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ABSTRACT

Context. Emission from Ar III is seen in planetary nebulae, in H II regions, and from laboratory plasmas. The analysis of such spectra
requires accurate electron impact excitation data.
Aims. The aim of this work is to improve the electron impact excitation data available for Ar2+, for application in studies of planetary
nebulae and laboratory plasma spectra. The effects of the new data on diagnostic line ratios are also studied.
Methods. Electron-impact excitation collision strengths have been calculated using the R-Matrix Intermediate-Coupling Frame-
Transformation method and the R-Matrix Breit-Pauli method. Excitation cross sections are calculated between all levels of the con-
figurations 3s23p4, 3s3p5, 3p6, 3p53d, and 3s23p3nl (3d ≤ nl ≤ 5s). Maxwellian effective collision strengths are generated from the
collision strength data.
Results. Good agreement is found in the collision strengths calculated using the two R-Matrix methods. The collision strengths are
compared with literature values for transitions within the 3s23p4 configuration. The new data has a small effect on Te values obtained
from the I(λ7135 Å + λ7751 Å)/I(λ5192 Å) line ratio, and a larger effect on the Ne values obtained from the I(λ7135 Å)/I(λ9 μm)
line ratio. The final effective collision strength data is archived online�.
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1. Introduction

Argon is an important species for TOKAMAK studies, being
used as a gas to radiatively cool the divertor and as a po-
tential means of mitigating plasma disruptions (Whyte et al.
2002). In particular, Ar III lines have been shown to provide
useful spectral diagnostics for astrophysical studies (Keenan
& McCann 1990; Keenan & Conlon 1993). The 3s23p4(1D2)
→ 3s23p4(3P1,2) and 3s23p4(1S0) → 3s23p4(1D2) transitions
of Ar III emit strongly in planetary nebulae (Aller & Keyes
1987; Perez-Montero et al. 2007), and the 3s23p4(3P1) →
3s23p4(3P2) transition is seen in H II regions (Pipher et al.
1984). Transitions within the first 5 levels of Ar2+ have been
shown to be very useful as spectral diagnostics. The ratio of
I(λ7135 Å + λ7751 Å)/I(λ5192 Å) has been shown to be a
good indicator of electron temperature (DeRobertis et al. 1987;
Keenan & McCann 1990), and the ratio I(λ7135 Å)/I(λ9 μm)
is density sensitive in the range 102–108 (cm−3) (Keenan &
Conlon 1993).

There has been much recent interest in improving the atomic
data available for the low ion stages of argon, in particular for
the excitation data that is required to model collision domi-
nated plasmas. R-Matrix with pseudostates electron-impact exci-
tation data was recently calculated for neutral argon (Ballance &
Griffin 2008) and Ar+ (Griffin et al. 2007). Madison et al. (2004)
calculated electron-impact excitation from the 3p53d states of
neutral argon using an R-Matrix method and two first order
distorted-wave methods. For Ar2+, Johnson & Kingston (1990)

� Tables 2–4 are also available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/1253

calculated excitations within the configuration 3s23p4 and 3s3p5

of Ar2+ using the R-Matrix method. Their results were gener-
ated in LS coupling and transformed to level-resolution using
the JAJOM (Saraph 1978) method. Later Galavis et al. (1995)
also used the R-Matrix method to calculate level-resolved ex-
citations within the 3s23p4 configuration as part of the IRON
project. They used a large configuration-interaction calculation
to get the atomic structure, followed by a smaller collision cal-
culation. Burgess et al. (1997) pointed out that the 3s23p4(1D)
→ 3s23p4(1S) quadrupole effective collision strength of Galavis
et al. (1995) did not appear to go to the expected high energy
Born limit point. Galavis et al. (1998) then found that including
more partial waves in the calculation for this transition increased
the collision strength at higher energies, making it trend closer to
the expected limit point. Neither the Johnson & Kingston (1990)
or the Galavis et al. (1995) calculations include n = 4 states in
their target configurations.

On the experimental side, Boffard et al. (2007) measured op-
tical emission cross sections for excitation from the ground state
of neutral Ar to excited states. Jung et al. (2007) measured ex-
citation cross sections for excitation of the metastable levels of
neutral Ar to the 3p55p configuration. Strinic et al. (2007) mea-
sured excitation coefficients for Ar+. To the best of our knowl-
edge there are no experimental measurements of excitation cross
sections for Ar2+.

The aim of this work is to use the R-Matrix method to cal-
culate electron-impact excitation of Ar2+, including excitation
up to the 5s subshell. This should improve upon the previous
R-Matrix calculations for the first nine levels of this ion by in-
cluding more resonance channels. It will also provide accurate
atomic data for the excited configurations, which have not been
calculated before using the R-Matrix method. With increased
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computational resources, R-Matrix calculations have developed
from relatively small LS-coupled calculations, to large calcu-
lations involving hundreds of levels. Initially, level-resolved
calculations were done by transforming LS calculations using
the JAJOM (Saraph 1978) method, however this was found
to contain potential problems, see Griffin et al. (1998), so the
intermediate-coupling frame-transformation method (ICFT) was
introduced by Griffin et al. (1998). Level-resolved Breit-Pauli
calculations also became feasible because of large scale paral-
lelization of the codes and were found to produce very similar
results to the ICFT method, see Griffin et al. (1998). The ICFT
method is computationally less demanding as it requires the
diagonalization of LS-resolved Hamiltonians rather than LSJ-
resolved Hamiltonians. As a large number of levels are involved
in our calculation, resulting in thousands of transitions, we use
the ICFT calculation as a consistency check on our Breit-Pauli
calculation. We also note that fully relativistic Dirac R-Matrix
calculations are also now possible for systems involving hun-
dred of levels, see for example Ballance & Griffin (2008). We do
not expect fully relativistic effects to be important for Ar2+.

