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ABSTRACT

Context. As coronal loops are spatially at least partially resolved in the longitudinal direction, attempts have been made to use the
longitudinal profiles of the oscillation amplitudes as a seismological tool.
Aims. We aim to derive simple formulae to assess which oscillation modes and which quantities of the oscillation (displacement or
compression) are most prone to modifications induced by stratification of the equilibrium density along the loop. We furthermore clar-
ify and quantify that the potential of such a method could be enhanced if observational profiles of the compression in the oscillations
could be determined.
Methods. By means of a linear expansion in the longitudinal stratification along with the “thin tube” approximation, the modifications
to the eigenfunctions are calculated analytically. The results are validated by direct numerical computations.
Results. Higher axial overtones are found to be more affected by equilibrium stratification and hence would provide a much better
tool if observed. For the k − 1th overtone the compression is found to be around (k + 2)2/k2 times more sensitive to longitudinal den-
sity variation than the displacement. While the linear formulae do give a good indication of the strength of the effects of longitudinal
density stratification, the numerical computations indicate that the corrections to the approximate analytical results are significant and
cannot be neglected under the expected coronal conditions.
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1. Introduction

The clear detection of flare generated coronal loop oscillations
by the Transition Region and Coronal Explorer has initiated the
field of coronal loop seismology. An interpretation of the oscil-
lations in terms of the fundamental kink oscillation of a coro-
nal flux tube (as treated by Edwin & Roberts 1983) enabled in-
vestigators to deduce a rough estimate for the coronal magnetic
field strength from the observed periodicity (Nakariakov 2000;
Nakariakov & Ofman 2001). Ruderman & Roberts (2002) subse-
quently extended the basic model to include smooth transversal
density variations which give rise to a continuous spectrum and
associated continuum damping, also known as Alfvén resonant
absorption. Within that framework the additional model param-
eter that quantifies the transversal density inhomogeneity length
scale can directly be related to the damping time of the oscilla-
tions (Goossens et al. 2002). In recent studies by Arregui et al.
(2007) and Goossens et al. (2008) the third remaining parame-
ter of the density contrast between the loop and the surrounding
plasma (which was assigned an ad hoc value in all previous stud-
ies) was taken into account consistently.

The simultaneous detection of axial overtones of a coro-
nal loop kink-mode oscillation by Verwichte et al. (2004) has
triggered an increased interest for theoreticians to refine the
theoretical modelling of transverse coronal loop oscillations,
and has greatly advanced coronal seismology (for reviews see
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Nakariakov & Verwichte 2005; Roberts 2008). With regard to
the potential of coronal seismology, the discovery of harmonic
coronal loop oscillations has raised awareness on two important
issues.

Firstly, the simultaneous detection of several oscillation
frequencies is an important advance in the development of any
seismological endeavour. It allows us to add complexity to the
proposed theoretical models and infer values for the additional
parameters without detailed spatial resolution of the oscillations.
In a coronal context, this was first illustrated by Andries et al.
(2005a) by means of the computations of eigenfrequencies and
eigenmodes in coronal loop models with longitudinal density
stratification (Andries et al. 2005b) (using a method similar to
that of Díaz et al. 2002, 2004). The deviation of the ratio of the
fundamental period to the successive overtones from 1/2, 1/3,
etc. was related to, and hence used as a measure for, the density
scale height. McEwan et al. (2006) investigated alternative ex-
planations for the anomalous period ratio but concluded that it is
most probably due to longitudinal density stratification (or mag-
netic field variation, which had not been assessed at that time).
Meanwhile much more theoretical as well as observational work
has been done along those lines (Donnelly et al. 2006; Dymova
& Ruderman 2006b,a; Díaz et al. 2006; Van Doorsselaere et al.
2007; De Moortel & Brady 2007; Díaz et al. 2007; McEwan
et al. 2008). Verth & Erdélyi (2008) and Ruderman et al.
(2008) included the variation of the magnetic field along the
loop into the calculations. They concluded that it has an ef-
fect opposite to that of the density variation and may alter the
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seismologically inferred density scale heights considerably. By
using observational estimates of the magnetic field expansion
Verth et al. (2008) performed a refined seismological analysis of
the density scale height by means of the period ratio.

