side has length ηx, with 0 ≤ η ≤ 2. The corresponding covari-
ance matrix reads

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 r1 r1
r1 1 rη
r1 rη 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and its eigenvalues are λ1 = 1−rη, λ2,3 =

(
2+rη ±

√
8r2

1 + r2
η

)
/2;

note that we used the notation rη = ξ(ηx)/ξ(0). Non-negativity
of the eigenvalues leads to the constraints

max
(
−1/2, 2r2

1 − 1
)
≤ rη ≤ 1 for 0 ≤ η ≤ 2, (48)

where we also used (47).

Finally, we consider a square of side-length x, for which the
covariance matrix reads

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 r1 r1 r√2
r1 1 r√2 r1

r1 r√2 1 r1

r√2 r1 r1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

with the eigenvalues λ1,2 = 1 − r√2, λ3,4 = 1 + r√2 ± 2r1. Their
non-negativity, combined with (47), yields

max (−1/2, |r1| − 1) ≤ r√2 ≤ 1, (49)

which is a weaker constraint than (48) for η =
√

2. Thus we
see that the choice of the geometrical configuration of points
affects the resulting constraints on the correlation function. It is
by no means clear how to find a set of configurations such as to
obtain the “optimal” constraints in two (or higher) dimensions.
In fact, methods other than using the covariance matrix need to
be considered for obtaining optimal constraints (see below).

Finally, we consider the simplest case in three dimensions,
namely a set a of four points arranged in a regular tetrahedron of
sidelength x. The resulting covariance matrix is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 r1 r1 r1
r1 1 r1 r1
r1 r1 1 r1
r1 r1 r1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

with eigenvalues λ1,2,3 = 1 − r1, λ4 = 1 + 3r1, yielding

− 1/3 ≤ r1 ≤ 1, (50)

a constraint stronger than the ones obtained for one and two di-
mensions, but falling short of the one derived from the global
minimum of the spherical Bessel function, r1 >∼ −0.217.

4.2. Optimal constraints in the general case

We now describe a general method for deriving constraints on
correlation functions ξ(xn) of homogeneous and isotropic ran-
dom fields, allowing for arbitrary values of separations xn and
arbitrary dimensions. However, it should be said right at the be-
ginning that we were unable to obtain the corresponding bounds
on the correlation functions explicitly.

We can write the general relation (3) in the form

ξ(x) =
∫ ∞

0
dk P̂(k) u(xk), (51)

where P̂(k) is non-negative and u(0) = 1. For a 1-dimensional
field, P̂(k) = P(k)/(2π), u(y) = cos y; for two dimensions,
P̂(k) = k P(k)/(2π), u(y) = J0(y), and for three dimensions,
P̂(k) = k2 P(k)/(2π2), u(y) = j0(y). Next we consider a quadra-
ture formula for the integral, and write

ξ(x) =
K∑

j=1

w j P̂(k j) u(xk j) ≡
K∑

j=1

W j u(xk j), (52)

where the w j are (positive) weights corresponding to the quadra-
ture formula, and in the last step we defined W j ≥ 0. This ap-
proximation can be made arbitrarily accurate by letting K → ∞.
Defining the correlation coefficient as before, we obtain

r(x) ≡ ξ(x)/ξ(0) =
K∑

j=1

V j u(xk j), (53)



712 P. Schneider and J. Hartlap: Constrained correlation functions

Fig. 3. Left panel: the curve c(λ) = (J0(λ), J0(2λ)), together with its convex envelope. The latter consists of two segments of the curve c and two
straight lines, one of which is tangent to c(λ) at the points c(λ1) ≈ (0.1905, −0.3870) and c(λ2) ≈ (−0.1894,−0.2421), the other one is tangent
to c at c(λ3) ≈ (−0.3872, 0.2987) and intersects c(0) = (1, 1). The corresponding values of the curve parameter are λ1 ≈ 2.0580, λ2 ≈ 4.9636,
and λ3 ≈ 3.5561. These numerical values are found as follows: the requirement that the lower straight line segment is tangent to curve at the two
points λ1,2 leads to the conditions ċ(λi) = ai [c(λ1) − c(λ2)] for i = 1, 2, where ai are scalars. These four scalar equations for the four unknowns ai,
λi have several solutions, the relevant one is the “outermost” one. For the upper straight line segment, one employs the condition that the tangent at
point λ3 goes through c(0), i.e., ċ(λ3) = a [c(λ3) − c(0)], and of the multiple solutions of these two scalar equations for the two unknowns a and λ3,
one takes the “outermost” one. Middle panel: in a similar way, the curve c(λ) = ( j0(λ), j0(2λ)) is plotted, together with its convex envelope. Here,
λ1 ≈ 2.3911, λ2 ≈ 5.3490 and λ3 ≈ 4.0287, and c(λ1) ≈ (0.2852, −0.2086), c(λ2) ≈ (−0.1503,−0.0894), and c(λ3) ≈ (−0.1924, 0.1216). Right
panel: comparison of the allowed regions in the r1 − r2-plane in 1−3 dimensions.