Coupling to the target continuum was found to be large for
neutral argon excitation data, decreasing the collision strength by
up to a factor of two above the ionization threshold, see Ballance
& Griffin (2008). The effect was found to be smaller, but still sig-
nificant for Ar+, Griffin et al. (2007) found up to 30% decrease
in collision strength above the ionization threshold. We expect
the effect to be small for Ar2+, thus a non-pseudostate R-Matrix
calculation should be sufficient. However, we examined our col-
lision strength data above the ionization threshold for evidence
of an artificial rise in the collision strength due to continuum
coupling effects being omitted.

We will present results from three R-Matrix calculations. We
will first compare an ICFT and Breit-Pauli calculation as a check
on our results. Then we will show results from a Breit-Pauli cal-
culation with the first 9 level energies shifted to NIST (2008)
energy values. This last calculation will then be compared with
literature values, and the effect of the new data on diagnostic line
ratios will be discussed.

In the next section we will describe the theoretical methods
used. Section 3 will then show the results of the comparison be-
tween the different theoretical methods and Sect. 4 will present
our conclusions.

2. Theory

2.1. Atomic structure calculation and optimization

We use the AUTOSTRUCTURE (Badnell 1986) code, a
many body Breit-Pauli structure package, to calculate the
structure of the target used in our collision calculations.
The graphical interface to AUTOSTRUCTURE, GASP
(Graphical Autostructure Package, http://vanadium.
rollins.edu/GASP/GASP.html) was used to run the
AUTOSTRUCTURE code. We have included the following
configurations in our calculation: 3s23p4, 3s3p5, 3p6, 3p53d and
3s23p3nl (3d � nl � 5s). We found a significant improvement in
the first 9 energy levels by including the 3p53d configuration.
The average percentage difference within the first 9 energy
levels and those from NIST (2008) was 11.16% excluding the
3p53d configuration, and 4.83% by including it in our structure.
The same configurations were used in our scattering calculation.

Our structure was optimized by using a singular value de-
composition (Golub & Van Loan 1989) method to give best
agreement with selected NIST (2008) values for the level

energies and line strengths. The orbitals were determined by us-
ing a Thomas-Fermi-Dirac-Amaldi (TFDA) statistical potential.
To optimize our structure we make use of scale factors for the
wavefunctions in each orbital. These scale factors, or λs, en-
able us to adjust the radial extent of the wavefunctions for each
orbital. These small adjustments allow some fine tuning of the
atomic structure and the associated line strengths.

We developed a code (LAMDA) to optimize our atomic
structure by varying the λ scale factors. This is similar to the
approach of Bautista (2008). In order to monitor and compare
the quality of our atomic structure, we make use of the NIST ta-
ble quantities. The selected quantities that we wish to reproduce
are the NIST energy (levels or terms) Einist, and either the line
strengths S i jnist, the collision strengths f i jnist, or Einstein coef-
ficients Ai jnist. In our modeling we prefer to use line strengths
due to their greater independence of energies. Some of the NIST
line strengths S i jnist have a big uncertainty listed on the tables,
therefore our code is able to chose the ones that have a small
listed error, in this case we chose line strengths with less than
10% error. We optimized on the 114 NIST energy levels that
were also in our structure calculation. Since the energies and line
strengths depend upon the scale factors (λs), we linearize both
and approximate the relation between our chosen NIST quan-
tities and our modeled values as Enist ≈ Emodel(λ) + ∂E

∂λ δλ, and
S nist ≈ S model(λ) + ∂S

∂λ
δλ.

To include both of these different quantities in our optimiza-
tion we normalize both of them with their respective NIST val-
ues, therefore
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≈ 1
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ΔS
S nist

≈ 1
S nist

∂S
∂λ
δλ. (2)

This way we get our complete model for any n number of en-
ergies, any m number of line strengths, and l number of scale
factors as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔE1
Enist1
ΔE2
Enist2

...
ΔEn
Enistn
ΔS 1
S nist1
ΔS 2
S nist2

...
ΔS m
S nistm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Enist1

∂E1
∂λ1

1
Enist1

∂E1
∂λ2

. . . 1
Enist1

∂E1
∂λl

1
Enist2

∂E2
∂λ1

1
Enist2

∂E2
∂λ2

. . . 1
Enist2

∂E2
∂λl

...
...

. . .
...

1
Enistn

∂En
∂λ1

1
Enistn

∂En
∂λ2

. . . 1
Enistn

∂En
∂λl

1
S nist1

∂S 1
∂λ1

1
S nist1

∂S 1
∂λ2

. . . 1
S nist1

∂S 1
∂λl

1
S nist2

∂S 2
∂λ1

1
S nist2

∂S 2
∂λ2

. . . 1
S nist2

∂S 2
∂λl

...
...

. . .
...

1
S nistm

∂S m
∂λ1

1
S nistm

∂S m
∂λ2

. . . 1
S nistm

∂S m
∂λl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δλ1
δλ2
...
δλl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

We rewrite the model in vector notation as ΔP ≈ M · δλ where
we have defined ΔP as the normalized vector for the difference
of quantities, M as the normalized Jacobian matrix, and δλ as
the correction scale factors vector. We write the solution of the
vector of the correction of the scale factors as δλ ≈ M−1 · ΔP.
Having the correction for the scale factors we use them to get
the new scale factors λnew = λold + δλ. With these new scale
factors we recompute our model and compare it again with the
NIST selected quantities. We rerun the whole process again until
we are satisfied with the results. To measure the success of the
optimization we compare the initial and final values for the least
square χ2 which is given by χ2 = ΔP2

1 + ΔP2
2 + . . . + ΔP2

N+M . To
get the inverse of the normalized (n +m) × l Jacobian matrix M
which may not be square (n+m) � l, and it may be singular. We
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decompose the matrix by using Singular Value Decomposition
(Golub & Van Loan 1989). We express M as

M = U · S · VT (4)

Where U is a (n +m) × (n +m) unitary matrix, S is a (n +m) × l
diagonal matrix with nonnegative real numbers on the diagonal,
and VT denotes the conjugate transpose of V, an l × l unitary
matrix. These matrices have the following properties

– the columns of V form a set of orthonormal input or analyz-
ing basis vector directions for M;

– the columns of U form a set orthonormal output basis vector
directions for M;

– the matrix S contains the singular values, which can be
thought of as scalar gain controls by which each correspond-
ing input is multiplied to give a corresponding output.