Secondly, since the identification of the first overtone in the
observations was not only made because of its frequency close to
twice that of the fundamental, but also by observational evidence
that the amplitude of that mode had maxima halfway down the
loop legs and a node at the loop top, this made it clear that at
least in the axial direction we are able at present to partly re-
solve the spatial structure of the oscillations. It was strongly em-
phasised by Erdélyi & Verth (2007) and Verth et al. (2007) that
the longitudinal spatial resolution could possibly allow for the
estimation of loop model parameters based on the deviations in
the eigenfunctions rather than the eigenfrequencies. The effect
of longitudinal density stratification on the transversal displace-
ment amplitude was however found to be not particularly strong
for the fundamental oscillation (Erdélyi & Verth 2007; Safari
et al. 2007), and due to several uncertainties in the observations
(projection effects, localisation of the loop footpoints), proba-
bly not detectable at present with reasonable confidence. For the
first overtone however it was found that the shift of the antinodes
towards the footpoints is much more pronounced and could pos-
sibly be detectable. Progress in these detections could possibly
be sought in advanced edge tracking detection methods as used
by Jess et al. (2008).

The present paper aims at contributing to this second point.
We derive simple algebraic expressions that quantify how

much the eigenfunctions are altered by the presence of a longi-
tudinal density variation. In order to arrive at analytical expres-
sions, we assume a relatively weak density structuring which is
identical inside and outside the loop. The expressions are derived
generally, valid for any harmonic, and both for the displacement
and the compression. The derivation starts from a tube of arbi-
trary thickness but eventually specializes to a “thin tube” to ob-
tain concise formulae. A similar formula (for the displacement
only) was derived by Safari et al. (2007) starting directly from
the “thin tube” formula by Dymova & Ruderman (2005). They
used it to validate the results about the modifications to the dis-
placement profiles of the fundamental and its first harmonic by
Erdélyi & Verth (2007) and Verth et al. (2007). However, the
formulae enable us to assess whether higher harmonics, if they
could possibly be detected in the future, would have even higher
potential for spatial seismology. The answer is clearly affirma-
tive. However, it is debatable whether the shift of the antinodes
is in general a good observational signature of the modifications
to the eigenfunctions.

Secondly, the derivations also address a conclusion which
was already made by Andries et al. (2005b) but which has not re-
ceived much attention so far. From the numerical computations
it was concluded that the influence on the eigenfunctions seems
to be much more pronounced in the total pressure perturbation
than in the transversal displacement although a quantitative anal-
ysis was not performed. Observationally however, it is the dis-
placement which is measured. Being nearly incompressible, it is
clear that kink modes are most easily detected as transverse dis-
placements and measuring the compression in the observations
is probably not easy to achieve. We want to argue however that
from a theoretical perspective the potential for revealing infor-
mation on the longitudinal structure by means of analysis of the
spatial eigenfunctions is much greater if the compression or the
density variation could be measured.

In Sect. 2 the approximate formulae for the modifications
of the eigenmodes are derived analytically. Based on these

formulae it is discussed in Sect. 3 how the different harmon-
ics are influenced. In Sect. 4 the validity of these formulae is
checked numerically.

2. Model and analysis

2.1. Model and setup

The loop model is exactly as in Andries et al. (2005b). The coro-
nal loop is viewed as a straight cylindrical flux tube where the
magnetic field is constant but the density varies both in the ra-
dial (hence characterising the tube as a density enhancement)
and longitudinal direction. The slow waves are removed from the
analysis as β = 0 is an appropriate approximation in the lower
corona. As before the observed oscillations are modelled as lin-
ear oscillations because the observed velocities are small com-
pared to the local Alfvén speed. Within the linear treatment this
is equivalent to the observation that the displacement is small
compared to the length of the loop. However, in a different con-
text, the nonlinear coupling between different azimuthal compo-
nents has been related to the ratio between the displacement and
the tube radius (Ruderman 1992). At present it is not clear how
important this effect of non-linear coupling of azimuthal wave
numbers is for standing kink oscillations.

In a cylindrical reference frame where the equilibrium quan-
tities are independent of ϕ and of time, the perturbed quantities
can be set proportional to exp[ı(mϕ)] and exp[−ıωt] because no
coupling between different Fourier modes can occur. Here ω is
the circular frequency and m (an integer) is the azimuthal wave
number. As we are interested in oscillations that displace the axis
of the loop and also the loop as a whole, we need to take m = 1.
This is the only value of the azimuthal wave number for which
the loop is displaced. For a loop that is uniform in the longitu-
dinal direction the longitudinal variation of the kink oscillation
can be described by one axial wave number kz with the axial be-
haviour proportional to sin(kzz). For a loop of length L, kz = n π

L ,
n is a positive integer. n = 1 corresponds to the fundamental
axial mode; n ≥ 2 correspond to the axial overtones. A conse-
quence of longitudinal stratification is that a given mode cannot
be described by one axial wave number but now instead an infi-
nite sine series is required. Unless the longitudinal stratification
is very strong, one term in this infinite series is dominant so that
we can still speak about the fundamental axial mode etc. When
we speak about the kth mode in what follows, this is meant with
respect to the axial ordering as we just discussed. The radial part
of the spatial solutions of the modes does not follow a harmonic
variation. However, the modes can be distinguished by the num-
ber of nodes in the radial part of their spatial solution. The kink
oscillations invoked to explain the observed transverse oscilla-
tions in coronal loops have no nodes in the radial part of their
spatial solution. They are fundamental radial kink oscillations.