where the coefficients

Vi =

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

W j

⎤⎥⎥⎥⎥⎥⎥⎦
−1

Wi (54)

satisfy 0 ≤ Vi ≤ 1 and
∑

Vi = 1.
If we now consider a set of N points xn, together with the

correlation coefficients rn ≡ r(xn), then we see that a point in
the N-dimensional space of r = (r1, . . . , rN) can be described
as a weighted sum of points lying along the curve c(λ) =
(u(λx1), . . . , u(λxN)), 0 ≤ λ < ∞, i.e.,

r =
K∑

j=1

V j c(λ j), (55)

where we considered the transition of the discrete points k j to
a continuous variable λ. Since Vi ∈ [0, 1] and

∑
Vi = 1, the

point r must be located inside the convex volume containing all
points on the curve c(λ). It is clear that this convex envelope
of the curve c yields indeed the optimal general bounds on the
ri: every point within the convex envelope can be realized by
choosing a set of n points on the curve c appropriately. Since the
function u(y) depends on the dimension of the random field, the
constraints will be different for different numbers of dimensions.
Furthermore, the curve c(λ) depends on the choice of the xn,
and therefore the constraints will also depend on the choice of
separations for which the correlation function is measured.

Unfortunately, we have not found a way how to algebraically
describe the convex envelope of the curve c(λ), and thus to ob-
tain explicit expressions for the upper and lower bounds on ri.
For now, we therefore will present just a few simple examples.

For the 1-dimensional case with two points x2 = 2x1, the
curve reads c(λ) = (cos λ, cos 2λ), with λ = x1k; the same set
of points is described by the curve c′(a) = (a, 2a2 − 1) (using
trigonometric identities), −1 ≤ a ≤ 1. Thus, the convex en-
velope of c′ is the region between the parabola c′ and the line
r2 = +1, and thus we re-obtain the bounds (11). For the choice
x2 = 3x1, the set of points of c(λ) is equivalent to that of the

curve c′(a) = (a, 4a3 − 3a), a ∈ [−1, 1]. The convex enve-
lope can then be described by the bounds max(−1, 4r3

1 − 3r1) ≤
r2 ≤ min(1, 4r3

1 − 3r1), where the lower bound differs from
−1 for r1 > 1/2, and the upper bound is different from +1
for r1 < −1/2. If we choose instead x2 = μx1, then for a
generic (non-rational) μ, the curve c(λ) fills the whole square
−1 ≤ r1 ≤ 1, −1 ≤ r2 ≤ 1, which is also coincident with its
convex envelope.

As the next example, we consider a 2-dimensional field
with x2 = 2x1. In the left panel of Fig. 3, the curve c(λ) =
(J0(λ), J0(2λ)) is plotted for λ ≥ 0. The convex envelope in this
case can be constructed explicitly: the boundary of the smallest
convex region which contains the curve c is composed of four
parts: (1) the section of the curve c(λ) for 0 ≤ λ ≤ λ1; (2) the
straight line connecting the two points c(λ1) and c(λ2); (3) the
section of the curve c(λ) for λ3 ≤ λ ≤ λ2; and (4) the straight line
connecting c(λ3) and c(0) = (1, 1). In a similar way, the convex
envelope can be constructed for a 3-dimensional random field;
see Fig. 3, middle panel.

Unfortunately, we have not yet found a systematic way how
to construct the convex envelope for n > 2, and how to obtain
explicit bounds on the correlation coefficients in these cases –
although it is clear that the allowed region, at least in the r1 − r2-
plane, decreases as one goes to higher-dimensional fields (see
right panel of Fig. 3). Therefore, the development of explicit
bounds in higher dimensions is of great interest.