Therefore the “inverse”, or pseudoinverse, is given by

M−1 ≈ V · S−1 · UT. (5)

The matrix S is a diagonal matrix that contains K singular values.
The number K determines the rank of the matrix, and the singu-
lar values are ordered in descending value S 1 > S 2 > . . . > S K .
The K rank of the matrix represents the number of “dimensions”.
The difficulty is to select the p number of singular values that
we need to compute the pseudoinverse where p ≤ K. Since we
need to compute the vector of the scale factor corrections δλ we
choose to put some physical constraints in order not to affect the
different atomic orbitals by too much while we optimize others.
Therefore we choose a range of values for the total scale factors
given by

0.8 ≤ λnew = λold + δλ ≤ 1.2. (6)

With this restriction in place we select the p number of singular
values to compute the singular values inverse matrix S−1. There
is not a specific method to know how many p singular values
we need to compute the inverse of the singular values matrix.
We use the number of singular values we need to meet condi-
tion (6). If condition (6) is not met, we multiply the Jacobian
matrix by a certain factor greater than one and then compute
the corrections again. If condition (6) still goes unmet, we again
multiply the Jacobian matrix by a greater factor and recompute
the optimization. The reason we multiply the Jacobian matrix
by a factor greater than one is to increase the value of its deriva-
tives, thereby reducing the size of the corrections for the scale
factors δλ and to satisfy condition (6).

We obtained good results from the optimization process with
a χ2 = 4.13 before the optimization and a χ2 = 0.33 after the op-
timization. That represents an improvement of 92.01% in our
χ2 value. We found that this optimization method gave us better
results than AUTOSTRUCTURE’s default optimization of mini-
mization of energies which gives a χ2 = 2.07. We also found bet-
ter average percentage difference within the first 9 energy levels
and those from NIST. AUTOSTRUCTURE’s default optimiza-
tion gives a 20.03% difference while our optimization method
gives 4.83%.

2.2. The R-Matrix method

The scattering calculation was performed with our set of paral-
lel R-Matrix programs (Mitnik et al. 2003; Ballance & Griffin
2004), which are extensively modified versions of the serial
RMATRIX I programs of Berrington et al. (1995). The method

is based on partitioning the configuration space in to two regions
by a sphere of radius a centered on the target nucleus. In the in-
ternal region r ≤ a electron exchange and correlation between
the scattered electron and the the N-electron target atom or ion
are important and the (N+1)-electron collision complex behaves
in a similar way to a bound state. In the external region r > a
electron exchange between the scattered electron and the target
can be neglected if the radius a is chosen so that the charge dis-
tribution of the target is contained within the sphere. Outside the
R-Matrix box, the total wavefunction for a given LS symmetry
is expanded in basis states given by:

ΨN+1
k =

∑
i

ψN+1
i

vi(rN+1)
rN+1

, (7)

where vi(r) are radial continuum functions obtained by solution
of radial asymptotic coupled differential equations. The inner
and outer solutions are matched at the edge of the R-Matrix box
to extract collision strengths.

In this paper we have employed both the Breit-Pauli and
ICFT (Intermediate Coupling Frame Transformation) R-Matrix
methods for electron-impact excitation (Griffin et al. 1998).
The original impetus for the ICFT approach was to reduce
the time consuming diagonalisation of each large Breit-Pauli
Hamiltonian. In the ICFT method, as each partial wave in-
cludes only the mass-velocity and Darwin corrections to the
LSΠ N+1 Hamiltonian and omits the spin-orbit interaction; this
greatly reduces the size of each symmetric matrix to be diag-
onalised. In the outer region, the resulting LS-coupled scatter-
ing S- or K-matrices are transformed to jK coupling by means
of an algebraic transformation to provide level-to-level excita-
tion cross sections. This transformation involves TCC’s (Term
Coupling Coefficients) which are calculated from a Breit-Pauli
structure calculation (including spin-orbit interaction), to ex-
press the eigenvectors for the resulting levels as linear combina-
tions of the multi-configuration mixed terms. The coefficients of
this expansion are the TCCs. With the implementation of a par-
allel versions of our codes, and for the scale of calculations de-
scribed in this paper, both methods would take a similar amount
of time, however the ICFT approach remains better suited for
small memory serial machines and/or small parallel clusters as
calculations increase in size. The consistency of results between
ICFT and Breit-Pauli calculations reported later in this paper
should provide a lower bound on the error we would expect
in the subsequent collisional-radiative modeling. Effective colli-
sion strengths are generated from our R-Matrix collision strength
data via convolution with a Maxwellian electron distribution.