Solutions to the linearised expressions can be obtained an-
alytically in the internal and external regions where the density
does not vary with radial position r. We follow the notation as
introduced by Andries et al. (2005b), where the Eulerian pres-
sure perturbation and the radial component of the Lagrangian
displacement, both evaluated at the discontinuous boundary, are
expressed as a sine series expansion (with L the loop length):

pT(r = R, z) =
+∞∑
k=1

+∞∑
n=1

AkΠk
n sin

(nπ
L

z
)
, (1)

ξr(r = R, z) =
+∞∑
k=1

+∞∑
n=1

AkΞk
n sin

(nπ
L

z
)
. (2)
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∑+∞
k=1 AkΠk

n and
∑+∞

k=1 AkΞk
n simply represent the Fourier sine

transformations in z at r = R, whereas
∑+∞

n=1Π
k
n sin

(
nπ
L z

)
and∑+∞

n=1 Ξ
k
n sin

(
nπ
L z

)
are eigenmodes of the Alfvén differential oper-

ator in the z direction.Πk
n and Ξk

n can thus be seen as transforma-
tion matrices between two different orthogonal bases. However,
they are not orthonormal in the sense that the basis vectors∑+∞

n=1 Π
k
n sin

(
nπ
L z

)
and

∑+∞
n=1 Ξ

k
n sin

(
nπ
L z

)
are not of unit length.

Later on superscripts in and ex will be added to these expres-
sions to indicate that the values are obtained from a solution of
the equations in the internal and external region, but where pos-
sible they are dropped for notational convenience.

As at the boundary surface r = R both ξr and pT have to be
continuous (in the radial direction) the dispersion relation is ob-
tained as the determinant of the resulting infinite set of matching
conditions. Without stratification Πk

j and Ξk
j are zero whenever

k � j, yielding a block diagonal system with a 2 × 2 block for
each Fourier mode.

The equilibrium density is expressed as a constant (in the z
direction) plus a sine series expansion:

ρ(r, z) = ρ0(r)

⎡⎢⎢⎢⎢⎢⎣1 +
+∞∑
n=1

αn(r) sin
(nπ

L
z
)⎤⎥⎥⎥⎥⎥⎦ . (3)

In Andries et al. (2005b) we have analysed in detail how the dis-
persion relation can be expanded linearly in α, where α is a small
parameter representing the amount of longitudinal stratification.
We were thus able to determine the frequency shift due to strat-
ification in the limit of small stratification. However, although
we had also computed the eigenfunction numerically nonlinearly
in α, at that time we were unaware of the potential of analytic ex-
pressions for the variation of the eigenfunctions. We will pursue
this in what follows. We drop the subscript on α for convenience
and hence consider the influence of the contribution of a single
Fourier mode in the equilibrium density profile (3). The results
can be readily generalised afterwards.

2.2. Analysis

Consider the ratios of the jth term and the kth term in the sine
series expansion (denoted as RP j

k and RX j
k for pressure and dis-

placement) of the kth eigenmode. To first order in α we obtain
(with subscripts 0 and 1 representing the order in the α expan-
sion):

(
(RP) j

k

)
1
=

⎛⎜⎜⎜⎜⎜⎝
∑+∞

l=1 AlΠl
j∑+∞

l=1 AlΠl
k

⎞⎟⎟⎟⎟⎟⎠
1

=

(∑+∞
l=1 AlΠl

j

)
1(∑+∞

l=1 AlΠl
k

)
0

, (4)

=
1

Ak
0Π

k
k0

+∞∑
l=1

(Al
0Π

l
j1 + Al

1Π
l
j0), (5)

=
1

Ak
0Π

k
k0

(Ak
0Π

k
j1 + A j

1Π
j
j0), (6)

=
Πk

j1

Πk
k0

+
A j

1Π
j
j0

Ak
0Π

k
k0

, (7)

and likewise for the displacement:

(
(RX) j

k

)
1
=
Ξk

j1

Ξk
k0

+
A j

1Ξ
j
j0

Ak
0Ξ

k
k0

· (8)