5. Transformation of variables

The finite bounds on the correlation coefficients clearly show
that the likelihood of the correlation function cannot be a
Gaussian. However, the bounds on rn may suggest that the
Gaussian approximation for the likelihood could be better in
terms of transformed variables, in which the allowed range for
each rn is mapped onto the real axis. Such a transformation
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would simplify the parametrization of the likelihood from nu-
merical simulations. Defining

xn :=
2rn − rnu − rnl

rnu − rnl
, (56)

the allowed range of rn is mapped onto −1 < xn < 1. It should
be noted that (56) is a coupled non-linear transformation of vari-
ables, since the bounds on rn depend on the rk, k < n. The
mapping to the real axis is then obtained by any function that
maps [−1, 1] to (−∞,∞); we choose

yn := atanh(xn). (57)

Thus, no bounds on the correlation coefficients are violated if the
probability distribution of the yn would follow a multi-variate
Gaussian.

We next consider the relation between the likelihood of the
correlation function and the corresponding likelihood of the yn.
To shorten notation, we drop the explicit dependence on the
model parameters p in the following. Then,

Lξ(ξ0, ξ1, . . . , ξN)
N∏

k=0

dξk = L′(ξ1, . . . , ξN |ξ0)
N∏

k=1

dξk L0(ξ0) dξ0

= Lr(r1, . . . , rN |ξ0)
N∏

k=1

drk L0(ξ0) dξ0

= Ly(y1, . . . , yN |ξ0)
N∏

k=1

dyk L0(ξ0) dξ0, (58)

where in the first step we have used the product rule of probabil-
ity theory and introduced the conditional probability density L′,
and where the next two steps define the likelihood in terms of the
rn and the yn, respectively. Thus, the distribution of the rn and yn

can depend explicitly on the value of ξ0.
The relation between Lr and Ly is obtained from

Lr(r1, . . . , rN |ξ0) = Ly(y1, . . . , yN |ξ0) det(J), (59)

where the yi are functions of the r j, and the transformation ma-
trix J is given by

Ji j ≡ ∂yi

∂r j
=

1

1 − x2
i

∂xi

∂r j
=

2

Δ2
i − (2ri − riu − ril)2

×
[
Δiδi j − (ri − ril)

∂riu

∂r j
− (riu − ri)

∂ril

∂r j

]
· (60)

Note that the partial derivatives vanish for j ≥ i, which means
that J is tridiagonal, and thus its determinant is given by the
product of the diagonal elements,

det(J) =
N∏

i=1

2Δi

Δ2
i − (2ri − riu − ril)2

· (61)

Thus, the transformation between the probability distribution of
the ri and that of the yi is rather complicated, implying that the
behaviour of these two probability distributions can be consider-
ably different. In particular, the Ly could be approximated by a
Gaussian, the corresponding Lr would have a significantly dif-
ferent functional form; also the covariances of the two distribu-
tions will differ significantly.

6. Simulations

In order to illustrate the analytical results discussed in the pre-
vious sections and to explore the effects of the constraints on
the shape of the likelihood of the correlation function, we have
conducted some simple numerical experiments. We have gener-
ated realizations of a periodic one-dimensional Gaussian random
field δ on a regular grid according to

gi =
1
N

N−1∑
j=0

e2πi i j/N g̃ j, (62)

where g̃i is the discrete Fourier transform of the random
field, and has a normal distribution of zero mean, g̃i ∼
N

(
0,
√

N Pi/2
)
, where Pi is the discretized power spectrum and

N(μ, σ) is the Gaussian distribution with mean μ and standard
deviation σ. From each realization, we measure the correlation
function using the estimator

ξ̂i =
1
N

N−1∑
a=0

ga ga+i (63)

and calculate the correlation coefficients ri. Note that this estima-
tor of the correlation function explicitly employs the periodicity
of the discrete random field. As defined in this way, the esti-
mated correlation function is the Fourier transform of a power
spectrum P′i , proportional to the squares of the amplitudes of the
g̃i. Hence, P′i is non-negative, and we thus expect that the corre-
lation function of each realization obeys the constraints derived
before – indeed, this is the case.