Υi j =

∫ ∞

0
Ωi jexp

(−E j

kT

)
d

(
E j

kT

)
(8)

where E j is the energy of the outgoing electron and Ωi j is
the collision strength between i and j. We will make use of
Burgess-Tully plots (Burgess et al. 1997) to show effective col-
lision strengths from threshold to the infinite energy point on a
single plot. For the type-2 transition that we will consider, this
involves the following transformations:

X =

kT
Ei j

kT
Ei j
+C

(9)

Y = Υi j (10)

where Ei j is the energy of the transition i to j, and C is an arbi-
trary constant. We will use a C-value of 5.0 to compare with the
Burgess-Tully results shown in Galavis et al. (1998).
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2.3. Collisional radiative model

We use the ADAS (http://www.adas.ac.uk) suite of codes
for our population and emission modeling. These codes are
based on collisional-radiative theory, first developed by Bates et
al. (1962) and later generalized by Summers & Hooper (1983).
The method aims to encompass both the low density coronal and
high density local thermodynamic equilibrium description of an
ion and to track the shifting balance between radiative and colli-
sional processes. The ion consists of a set of levels with radiative
and collisional couplings. Ionization and recombination to and
from metastables of the next ionization stage (i.e. the plus ion
stage) are included. The time dependence of the population (Ni)
of an arbitrary level i in ion stage +z is given by

dNi

dt
=

∑
σ

neNz+1
σ (αr

i + α
d
i + neα

3
i ) +

∑
j<i

N jneq
e
j→i

+
∑
j>i

N j(neq
e
j→i + A j→i)

−Ni

{∑
j>i

(neq
e
i→ j +

∑
j<i

(neq
e
i→ j + Ai→ j)

+
∑
σ

(neS i→σ + Aa
i→σ)

}
(11)

where ne is the free electron density. A is the usual Einstein
coefficients, Aa is the Auger rate, and qe is the electron colli-
sional excitation/de-excitation rate. αr, αd and α3 denote radia-
tive, dielectronic and three-body recombination, respectively. σ
denotes the ground and metastable indices of the z+ 1 ion stage.
It can be shown that we can reduce the equation to a more com-
pact form.

dNi

dt
=

∑
σ

neNz+1
σ riσ −

∑
j

Ci jN j (12)

with a populating term for i � j

Ci j = −(A j→i + neqe
j→i + neq

p
j→i) (13)

a loss term

Cii =
∑
i> j

Ai→ j + ne

∑
j�i

qe
i→ j +

∑
γ

neS iγ +
∑
γ

Aa
iγ (14)

and a composite recombination coefficient riσ = α
r
i +α

d
i +Neα

3
i .

Setting the time dependence of the excited states to zero allows
the population of the excited levels to be determined as functions
of the ground and metastable populations of the Z ion stage (Nρ)
and of the Z + 1 ion stage (NZ+1

σ )

Nz
j = −

∑
ρ

∑
i

C−1
ji CiρNz

ρ −
∑
σ

∑
i

C−1
ji riγNz+1

σ ne. (15)

A spectral line intensity ratio for a homogeneous plasma is eval-
uated via

Iflux
j→k

Iflux
i→l

=
NjA j→k

NiAi→l
(16)

and an energy intensity ratio is given by

Ienergy
j→k

Ienergy
i→l

=
NjA j→kΔE jk

NiAi→lΔEil

=
NjA j→kλil

NiAi→lλ jk
· (17)

Table 1. Final λ values for the 1s–5s orbitals.

Orb. 1s 2s 2p 3s 3p 3d
λ 1.00067 1.00512 1.13787 1.19138 1.06414 1.053192

Orb. 4s 4p 4d 4f 5s
λ 1.09323 0.91692 1.19986 0.99996 0.99979

When comparing with spectral line ratios observed from plane-
tary nebulae we will use this latter equation, since the observa-
tions will be of the energy absorbed at a given wavelength.

3. Results

Our results can be split into three main areas: structure, colli-
sional data and emission modeling.

3.1. Structure

Our final optimized structure consisted of configurations 3s23p4,
3s3p5, 3p6, 3p53d, and 3s23p3nl (3d ≤ nl ≤ 5s), giving a total
of 186 levels. Our optimized lambda parameters, obtained us-
ing our singular value decomposition code, are given in Table 1.
Our structure was optimized using NIST energy levels and line
strengths. The level energies from our structure calculation are
given in Table 2. We show results for the first 29 levels, the
remaining energies can be found in the archived datafile (see
http://www-cfadc.phy.ornl.gov/data_and_codes). The
average percentage error between our calculated energies and the
NIST energies is 3.46%. The largest error is for the 3s23p4(1D2)
level. Because of the diagnostic importance of the transitions
within the 3p4 configuration, we will shift to NIST values all
the energies associated with the 3p4 and 3s3p5 configurations.
This will be described in the next section.

As a further check on our structure, we present a selection of
our calculated radiative rates in Table 3, we show our calculated
radiative rates compared with NIST (2008) values and the calcu-
lations of Mendoza & Zeippen (1983). The average percentage
difference between the NIST Einstein A coefficients and ours is
65.36%. We note that for most of the transitions the NIST uncer-
tainty estimates on the Einstein A coefficients are 25% or ≥50%,
our Einstein A coefficients are in general within the NIST uncer-
tainty estimates. In the dataset we use for our emission modeling
the Einstein A coefficients for transitions within the 3s23p4 con-
figuration will be replaced by the calculated values of Mendoza
& Zeippen (1983). This will allow us to make a direct compari-
son with previous modeling results from the literature, highlight-
ing the differences due to the excitation data only. However, our
final archived dataset will contain our calculated Einstein A co-
efficients.

3.2. Scattering calculations

The orbitals used in our R-Matrix calculations were generated
from the AUTOSTRUCTURE (Badnell 1986) code using the
optimized λ parameters from Table 1. Our exchange calcula-
tion included partial waves from L = 0 to L = 14 (J = 0.5 to
J = 11.5 for the Breit-Pauli calculation). The non-exchange cal-
culation went from L = 10 up to L = 40 (J = 12.5 to J = 37.5).
The contributions from higher partial waves were then calculated
for dipole transitions using the method originally described by
Burgess (1970) and for the non-dipole transitions assuming a ge-
ometric series in L, using energy ratios, with special procedures
for handling transitions between nearly degenerate terms. Using

http://www.adas.ac.uk
http://www-cfadc.phy.ornl.gov/data_and_codes
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Table 2. Energies in Rydbergs for the lowest 29 levels of Ar2+.