The expressions for Πk
j and Ξk

j contain the factor ψk
j and hence

since ψk
j0 = 0 whenever j � k:

Πk
j1 = Π

k
k0

ψk
j1

ψk
k0

, (9)

Ξk
j1 = Ξ

k
k0

ψk
j1

ψk
k0

· (10)

Therefore:

(
(RP) j

k

)
1
=

ψk
j1

ψk
k0

+
A j

1Π
j
j0

Ak
0Π

k
k0

, (11)

(
(RX) j

k

)
1
=

ψk
j1

ψk
k0

+
A j

1Ξ
j
j0

Ak
0Ξ

k
k0

· (12)

The corrections to the Alfvén eigenmodes have been calculated
by Andries et al. (2005b), so what remains to be computed are
the corrections A j

1 to the solution vectors. From the dispersion
Eq. (6) in Andries et al. (2005b) expanded up to first order we
get for fixed k and arbitrary j:⎛⎜⎜⎜⎜⎜⎝Π

(ex,k)
j1 −Π(in,k)

j1

Ξ
(ex,k)
j1 −Ξ(in,k)

j1

⎞⎟⎟⎟⎟⎟⎠
(
A(ex,k)

0
A(in,k)

0

)

+

⎛⎜⎜⎜⎜⎜⎝Π
(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
(
A(ex, j)

1
A(in, j)

1

)
= 0. (13)

Thus formally:

(
A(ex, j)

1
A(in, j)

1

)
= −

⎛⎜⎜⎜⎜⎜⎝Π
(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1

×
⎛⎜⎜⎜⎜⎜⎝Π

(ex,k)
j1 −Π(in,k)

j1

Ξ
(ex,k)
j1 −Ξ(in,k)

j1

⎞⎟⎟⎟⎟⎟⎠
(
A(ex,k)

0
A(in,k)

0

)
. (14)

Using (9) and (10) we obtain:

(
A(ex, j)

1
A(in, j)

1

)
=−

⎛⎜⎜⎜⎜⎜⎝Π
(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1 (
Π

(ex,k)
k0 −Π(in,k)

k0
Ξ

(ex,k)
k0 −Ξ(in,k)

k0

)

×
⎛⎜⎜⎜⎜⎜⎝ψ

(ex,k)
j1 /ψ(ex,k)

k0 0

0 ψ(in,k)
j1 /ψ(in,k)

k0

⎞⎟⎟⎟⎟⎟⎠
(
A(ex,k)

0
A(in,k)

0

)
. (15)

We can then further rewrite the last part and apply the zeroth
order dispersion relation to find:

(
A(ex, j)

1
A(in, j)

1

)
= −

⎛⎜⎜⎜⎜⎜⎝Π
(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1 (
Π

(ex,k)
k0 −Π(in,k)

k0
Ξ

(ex,k)
k0 −Ξ(in,k)

k0

)

×
(

A(ex,k)
0 0
0 A(in,k)

0

) ⎛⎜⎜⎜⎜⎜⎝ψ
(ex,k)
j1 /ψ(ex,k)

k0

ψ(in,k)
j1 /ψ(in,k)

k0

⎞⎟⎟⎟⎟⎟⎠ , (16)

= −
⎛⎜⎜⎜⎜⎜⎝Π

(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1 (
Π

(ex,k)
k0 −Π(in,k)

k0
Ξ

(ex,k)
k0 −Ξ(in,k)

k0

)

×
(

A(ex,k)
0 −A(ex,k)

0
0 0

) ⎛⎜⎜⎜⎜⎜⎝ψ
(ex,k)
j1 /ψ(ex,k)

k0

ψ(in,k)
j1 /ψ(in,k)

k0

⎞⎟⎟⎟⎟⎟⎠ , (17)

= −A(ex,k)
0

(
ψ(ex,k)

j1 /ψ(ex,k)
k0 − ψ(in,k)

j1 /ψ(in,k)
k0

)

×
⎛⎜⎜⎜⎜⎜⎝Π

(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1 (
Π

(ex,k)
k0
Ξ

(ex,k)
k0

)
; (18)



268 J. Andries et al.: Overtones of kink oscillations of coronal loops with longitudinal density stratification

or equivalently:(
A(ex, j)

1
A(in, j)

1

)
= −A(in,k)

0

(
ψ(ex,k)

j1 /ψ(ex,k)
k0 − ψ(in,k)

j1 /ψ(in,k)
k0

)

×
⎛⎜⎜⎜⎜⎜⎝Π

(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

⎞⎟⎟⎟⎟⎟⎠
−1 (
Π

(in,k)
k0
Ξ

(in,k)
k0

)
. (19)