We illustrate the constraints in the r1 − r2-plane (Eq. (12))
and in the r2 − r3-plane for fixed r1 (Eq. (14)) in Fig. 4. In or-
der to fully populate the allowed regions with data points, we
do not use a single power spectrum for all realizations of the
random field, but draw for each realization random positive val-
ues, uniformly distributed in [0, 1], for each Pi. Note that the data
points do not completely fill out the regions allowed by Eqs. (12)
and (14), but are constrained to a slightly smaller region with
piecewise linear boundaries. The reason for this is that we have
used a random field with N = 16 modes, whereas Eqs. (12)
and (14) have been derived without reference to the specific way
the random field is created and are valid also for an infinite num-
ber of modes.

The covariance matrix of the correlation function estimator
given by Eq. (63) is given by

Cov[ξ̂]i j =
1

N2

N∑
a=1

N∑
b=1

(
ξ|a−b| ξ|a+i−b− j| + ξ|a−b− j| ξ|a−b+i|

)
. (64)

With this, we can compare the true distribution of the correla-
tion function (as estimated from a large number of realizations
of the Gaussian field) to the commonly used Gaussian approxi-
mation to the likelihood. As an example, we show the likelihoods
L(ξ5, ξ10) and L(ξ10, ξ15) in Fig. 6, where we have marginal-
ized over all other components of ξ. We have used a random
field with N = 64 modes and a single Gaussian power spectrum.
Even though the estimated likelihood and the Gaussian predic-
tion have identical first and second moments, a Gaussian like-
lihood clearly is a bad approximation to the distribution of the
correlation function.

We now investigate whether the transformation of variables
from rn to yn given by Eqs. (56) and (57) leads to a likelihood
of the yn that is better described by a Gaussian. We find that
this is indeed the case, as is illustrated in Figs. 7 and 8 for the
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Fig. 4. Constraints in the r1 − r2-plane (left panel) and in the r2 − r3-plane (left panel), where r1 was constrained to −0.41 < r1 < −0.39. Each
point corresponds to a correlation function measured from a realization of a one-dimensional Gaussian random field with a randomly drawn power
spectrum and N = 16 modes. Plotted as lines are the analytically determined constraints as given by Eqs. (12) and (14).
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Fig. 5. Distribution of (r1, r2) for correlation functions measured from
simulated Gaussian random fields with N = 256 and random power
spectra (similar to Fig. 4). Even though the points lie well inside the
admissible range, the shape of the distribution is similar to the shape of
the allowed region.

marginalized distributions in the 1-2-, and 2-3-planes. In the left
panel, we show the estimated distribution of the correlation co-
efficients, whereas the right panel contains the distribution af-
ter the transformation. The probability distribution in r-space
“feels” the presence of the boundary between allowed and for-
bidden regions, even at the innermost contours which are quite
well away from the boundary. We also show the contours of
the best-fitting bi-variate Gaussian for comparison and see that
the distribution in the y-space is much better approximated by a
Gaussian than the distribution of the original correlation coeffi-
cients. In addition, we note that the transformation r �→ y seems
to reduce the correlations between most of the components of
the correlation function. It may be suggested that the fact of the
far more Gaussian distribution in the transformed variable is re-
lated to the choice of the transformation whose functional form
is that of Fisher’s z-transformation (Fisher 1915).

Finally, we wish to assess the importance of the constraints
in a more realistic, two-dimensional setting and consider as an
example a weak lensing survey. Our strategy is as follows: we
draw a large number of realizations of the shear correlation func-
tion ξ+, which is the two-dimensional Fourier transform of the
convergence power spectrum Pκ (Kaiser 1992; Bartelmann &
Schneider 2001) from a multivariate Gaussian likelihood. The
covariance matrix for the likelihood function is computed un-
der the assumption that the convergence is a Gaussian random
field using the methodology described in Joachimi et al. (2008).
For each of these realizations, we compute the matrix A (see
Eq. (17)). We then use this sample of correlation functions to
compute a Monte-Carlo estimate of the integral

Λ =

∫
dnξ L(ξ|p) Hpd(A), (65)

whereL(ξ|p) denotes the Gaussian likelihood as given by Eq. (1)
and Hpd(A) = 1 if A is positive semi-definite and Hpd(A) =
0 otherwise. We test A for positive semi-definiteness using the
Cholesky decomposition (Press et al. 1992). Λ measures the
overlap of the Gaussian distribution with the allowed region. If
Λ < 1, the Gaussian likelihood assigns a finite probability to
regions containing correlation functions that do not correspond
to a positive power spectrum and are therefore forbidden by the
constraints discussed in this paper. We can therefore use Λ as a
rough indicator of the validity of the assumption of a Gaussian
likelihood. However, note that even if Λ ≈ 1, the shape of
the true likelihood might deviate significantly from a Gaussian
distribution.