Configuration 2S+1LJ NIST Present %Err
En. (Ryd) En. (Ryd)

3s23p4 (3P2) 0.0000 0.0000 0.0
3s23p4 (3P1) 0.0101 0.0096 5.2
3s23p4 (3P0) 0.0143 0.0137 4.4
3s23p4 (1D2) 0.1277 0.1488 16.6
3s23p4 (1S0) 0.3031 0.2841 6.2
3s3p5 (3P2) 1.0370 1.0023 3.3
3s3p5 (3P1) 1.0461 1.0108 3.4
3s3p5 (3P0) 1.0509 1.0152 3.4
3s3p5 (1P1) 1.3124 1.3028 0.7

3p3(4S◦)3d (5D1) 1.3203 1.3165 0.3
3p3(4S◦)3d (5D3) 1.3204 1.3172 0.2
3p3(4S◦)3d (5D4) 1.3205 1.3178 0.2
3p3(4S◦)3d (3D3) 1.4299 1.4536 1.7
3p3(4S◦)3d (3D2) 1.4300 1.4536 1.7
3p3(4S◦)3d (3D1) 1.4310 1.4545 1.6
3p3(2D◦)3d (1S0) 1.4749 1.5274 3.6
3p3(2D◦)3d (3F2) 1.4832 1.5015 1.2
3p3(2D◦)3d (3F3) 1.4861 1.5047 1.3
3p3(2D◦)3d (3F4) 1.4897 1.5088 1.3
3p3(2D◦)3d (3G3) 1.5683 1.5908 1.4
3p3(2D◦)3d (3G4) 1.5686 1.5915 1.5
3p3(2D◦)3d (3G5) 1.5691 1.5925 1.5
3p3(4S◦)4s (5S2) 1.5891 1.6067 1.1

3p3(2D◦)3d (1G4) 1.6008 1.6339 2.1
3p3(2P◦)3d (1D2) 1.6360 1.6380 0.1
3p3(4S◦)4s (3S1) 1.6465 1.6833 2.2
3p3(2P◦)3d (3F4) 1.6986 1.7044 0.3
3p3(2P◦)3d (3F3) 1.7010 1.7064 0.3
3p3(2P◦)3d (3F2) 1.7032 1.7084 0.3

AUTOSTRUCTURE (Badnell 1986), we also calculated infinite
energy Bethe/Born limits, allowing us to extend the effective col-
lision strengths and rate coefficients to temperature ranges above
the highest calculated collision strength. In our outer region cal-
culations, we used 80 000 energy mesh points over the resonance
region (up to 6 Ryd) and 500 energy mesh points for the higher
energies (6 Ryd to 12 Ryd).

It has been shown by Griffin et al. (1998) that an ICFT cal-
culation would produce the same results as a Breit-Pauli calcu-
lation. As a check on our calculation we performed an ICFT and
a Breit-Pauli calculation using the same set of radial orbitals for
both. Figure 1 shows the ICFT and Breit-Pauli collision strength
for the 3s23p4(1P2) → 3s23p4(1D2) transition. Although small
differences can be seen, the two calculations are clearly very
close to each other.

This level of agreement was typical for the collision
strengths calculated. The 186 levels in our Ar2+ calculation give
rise to 17 205 transitions. We used the scatterplot method of
Witthoeft et al. (2007) to compare the Maxwellian effective col-
lision strengths for all of the transitions at one time. This method
takes the ratio of effective collision strengths for all transitions
for a given temperature and plots this ratio against one of the
effective collision strengths. Thus a ratio of one would indicate
the datasets are the same. This method also allows one to see
the strength of the transitions that are in disagreement. We chose
an electron temperature of 1.55 eV as one typical of planetary
nebula and low enough to strongly sample the resonance re-
gion of the collision strengths. Of the 17 205 transitions, 82%
of the ICFT effective collision strengths are within 10% of the
Breit-Pauli values. 94% of the ICFT effective collision strengths

Table 3. Comparisons of selected radiative rates for transitions in Ar2+.

Initial – Final In. – Fi. NIST Ajk Mendoza & Present Ajk
Configurations Levels Zeippen

(1983)