This can be solved straightforwardly by Cramer’s rule:

A(ex, j)
1 = −A(ex,k)

0

⎛⎜⎜⎜⎜⎜⎜⎝
ψ(ex,k)

j1

ψ(ex,k)
k0

−
ψ(in,k)

j1

ψ(in,k)
k0

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣
Π

(ex,k)
k0 −Π(in, j)

j0

Ξ
(ex,k)
k0 −Ξ(in, j)

j0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Π

(ex, j)
j0 −Π(in, j)

j0

Ξ
(ex, j)
j0 −Ξ(in, j)

j0

∣∣∣∣∣∣∣
, (20)

= −A(ex,k)
0 Π

(ex,k)
k0

Π
(ex, j)
j0

⎛⎜⎜⎜⎜⎜⎜⎝
ψ(ex,k)

j1

ψ(ex,k)
k0

−
ψ(in,k)

j1

ψ(in,k)
k0

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣
1 −1

Z(ex,k)
k0 −Z(in, j)

j0

∣∣∣∣∣∣∣∣∣∣∣∣
1 −1

Z(ex, j)
j0 −Z(in, j)

j0

∣∣∣∣∣∣
, (21)

= −A(ex,k)
0 Π

(ex,k)
k0

Π
(ex, j)
j0

⎛⎜⎜⎜⎜⎜⎜⎝
ψ(ex,k)

j1

ψ(ex,k)
k0

−
ψ(in,k)

j1

ψ(in,k)
k0

⎞⎟⎟⎟⎟⎟⎟⎠
Z(ex,k)

k0 − Z(in, j)
j0

Z(ex, j)
j0 − Z(in, j)

j0

· (22)

Here we have made use of the generalised impedance Z = Ξ/Π
for notational convenience. This finally enables us to write (11)
and (12) as:

(
(RP)ex j

k

)
1
=
ψexk

j1

ψexk
k0

−
⎛⎜⎜⎜⎜⎜⎜⎝
ψ(ex,k)

j1

ψ(ex,k)
k0

−
ψ(in,k)

j1

ψ(in,k)
k0

⎞⎟⎟⎟⎟⎟⎟⎠
Z(ex,k)

k0 − Z(in, j)
j0

Z(ex, j)
j0 − Z(in, j)

j0

, (23)

(
(RX)ex j

k

)
1
=
ψexk

j1

ψexk
k0

−
⎛⎜⎜⎜⎜⎜⎜⎝
ψ(ex,k)

j1

ψ(ex,k)
k0

−
ψ(in,k)

j1

ψ(in,k)
k0

⎞⎟⎟⎟⎟⎟⎟⎠
Z(ex, j)

j0

Z(ex,k)
k0

Z(ex,k)
k0 − Z(in, j)

j0

Z(ex, j)
j0 − Z(in, j)

j0

· (24)

The impedances can be entirely expressed in terms of the Alfvén
eigenvalues λi,e

j0 and two parameters: the radius R and the az-
imuthal wave number m. The expressions involve Bessel func-
tions for which the small argument expansions can be used in
the limit of a “thin tube” which reduces them to the simple
expression:

Zn
n0 =

Ξn
n0

Πn
n0

≈ ±m
R
λ−1

n0 . (25)

Here and in what follows the upper sign applies for the in-
ternal expressions (with superscript in) and the lower sign for
the external expressions (with superscript ex). The corrections
to the Alfvén eigenfunctions can also be expressed in terms of
the Alfvén eigenvalues λi,e

j0 as was obtained by Andries et al.
(2005b):

ψin,exk
j1

ψin,exk
k0

= − ρ0ω
2

λin,ex
j0 − λin,ex

k0

αS k j. (26)

Thus the expressions for the ratios (23) and (24) can be ex-
pressed solely in terms of the Alfvén eigenvalues λ j0. Therefore
let us write out λin,ex

j0 explicitly. Care has to be taken here as the
frequency in the expressions for λ j0 is nevertheless that of the
kth mode. Hence, using the expression for the kink frequency:

λin,ex
j0 = ρin,ex

(
ω2

k + v
2
A

( jπ
L

)2)
=

((
ρin,ex

2k2

ρi + ρe

)
− j2

) (Bπ
L

)2

=
(
(1 ± r) k2 − j2

) (Bπ
L

)2

=
(
k2 − j2 ± rk2

) (Bπ
L

)2

· (27)

Here r is a parameter related to the density contrast:

r =
ρi − ρe

ρi + ρe
· (28)

A fortiori we have:

λin,ex
k0 = ±rk2

(Bπ
L

)2

, (29)

and thus for the corrections to the eigenfunctions:

ψin,exk
j1

ψin,exk
k0

=

(
ρi,e

2k2

ρi+ρe

) (
Bπ
L

)2

λi,e
k0 − λi,e

j0

αS k j = (1 ± r)
k2

j2 − k2
αS k j. (30)

By use of the approximations for the impedances (25), the ra-
tios (23) and (24) therefore become:

(
(RP)ex j

k

)
1
=

{
(1 − r)

k2

j2 − k2
− −2rk2

j2 − k2

k2 − j2 − rk2

−rk2

1
2

}
αS k j

=
j2

j2 − k2
αS k j, (31)

(
(RX)ex j

k

)
1
=

{
(1 − r)

k2

j2 − k2
− −2rk2

j2 − k2

1
2

}
αS k j

=
k2

j2 − k2
αS k j. (32)

It is straightforward to check that Eq. (32) is equivalent to that
obtained by Safari et al. (2007).

3. Discussion of the analytical results

The expressions for the amplitude ratios (31–32) nicely sum-
marise the coupling of the different axial Fourier components in
the kink-eigenfunctions in (weakly) stratified loops. In general
αS k j is actually a shorthand notation for

∑
n αnS nk j. When a spe-

cific stratification is chosen which depends on a single stratifica-
tion parameter, then in a linear expansion the alphas are simply
proportional to the stratification parameter. If the stratification
is sufficiently smooth, αn quickly becomes smaller with n and
retaining only the n = 1 contribution is a fairly good approx-
imation for many profiles. In fact for the specific profile of an
exponential atmosphere with scale height H projected on a semi-
circular loop (as used by Andries et al. 2005a; Verth et al. 2007),
all alphas except α1 are second order and α1 = −L/πH.

The values of the first 6 coefficients of the sine expansions
(linear in α) of the first 5 modes are summarised in Table 1. The
diagonal entries are set to 1 and in absolute value at least a fac-
tor of 3 larger than the off-diagonal entries. Several interesting
conclusions may be drawn, both from the table and from the ex-
pressions. Firstly, the contributions of the off-diagonal terms be-
come stronger as k increases, both in displacement and compres-
sion. Hence, it seems that if higher order axial overtones could
be detected, their potential for spatial seismology will be higher.
Secondly, for the kth mode the largest coupling in the compres-
sion is always with the (k + 2)th sine, while the (k − 2)th contri-
bution also becomes significant for higher k (and eventually of
the same order). In the displacement it is the (k − 2)th term that
dominates with the (k + 2)th sine almost of the same order (and
dominating for k < 3 as the (k − 2)th term is absent there). Thus
for the two modes observed so far (k = 1, 2) the behaviour can al-
most completely be characterised by the coupling with the third
and fourth sine contribution respectively. Furthermore, the rela-
tive effect of longitudinal density stratification is always stronger
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Table 1. Sine expansions of the first 5 eigenmodes (k) when expanded linearly in the stratification parameter.

Displacement:
k j 1 2 3 4 5 6
1 1 0 –.021221 0 –.001011 0
2 0 1 0 –.064672 0 –.004042
3 0.190986 0 1 0 –.113682 0
4 0 0.258690 0 1 0 –.164621
5 0.025263 0 0.315784 0 1 0

Compression:
k j 1 2 3 4 5 6
1 1 0 –.190986 0 –.025263 0
2 0 1 0 –.258690 0 –.036378
3 0.021221 0 1 0 –.315784 0
4 0 0.064672 0 1 0 –.370397
5 0.001011 0 0.113682 0 1 0

The off-diagonal numbers (i.e.
(
(RX)ex j

k

)
1

and
(
(RP)ex j

k

)
1
) are the coefficients of α1 in the linear expansion.

Table 2. Shift of the antinodes (i) of the first 5 eigenmodes (k) when
expanded linearly in the stratification parameter.

Displacement:
ki 1 2 3 4 5
1 0
2 –.020154 0.020154
3 –.024759 0 0.024759
4 –.023445 –.019519 0.019519 0.023445
5 –.021226 –.028299 0 0.028299 0.021226

Compression:
ki 1 2 3 4 5
1 0
2 –.0764 0.0764
3 –.0554 0 0.0554
4 –.0418 –.0271 0.0271 0.0418
5 –.0334 –.0358 0 0.0358 0.0334

The numbers are the coefficients of α1 in the expansion. Note the num-
ber of digits in the table for the compression. The terms in summa-
tion (33) decay rather slowly with j and although 200 terms were used
to compute the above values, they are only valid up to the third signif-
icant digit. For the displacement the contributions decay much faster
with j and are almost entirely determined by the (k + 2)th contribution.

in the compression than in the lateral displacement by a factor
(k + 2)2/k2. Hence the presence of the j = 3 Fourier contribu-
tion in the fundamental oscillation is 9 times more pronounced
in the total pressure perturbation than in the displacement, and
the modifications to the first overtone are expected to be 4 times
larger in the compression than in the displacement.