For the numerical experiment, we choose a WMAP-5-like
cosmology to compute the shear correlation function and its co-
variance matrix (approximating the shear field to be Gaussian),
and a redshift distribution of the source galaxies similar to the
one found for the CFHTLS-Wide (Benjamin et al. 2007). The
results of the numerical experiment are shown in Fig. 9, where
we plot Λ as a function of the number of bins n (linear binning),
keeping the maximum angular scale to which ξ+ is evaluated
constant at θmax = 20′. We display the results for three differ-
ent survey sizes (1, 10 and 100 deg2). The constraints are more
important for smaller survey areas and a larger number of bins.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=5
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Fig. 6. Marginalized likelihood of the correlation function components ξ5 and ξ10 (left panel) and ξ10 and ξ15 (right panel) as estimated from 105 re-
alizations of a one-dimensional Gaussian random field with N = 64 modes and a Gaussian power spectrum (black contours). The corresponding
Gaussian likelihood with covariance matrix as predicted from the power spectrum (Eq. (64)) is shown by the red dashed contours.
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Fig. 7. Marginalized distribution of r1 and r2 for a Gaussian random field with N = 64 modes and Gaussian power spectrum (right panel) and
the distribution of the corresponding transformed variables y1 and y2 (right panel). Shown as red dashed contours are the best-fitting bi-variate
Gaussian distributions; in the left panel, the constraint given by Eq. (12) is shown as solid blue line.

This is because as the number of bins increases, the constaints on
the admissible values for the following components of the cor-
relation function become tighter, so that the correlation function
is basically determined by its first few components. Increasing
the noise (small area) or increasing the number of bins therefore
decreases the fraction of positive semi-definite correlation func-
tions that can be drawn from the Gaussian likelihood. These re-
sults indicate that the likelihood of the correlation function might
deviate significantly from a Gaussian even in realistic situations.
It is expected that for real shear fields, which are not Gaussian on
the angular scales considered here, the values of Λ will deviate
from unity even more. We speculate that the non-Gaussianity
found in Hartlap et al. (2009) for the shear correlation func-
tions might at least partly be caused by the constraint of positive
semi-definiteness.

7. Conclusions and outlook

We have considered constraints on correlation functions that
need to be satisfied in order for the correlation function to cor-
respond to a non-negative power spectrum. Using the covari-
ance matrix method, we have derived explicit expressions for
the upper and lower bounds on the correlation coefficients rn;
these were derived for the case that the spatial sampling of ξ oc-
curs at points x j = jx. This method yields optimal constraints
for the correlation of one-dimensional random fields, whereas
they are not optimal for higher-dimensional homogeneous and
isotropic random fields. We have indicated a method with which
such optimal constraints can in principle be derived for higher-
dimensional fields and for non-linear spacing of grid points, and
presented a few simple applications of this method; however, up

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=7
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Fig. 8. Distribution of r2 and r3 for a Gaussian random field with N = 64 modes and Gaussian power spectrum (right panel), where we set
0.05 < r1 < 0.15 and have marginalized over all other components of the correlation function, and the distribution of the corresponding transformed
variables y2 and y3 (right panel). Shown as red dashed contours are the best-fitting bi-variate Gaussian distributions; in the left panel, the constraint
given by Eq. (14) for r1 = 0.1 is shown as solid blue line.

Fig. 9. Fraction Λ (Eq. (65)) of admissible (i.e. positive semi-definite)
shear correlation functions drawn from a Gaussian likelihood plotted
versus the number of linear angular bins in the interval 0 ≤ θ ≤ 20′.
Solid, dashed and dotted curves are for surveys with survey areas of 1,
10 and 100 deg2.

to now we have not obtained a systematic method for deriving
explicit upper and lower bounds on the rn in these cases. Finding
those will be of considerable interest since they are expected to
be tighter than the corresponding bounds derived for the 1D case.