3s3p5 → 3s23p4 3P1 → 3P2 1.59 × 108 1.16 × 108

3s3p5 → 3s23p4 3P0 → 3P1 3.74 × 108 2.78 × 108

3s3p5 → 3s23p4 3P2 → 3P2 2.79 × 108 2.08 × 108

3s3p5 → 3s23p4 3P1 → 3P1 9.20 × 107 6.95 × 107

3s3p5 → 3s23p4 3P1 → 3P0 1.22 × 108 9.21 × 107

3s3p5 → 3s23p4 3P2 → 3P1 9.00 × 107 6.90 × 107

3s23p4 → 3s23p4 1S0 → 1D2 9.50 × 10−1 2.59 × 100 2.59 × 100

3s23p4 → 3s23p4 1D2 → 3P2 3.48 × 10−1 3.14 × 10−1 1.13 × 10−1

3s23p4 → 3s23p4 1D2 → 3P1 9.64 × 10−2 8.23 × 10−2 8.22 × 10−2

3s23p4 → 3s23p4 1D2 → 3P0 1.25 × 10−4 2.21 × 10−5 2.21 × 10−5

3s23p4 → 3s23p4 1S0 → 3P2 4.30 × 10−2 4.17 × 10−2 4.17 × 10−2

3s23p4 → 3s23p4 1S0 → 3P1 4.02 × 100 3.91 × 100 3.91 × 100

3s23p4 → 3s23p4 3P0 → 3P2 2.72 × 10−6 2.37 × 10−6 2.37 × 10−6

3s23p4 → 3s23p4 3P1 → 3P2 3.10 × 10−2 3.08 × 10−2 3.08 × 10−2

3s23p4 → 3s23p4 3P0 → 3P1 5.19 × 10−3 5.17 × 10−3 5.17 × 10−3

3p34p→ 3p34s 5P3 → 5S2 2.00 × 108 4.61 × 108

3p34p→ 3p34s 5P2 → 5S2 2.00 × 108 4.60 × 108

3p34p→ 3p34s 5P1 → 5S2 2.00 × 108 4.60 × 108

3p34p→ 3p34s 3F4 → 3D3 2.00 × 108 3.83 × 108

3p34p→ 3p34s 3F3 → 3D2 1.80 × 108 3.75 × 108

3p34p→ 3p34s 3F2 → 3D1 1.60 × 108 3.56 × 108
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Fig. 1. Comparison of the ICFT and Breit-Pauli collision strengths for
the 3s23p4(3P2) → 3s23p4(1D2) transition. The dashed line shows the
ICFT results and the solid line shows the Breit-Pauli results.

are within 20% of the Breit-Pauli values and 98% are within
40%. Of the transitions that show a difference, they are in gen-
eral for weaker transitions involving highly excited levels with
effective collision strengths that are extremely sensitive to the
resonance contributions on top of a weak background. These
transitions are not likely to make a difference in population mod-
eling. For example, the transitions within the 3p4 configuration
are within 4% of each other. Population modeling using the
ICFT and Breit-Pauli datasets produces essentially the same ex-
cited populations for all cases we investigated. For the final data
set we used the Breit-Pauli results.

To provide the most accurate data for modeling, a Breit-Pauli
calculation was then done with shifts to NIST energies for the
first 9 energy levels, due to their importance in spectral line di-
agnostics. To test the convergence of our energy mesh over the
resonance region we performed a series of calculations using

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911743&pdf_id=1
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Fig. 2. Scatter plot showing the ratio of effective collision strengths at
Te = 1.55 eV between two Breit-Pauli R-Matrix calculations. One had
40 000 energy mesh point in the resonance region, the other had 80 000
energy mesh points in the resonance region. We show the ratio of effec-
tive collision strength vs. the effective collision strength of the 40 000
energy mesh calculation.

different meshes, namely 10 000, 20 000, 40 000 and 80 000
mesh points in the resonance region. We calculated Maxwellian
averaged effective collision strengths for each of these meshes
and compared the files. Figure 2 shows a scatterplot compari-
son of our Breit-Pauli calculation using 40 000 and 80 000 mesh
points in the resonance region. Of the 17 205 transitions, most
are converged, with a few outliers. There was a progression of
convergence as the mesh was increased. For example, compar-
ing calculations with 20 000 and 40 000 energy mesh points in
the resonance region we found that 93.4% of the transitions were
converged to within 2% of each other. Comparing the 20 000 and
40 000 energy mesh point calculations, 96.4% of the transitions
were converged to within 2% of each other. Finally, comparing
the 40 000 and 80 000 energy mesh point calculations, 98.4% of
the transitions were converged to within 2% of each other, with
95.5% being within 1%. Thus, we believe that our 80 000 enegy
mesh point calculation is converged.

Of the previous R-Matrix calculations, we can compare with
the collision strengths from Johnson & Kingston (1990), see
Fig. 3 for a comparison of a selection of transitions. There are
clear differences in the resonance positions and heights, with
the background collision strengths being in good agreement. The
differences in the resonance contributions may be due to the well
known problems with the JAJOM method (Griffin et al. 1998)
that was used by Johnson & Kingston (1990) to transform the
LS results to LSJ resolution.

We can compare our effective collision strength results with
the IRON project data of (Galavis et al. 1995), and with the tab-
ulated values of Johnson & Kingston (1990). Figure 4 shows the
comparison for a selection of transitions. Table 4 shows our cal-
culated effective collision strengths for transitions between the
3s23p4 levels. At the highest temperatures, our effective colli-
sion strengths are consistently higher than the previous calcu-
lations. Since we have a similar background cross-section, the
differences are due to the extra resonance channels included in
our calculation, and to a lesser extent differences in our top-up
procedures. Most transitions show differences at low tempera-
tures where sensitivity to the low energy resonance contribution
is strongest. This is particularly true for the transitions 3p4(3P2)
→ 3p4(1S0) and 3p4(1D2) → 3p4(1S0), shown in Fig. 4e and f).
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Fig. 3. Comparison of selected Breit-Pauli collision strengths (with
energy shifts included for the first 9 energy levels) with Johnson &
Kingston (1990). Plot a) shows the 3p4(3P2) → 3p4(3P0) transition.
Plot b) shows the 3p4(3P) → 3p4(1D) transition, where the level-
resolved Breit-Pauli collision strengths have been summed to give the
term-resolved collision strength. Plot c) shows the 3p4(3P) → 3p4(1S)
transition, where the level-resolved Breit-Pauli collision strengths have
been summed to give the term-resolved collision strength. Plot d) shows
the 3p4(1D2)→ 3p4(1S0) transition. In all plots the solid line shows the
Breit-Pauli results and the dot-dashed line shows the Results of Johnson
& Kingston (1990).