These results in terms of additional sine contributions in the
eigenmodes can straightforwardly be related to the spatial shifts
of the antinodes as investigated by Verth et al. (2007). From a
linear expansion we find that the shift of the ith antinode can be
approximated as:

Δzi

L
= (−1)i

∑
j

(
(RX)ex j

k

)
1

j
k2π

cos

(
jπ
k

(
i − 1

2

))
· (33)

The results for all the antinodes of the first 5 modes are given in
Table 2. Although for higher harmonics the contributions of the
other Fourier modes increase, the shift of the antinodes remains
roughly at the same order independent of the harmonic. It thus

seems that the shifts of the antinodes are not the best signatures
of the eigenmode modifications. Note that this is not due to the
fact that the (k + 2)th sine and the (k − 2)th sine have opposite
sign, as this is corrected for by the cosine factor in the expres-
sion for the shift (33). It can be argued that the shift should be
normalised to the wavelength (varying as 1/k) and not to the
length of the loop, in which case the conclusion would be that
the shift increases linearly with k. From an observational point
however it would be appropriate to normalise with respect to the
resolution, which evidently does not depend on k. It can also be
seen that the shift of the antinodes for the first overtone is as ex-
pected roughly about 4 times stronger in the compression than in
the displacement. For higher harmonics the difference in the ef-
fect on displacement and compression also becomes smaller, as
expected. However this does not follow the simple dependence
(k + 2)2/k2 derived above as the contributions from j � k + 2 in
the sum (33) are not negligible compared to the contribution of
j = k + 2. This particularly affects the shift of the antinode in
the compression, where contributions are significant over a large
range of j.

The predicted shift in the antinode of the first overtone can
be compared with the results by Verth et al. (2007). They nor-
malise to half of the loop length and use L/H (thus actually
L/2H) rather than L/πH as a stratification parameter, hence for
comparison their proportionality constants should be multiplied
by π/4. Their estimation based on the analytical model, which
as in our treatment involves a linearisation in the stratification
parameter, matches exactly with our results, and their numerical
results deviated no more than 11% from that value.

4. Comparison with direct numerical computations

The correspondence with the results by Verth et al. (2007) is
reassuring, but to gain even more confidence in the acquired re-
sults we have compared them with direct numerical eigenmode
computations (i.e. non-linear in the stratification parameter) by
means of the PDE2D code (Sewell 2005), a general-purpose
partial differential equation solver. Figure 1 shows the shifts of
the antinodes as a function of the stratification parameter α in
a model with a single fundamental Fourier contribution to the
longitudinal density variation. The panels are for the first and
second overtone and for both displacement and compression.
It can be seen that the analytical prediction is indeed a valid
first order approximation of the obtained results. However, for
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Fig. 1. Shift of the antinodes as a
function of the stratification param-
eter α in a model using the den-
sity stratification function ρ(r, z) =
ρ0(r) [1 + α sin(πz/L)]. Dots are results
of direct numerical calculation while
full lines correspond to the analytical
approximations for small stratification.
Upper and lower panels are for the
first and second overtone respectively.
In the left panels the eigenfunction of
the displacement is considered while
the compression is considered in the
right panels.

Fig. 2. Shift of the antinodes as a
function of the stratification parame-
ter L/πH in a model using the den-
sity stratification function ρ(r, z) =
ρ0(r) exp [−L/πH sin(πz/L)]. Dots are
results of direct numerical calculation
while full lines correspond to the ana-
lytical approximations for small strat-
ification. Upper and lower panels are
for the first and second overtone respec-
tively. In the left panels the eigenfunc-
tion of the displacement is considered
while the compression is considered in
the right panels.

non-linear values of α, say above 0.4, the results already dif-
fer from the linear predictions by more than 20%. This is sur-
prising, as Verth et al. (2007) had obtained a fairly linear be-
haviour throughout. In Fig. 2, the model density variation was
taken as by Andries et al. (2005a); Verth et al. (2007). i.e. an ex-
ponential atmosphere with scale height H projected on a semi-
circular loop: ρ(r, z) = ρ0(r) exp [−L/πH sin(πz/L)]. In a linear
approximation both models are equivalent and α = −L/πH as

mentioned earlier. Indeed, also here the linear prediction can
be seen to be valid. However, for larger values the two models
do differ significantly. For the shift in the antinodes of the dis-
placement again a fairly linear behaviour is found throughout the
parameter domain although with a slightly increased slope (as
also obtained by Verth et al. 2007). This is less so for the antin-
odes in the compression. It is striking that the model with the
exponential profile behaves much more linearly than the model