Using cosmic shear as an example, we have demonstrated
that the Gaussian probability ellipsoid, which is obtained un-
der the assumption that the likelihood function of the correlation
function is given by a Gaussian characterized by the covariance
matrix, significantly spills over to the forbidden region of cor-
relation functions. This effect is even more serious than consid-
ered here, since we have used for this analysis the constraints
from Sect. 2 which are not optimal, as shown in Sect. 4. Hence,
from this argument alone we conclude that the assumption of a

Gaussian likelihood is not very realistic and probably leads to
erroneous estimates of parameters and their confidence regions.

Even if the Gaussian likelihood ellipsoid is contained in-
side the allowed region, the true likelihood deviates from
a Gaussian, as simple numerical experiments with one-
dimensional Gaussian random fields have shown. Surprisingly,
the shape of the resulting likelihood contours have some resem-
blance to the shape of the boundary of the allowed region even
if the size of the probability distribution is considerably smaller
than the allowed region. The origin of this result is not under-
stood. Most likely, the likelihood of the correlation function de-
pends not only on its covariance matrix, but also on higher-order
moments.

A non-linear coupled transformation of the correlation coef-
ficients leads to a distribution that appears much more Gaussian
(in the transformed variables), and there may be a connection
of this fact to the Independent Components analyzed in Hartlap
et al. (2009). Indeed, in these transformed variables, the likeli-
hood not only is much more Gaussian, but also less correlated,
which supports the hypothesis about a connection between the
constraints derived here and the ICA analysis of Hartlap et al.
(2009). More extensive numerical tests may yield better insight
into this connection. It must be stressed that such a result, if it
can be obtained, would be of great importance, given that the
determination of multi-variate probability distributions from nu-
merical simulations is prohibitively expensive.

An alternative route for understanding the connection be-
tween the constraints derived here and the shape of the likelihood
function is the explicit calculation of the multivariate probability
distribution of the correlation function ξ(x j) for a Gaussian ran-
dom field. The constraints on the r j should be explicitly present
in this probability distribution. Work on these issues is currently
in progress.

The results of this paper can most likely be generalized
to random fields which are not scalars, e.g., the polarization
of radiation, or the orientation of objects. The cosmic shear

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912424&pdf_id=9
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correlation function (e.g., Kaiser 1992; Schneider et al. 2002)
ξ+ which has been considered in Sect. 6 is equivalent to the cor-
relation function of the underlying surface mass density κ, and
thus the correlation behaves in the same way as that of a scalar
field. However, the other cosmic shear correlation function ξ−
is qualitatively different, being a spin-4 quantity, for which the
filter function in (5) is replaced by J4(kx).

The foremost aim of this paper was the derivation of exact
constraints on correlation functions; in contrast, we have not
considered methods for measuring a correlation function from
data. For example, in many cases the correlation function
cannot be measured at zero lag, so that the correlation co-
effcients r = ξ(x)/ξ(0) can then not be determined directly.
Furthermore, one derives the correlation function from data in
a given volume, and thus the measured correlation function
will deviate from the ensemble average, even in the absence
of noise. This effect has two different aspects: suppose for a
moment that the observed field is one-dimensional and forced
(or assumed) to be periodic. If the correlation function on such
a field is measured using the definition (63), then the measured
correlation function will deviate from the ensemble average,
but it will still correspond to a non-negative power spectrum,
given by the square of the Fourier transform of the realization
of the field. Hence, in such a case, every measured correlation
function will satisfy the constraints derived in Sect. 2. If the
field has more than one dimension, but is still periodic, the
correlation function measured by a generalization of (63) to
higher dimensions will still obey the constraints from Sect. 2,
for the same reason. However, the power spectrum of the
realization of the field will in general not be isotropic, and thus
the considerations of Sect. 4 do not apply strictly. In the more
realistic case where periodicity cannot be assumed, one cannot

measure the correlation function by “wrapping around” as
in (63); in this case, there are “boundary effects”, which are
the stronger the more the separation approaches the size of
the data field. Then, there exists not necessarily a non-negative
power spectrum related to the measured correlation function
through (3), and the constraints may not apply strictly. How im-
portant these effect are needs to be studied with a more extended
set of simulations.
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