In both cases our effective collision strengths are smaller than
previous calculations at the lowest temperatures. This is most
likely due to the contributions from near threshold resonances.
For example, the 3p4(1D2) → 3p4(1S0) transition has contribu-
tion due to a reported 3s3p5(3P)3d(2P) resonance that occurs at
the excitation threshold in the previous R-Matrix calculations of
Johnson & Kingston (1990). Galavis et al. (1995) also point out
the large contribution from a near threshold resonance in their
calculation of this transition. The near threshold resonance in
the 3p4(3P)→ 3p4(1S) transition is likely to be due to the same
resonance. We do not see this near threshold resonance in our
calculations for either of these transitions. As will be seen later,
these two transitions are key for spectral diagnostics. Thus, we
performed a smaller R-Matrix calculation, using the same con-
figurations as Johnson & Kingston (1990). In this calculation we
do see a near threshold resonance in the 3p4(1D2) → 3p4(1S0)
transition, as seen in previous work. We identified the reso-
nances as belonging to the J = 3/2 partial wave. Investigation
of the eigenphase sum shows that this broad resonance belongs
to the 3s3p53d configuration, and is shifted to lower energy in
our larger Breit-Pauli calculation. Thus it does not contribute to
our collision strength. Our resonance position should be more
accurate, due to the larger number of configurations in our struc-
ture calculation. However, this resonance is very close to the
excitation threshold and is clearly sensitive to configuration in-
teraction effects. Experimental measurements of this collision
strength would be very useful.

At higher temperatures for the 3p4(1D2) → 3p4(1S0) transi-
tion we verify the findings of Burgess et al. (1997), and Galavis
et al. (1998) that contributions from higher partial waves are re-
quired for the effective collision strength to tend to the right limit
point. We plot our results for this transition in a Burgess-Tully
plot in Fig. 5 to highlight the high energy behaviour. Our results
go to a limit point of 1.72, close to the value of 1.68 expected
by Burgess et al. (1997). As pointed out by Galavis et al. (1998),

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911743&pdf_id=2
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Fig. 4. Comparison of selected Breit-Pauli effective collision strengths
(with energy shifts included for the first 9 energy levels) with Johnson &
Kingston (1990) and with Galavis et al. (1995, 1998). Plot a) shows the
3p4(3P2)→ 3p4(3P1) transition. Plot b) shows the 3p4(3P2)→ 3p4(3P0)
transition. Plot c) shows the 3p4(3P1) → 3p4(3P0) transition. Plot d)
shows the 3p4(3P2) → 3p4(1D2) transition. Plot e) shows the 3p4(3P2)
→ 3p4(1S0) transition. Plot f) shows the 3p4(1D2) → 3p4(1S0) transi-
tion. In all plots the solid line shows the Breit-Pauli R-Matrix results,
the dashed line shows the results of Galavis et al. (1995) and the dot-
dashed line shows the results of Johnson & Kingston (1990). In plot f)
the double-dot dashed line shows the results of Galavis et al. (1998).

the rise in slope of the Burgess-Tully plot towards the limit point
does not happen until relatively close to the limit point.

Table 4. Effective collision strengths for transitions between the 3s23p4

levels.

Temp. (K) 3P1–3P2
3P0–3P2

1D2–3P2
1S0–3P2

3P0–3P1

1800 3.860 0.808 3.010 0.307 1.410
4500 3.820 0.866 2.970 0.299 1.420
9000 4.030 0.990 2.940 0.354 1.420

18000 4.210 1.100 2.930 0.421 1.380
45000 4.260 1.160 3.090 0.478 1.320
90000 4.310 1.200 3.080 0.467 1.290

180000 3.820 1.080 2.570 0.378 1.100
450000 2.660 0.791 1.570 0.223 0.693
900000 1.930 0.617 0.958 0.133 0.433

1800000 1.480 0.515 0.556 0.074 0.254
4500000 1.180 0.458 0.261 0.033 0.118
9000000 1.080 0.445 0.148 0.018 0.064
18000000 1.030 0.442 0.085 0.009 0.034

Temp. (K) 1D2–3P1
1S0–3P1

1D2–3P0
1S0–3P0

1S0–1D2

1800 1.850 0.202 0.622 0.069 0.871
4500 1.820 0.192 0.612 0.065 0.995
9000 1.800 0.217 0.602 0.072 1.160

18000 1.780 0.257 0.595 0.085 1.240
45000 1.870 0.302 0.625 0.105 1.340
90000 1.860 0.301 0.621 0.108 1.440

180000 1.550 0.245 0.516 0.089 1.450
450000 0.945 0.145 0.315 0.053 1.380
900000 0.578 0.086 0.193 0.031 1.370

1800000 0.334 0.048 0.112 0.017 1.410
4500000 0.155 0.021 0.052 0.008 1.510
9000000 0.085 0.011 0.029 0.004 1.570
18000000 0.047 0.005 0.016 0.002 1.630
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Fig. 5. Burgess Tully plot of effective collision strength vs. reduced tem-
perature (X). Results are shown for transition 3p4(1D2)→ 3p4(1S0). In
the reduced temperature scale zero corresponds to the value at threshold
and one corresponds to the value at the infinite energy point. The solid
line shows the results from our Breit-Pauli R-Matrix calculation, the
dashed line shows the results from the R-Matrix calculation of Galavis
et al. (1995) and the double-dot dashed line shows the results of Galavis
et al. (1998) where more partial waves were included compared to their
previous calculation. The solid square shows the limit point of Burgess
et al. (1997).