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811481&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811481&pdf_id=2
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Fig. 3. Shift of the antinodes as
a function of the period ratio
P1/P2 and P1/P3 respectively.
Dots correspond to the model with
ρ(r, z) = ρ0(r) exp [−L/πH sin(πz/L)]
while crosses are for the model
ρ(r, z) = ρ0(r) [1 + α sin(πz/L)]. Upper
and lower panels are for the first and
second overtone respectively. In the
left panels the eigenfunction of the
displacement is considered while
the compression is considered in the
right panels.

with the sinusoidal stratification, on which the linear approxima-
tion is actually based.

Also note that the figures indicate that the difference be-
tween the results of the two models is not only due to the non-
linear relation between α1 and L/πH but also because of the non-
vanishing values of α3, α5,... This can be clearly seen by looking
up, for a certain value of α, the shifts for both displacement and
compression (in Fig. 1), and then finding the corresponding val-
ues of L/πH in the second model (through Fig. 2). In this way
the values for L/πH are found to be different when consider-
ing displacement or compression. Hence, the results in the two
models do not correspond through a simple mapping between
the parameters α and L/πH.

With regard to the potential of using the observed eigenfunc-
tions (or antinode shifts) the following question is pertinent. If
the period ratio P2/P1 (or P3/P1) is observed accurately, does
observation of the antinode shift allow us to discriminate be-
tween the two models? Hence Figs. 1 and 2 are repeated in Fig. 3
but as a function of the corresponding period ratio, which allows
us to make a clear comparison between the different models,
based on two observational parameters. As can be seen, a highly
deviating period ratio is required before the antinode shifts be-
tween the models differ substantially. This is to be expected for
the two models used here as they only differ in second order.
Similarly in Fig. 4 the eigenfunctions are plotted. One curve rep-
resents the solution in the unstratified case, while the other two
curves are the solutions in the two different models, where the
stratification parameters are such that the resulting period ratios
are equal in both models. Again it can be seen that the modi-
fications are not significantly different between the two models
considered. Much more significant differences between the mod-
els can only be expected if there is an important contribution of
higher order sines in the stratification profile, hence if there are

more sudden longitudinal changes in the density, rather than the
smooth profiles that are considered here.

5. Conclusions

This paper is aimed at assessing the possibility that higher over-
tones of coronal loop kink modes might be more usefull for spa-
tial seismology. By means of a linear expansion in the longitu-
dinal stratification along with the “thin tube” approximation, the
modifications to the eigenfunctions are calculated analytically.
Simple and concise formulae are obtained, representing the jth
Fourier contribution in the kth eigenmode. The results also pro-
vide a linear estimate of the shift of the antinodes. It is found
that the higher overtones are indeed influenced even more than
the first overtone, and that for the first overtones the influence
is much stronger in the compression than in the transverse dis-
placement. Also, the shift of the anti-nodes does not seem to be
the best signature of the eigenmode modifications.

The results are finally compared with direct numerical eigen-
mode computations. Although, the linear results give a good
indication of the order of magnitude of the modifications, the
deviations from the analytical predictions can certainly not be
neglected under the expected coronal conditions. Although the
results differ between models, it is clarified that if models are
considered with smooth density profiles which hence have a
dominant contribution from the fundamental sine in the strati-
fication function, it is unlikely that the differences can be probed
by the observational determination of the eigenfunctions. The
numerical results indicate that the use of the eigenmode mod-
ifications as a tool to discriminate between two different but
smooth density models requires both a very stratified equilib-
rium and a highly accurate determination of the anti-node shifts.
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Fig. 4. Eigenfunctions of the first
(upper panels) and second (lower
panels) overtones. Left is the dis-
placement, right is the compression.
Full lines correspond to the eigen-
functions obtained for the model
ρ(r, z) = ρ0(r) [1 + α sin(πz/L)].
The dotted curves are for the model
ρ(r, z) = ρ0(r) exp [−L/πH sin(πz/L)].
The parameters in both models are
chosen such that they lead both to a pe-
riod ratio of 1.71 and 2.59 respectively.
Dashed lines are the reference functions
in a model without longitudinal density
variation.
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