3.3. Emission modeling

Our Breit-Pauli atomic dataset was used to model commonly ob-
served forbidden transitions of Ar III. Our modeling data con-
sists of the Breit-Pauli excitation data, including shifts to NIST
energies for the first 9 levels. Our dipole Einstein A coefficients
were evaluated in our R-Matrix calculation. Our non-dipole
Einstein A coefficients came from an AUTOSTRUCTURE cal-
culation. For the purpose of the modeling work in this paper we
use the same Einstein A coefficients for transitions within the
3p4 configuration as those of Mendoza & Zeippen (1983). These
were the Einstein A coefficients used in previous emission mod-
els using R-Matrix data from Keenan & McCann (1990), and
Keenan & Conlon (1993). Using the same Einstein A coefficients
will allow us to highlight differences in emission modeling due
to the excitation collision data. The final set of data that is avail-
able online will include our computed Einstein A coefficients for
all the transitions. We first consider the temperature sensitive en-
ergy intensity ratio

R1 = Ienergy(λ7135 Å + λ7751 Å)/Ienergy(λ5192 Å)

=
(N4A4→1/λ7135) + (N4A4→2/λ7751)

N5A5→4/λ5192
(18)

where the numbers in the subscripts of N and A denote the index
numbers of the energy levels involved in the transitions. The ra-
tio is insensitive to electron density up to Ne ∼ 1 × 105 (cm−3).
Our results are shown in Fig. 6. We also calculated this ratio
using the data of Johnson & Kingston (1990) and the data of
(Galavis et al. 1995), where we used Einstein A coefficients from
Mendoza & Zeippen (1983) for the radiative rates. We note that
the ratio we calculate for the Johnson & Kingston (1990) data
is equivalent to that shown by Keenan & McCann (1990). Our
R1 ratio is close to that obtained from the two previous R-Matrix
calculations. The excited populations are coronal at low densi-
ties and are only sensitive to excitation rate coefficients from
the ground to the 3p4(1S0) level, excitation from the ground

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911743&pdf_id=4
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Fig. 6. R1 line ratio as a function of electron temperature. The results are
calculated at Ne = 1 × 103 (cm−3), though the results are insensitive to
electron density up to Ne = 1× 105 (cm−3). The solid line shows the re-
sults using the new R-Matrix Breit-Pauli collision data. The dot-dashed
line show the results using the data of Johnson & Kingston (1990) and
the dashed line shows the results using the data of Galavis et al. (1995).

to 3p4(1D2) level, and radiative decay from the 3p4(1S0) and
3p4(1D2) levels. Since we use the same Einstein A coefficients in
all of our calculations, the differences in our ratio are primarily
because our effective collision strength for 3p4(3P2)→ 3p4(1S0)
is smaller than archived data, due to differences in low energy
resonance contributions. Our new R-Matrix data does not make
a large difference to the temperatures diagnosed from measured
line ratios. Our diagnosed temperatures are within 10% of those
diagnosed using the older R-Matrix datasets.

Our results for the density sensitive energy intensity ratio

R2 = Ienergy(λ7135 Å)/Ienergy(λ9 μm)

=
N4A4→1/λ7135

N2A2→1/λ90000
(19)

is shown in Fig. 7. We again compare with calculations using
the data of Johnson & Kingston (1990) and the data of Galavis
et al. (1995). The modeling using the Johnson and Kingston data
is equivalent to the ratio shown in Keenan & Conlon (1993).
For each temperature one can see that all the R2 ratios go from
their coronal value at low densities to their local thermodynamic
equilibrium value by Ne ∼ 1× 108 (cm−3). Our ratios are consis-
tently lower than those from the previous R-Matrix calculations.
This is primarily due to our collisional excitation rate from the
ground to the 3p4(1S0) being smaller than those from the pre-
vious calculations. Our new data makes a significant difference
to electron densities diagnosed using the above line ratio. For
example, the line ratio for planetary nebula NGC 6572 shown
in Keenan & Conlon (1993) is 0.23 and is for an electron tem-
perature of 10 000 K. The new R-Matrix data gives a value of
log10 (Ne) = 4.98 (Ne = 9.46 × 104 cm−3) compared with the
value given by Keenan & Conlon using the data of Johnson &
Kingston (1990) of log10 (Ne) = 4.7(Ne = 5.0 × 104 cm−3). We
found that cascades from higher levels do not affect either the R1
or R2 line ratios. Measurement of the excitation cross sections
for these forbidden transitions of Ar2+ would be very useful, es-
pecially measurements that could determine if there is a near
threshold resonance in the 3p4(1D2)→ 3p4(1S0) and 3p4(3P)→
3p4(1S) transitions. Our R-Matrix data also includes excitations
up to excited configurations. We do not show any modeling re-
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Fig. 7. R2 line ratio as a function of electron density. The results are
calculated for a range of electron temperatures, namely 5000, 8000,
10 000, 15 000, 20 000 and 30 000 K. The lowest line ratio is the 5000 K
results, with the higher ratios showing the progressively higher temper-
ature results. The solid line shows the results using the new R-Matrix
Breit-Pauli collision data. The dot-dashed line show the results using
the data of Johnson & Kingston (1990) and the dashed line shows the
results using the data of Galavis et al. (1995).

sults for transitions involving these configurations. We expect
this data to be of high quality and intend to use the data to model
Ar III spectra in the future. Our final dataset is archived on-
line at the Oak Ridge atomic data center (http://www-cfadc.
phy.ornl.gov/data_and_codes) and in the ADAS database
(http://www.adas.ac.uk). Tables 2, 3, and 4 are also avail-
able in electronic form at the CDS.

4. Conclusions

The results of a 186 level R-Matrix calculations are presented for
Ar2+.

1. The results from an ICFT calculation are shown to be close
to those from a Breit-Pauli calculation. Our final R-Matrix
calculation consists of a Breit-Pauli calculation with the first
9 levels shifted to NIST energies.

2. We compare the results of this calculation with literature val-
ues for transitions within the 3p4 configuration, finding dif-
ferences at low temperatures due to low energy resonance
contributions.

3. We calculate one temperature sensitive and one density sen-
sitive line ratio, finding that our new data does not make
a significant differences to the temperature diagnostic, but
does have a sizeable affect on the density diagnostic, com-
pared to values calculated using previous R-Matrix data.

4. Our final effective collision strengths are now avail-
able on the Oak Ridge National Laboratory Atomic
Data Web (http://www-cfadc.phy.ornl.gov/data_
and_codes) and in the ADAS (http://www.adas.ac.uk)
database. The data presented at Tables 2, 3, and 4 is also
available in electronic form at the CDS.
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