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ABSTRACT

Aims. We present a photometric study of the early-type dwarf galaxy population of the Centaurus cluster, aiming at investigating the
galaxy luminosity function (LF) and galaxy scaling relations down to the regime of galaxies with MV ∼ −10 mag.
Methods. On deep VLT/FORS1 V- and I-band images of the central part of the cluster, we identify cluster dwarf-galaxy candidates
using both morphological and surface brightness selection criteria. Photometric and structural parameters of the candidates are derived
from analysis of their surface brightness profiles. Fundamental scaling relations, such as the colour–magnitude and the magnitude-
surface brightness relation, are used to distinguish the cluster from the background.
Results. We find a flat LF with a slope of α = −1.14 ± 0.12 for MV > −14 mag, when fitting a power law to the completeness-
corrected galaxy number counts. Applying a Schechter function leads to a consistent result of α ∼ −1.1. When plotting the central
surface brightness of a Sérsic model vs. the galaxy magnitude, we find a continuous relation for magnitudes −20 < MV < −10 mag,
with only the brightest core galaxies deviating from this relation, in agreement with previous studies of other clusters. Within our
Centaurus dwarf galaxy sample we identify three very compact objects. We discuss whether they belong to the class of the so-called
compact elliptical galaxies (cEs). In a size-luminosity diagram (Reff vs. MV ) of early-type galaxies from a range of environments,
we observe that Reff slowly decreases with decreasing luminosity for −21 < MV < −13 mag and decreases more rapidly at fainter
magnitudes. This trend continues to the ultra-faint Local Group dwarf galaxies (MV ∼ −4 mag).
Conclusions. The continuous central surface brightness vs. absolute magnitude relation and the smooth relation in the size-luminosity
diagram over a wide range of magnitudes are consistent with the interpretation of dwarf galaxies and more massive elliptical galaxies
being one family of objects with gradually changing structural properties. The most massive core galaxies and the rare cE galaxies
are the only exceptions.

Key words. galaxies: clusters: individual: Centaurus – galaxies: dwarf – galaxies: fundamental parameters –
galaxies: luminosity function, mass function

1. Introduction

Probing the faint end of the luminosity function (LF) in galaxy
clusters and groups has in many cases exposed a discrepancy be-
tween the number of observed dwarf galaxies and the number of
dark matter (DM) sub-haloes predicted by current hierarchical
cold dark matter models – the so-called missing satellites prob-
lem (Klypin et al. 1999). Its origin is still a matter of debate.
Either there are many faint satellites not yet discovered, the pre-
dictions of the hierarchical models are not reliable, or the large
majority of low-mass DM haloes have not formed any stars. To
quantify this discrepancy, the LF can be parametrised by the
Schechter function, whose logarithmic faint-end slope α can be
contrasted with the predicted slope of about −2 for the mass
spectrum of cosmological DM haloes (e.g. Moore et al. 1999;
Jenkins et al. 2001). The observed value of α is generally much
lower than expected. This has been shown in many studies, for
both low density environments like the Local Group (LG) and

� Based on observations obtained at the European Southern
Observatory, Chile (Observing Programme 67.A-0358).
�� Appendix A is only available in electronic form at
http://www.aanda.org

galaxy clusters (e.g. Pritchet & van den Bergh 1999; Trentham
& Tully 2002; Trentham et al. 2005).

For the LG and the galaxy clusters Fornax, Perseus and
Virgo, the faint-end slope of the LF can be determined by direct
cluster membership assignment via spectroscopic redshift mea-
surements (e.g. Hilker et al. 1999; Drinkwater et al. 2001; Penny
& Conselice 2008; Rines & Geller 2008). For other galaxy clus-
ters, however, only photometric data are available at magnitudes
where α dominates the shape of the LF (MV � −14 mag). In
this case, cluster galaxies have to be separated from background
galaxies either by means of statistical background subtraction
or by their morphology and correlations between global photo-
metric and structural parameters. For the latter case, the colour–
magnitude relation (CMR) can be used, which is observed not
only for giant elliptical galaxies (e.g. Visvanathan & Sandage
1977; Kodama & Arimoto 1997; Gallazzi et al. 2006), but also
for early-type dwarf galaxies (e.g. Secker et al. 1997; Hilker
et al. 2003; Adami et al. 2006; Mieske et al. 2007a; Lisker et al.
2008; Misgeld et al. 2008).

Although they form a common relation in a
colour–magnitude diagram, the question of whether giant ellip-
tical galaxies, on the one hand, and early-type dwarf galaxies
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(dwarf ellipticals (dEs) and dwarf spheroidals (dSphs)), on the
other, have the same origin, has been a controversial issue over
the past decades. Two major perceptions exist. First, dwarf
elliptical galaxies are not the low luminosity counterparts of
giant elliptical galaxies, but rather an independent class of ob-
jects. This point of view is mainly based on studies of relations
between galaxy surface brightness and magnitude, or surface
brightness and size – the Kormendy relation (e.g. Kormendy
1977, 1985; Binggeli & Cameron 1991; Bender et al. 1992,
1993). These studies showed an apparent dichotomy of dwarf
and giant elliptical galaxies, in the sense that for dwarfs the sur-
face brightness increases with luminosity, whereas the opposite
trend is seen for giants. Moreover, a weaker dependence of size
on luminosity was observed for dwarfs than for giants. Recently,
Kormendy et al. (2008) reaffirmed those results in their study
of a large sample of Virgo cluster early-type galaxies. They
concluded that dwarf galaxies are structurally distinct from
giant early-type galaxies and that different mechanisms are
responsible for their formation (see also Boselli et al. 2008; and
Janz & Lisker 2008).

The alternative point of view is that the apparent dichotomy
is the result of a gradual variation of the galaxy light profile
shape with luminosity. If the light profile is described by the
Sérsic (1968) law, the different behaviour of dwarf and giant el-
liptical galaxies in the surface brightness vs. magnitude relation
compared to the Kormendy relation is a natural consequence of
the linear relation between Sérsic index n and galaxy magnitude
(e.g. Jerjen & Binggeli 1997; Graham & Guzmán 2003; Gavazzi
et al. 2005; Ferrarese et al. 2006; Côté et al. 2007, 2008). This
implies that dwarf ellipticals represent the low luminosity exten-
sion of massive elliptical galaxies.

Continuing a series of similar investigations in Fornax and
Hydra I (Hilker et al. 2003; Mieske et al. 2007a; Misgeld et al.
2008), we study in this paper the early-type dwarf galaxy pop-
ulation of the Centaurus cluster, aiming at the investigation of
the galaxy LF and photometric scaling relations. It is based on
deep VLT/FORS1 imaging data of the central part of the clus-
ter. In Sect. 2 we describe the observations, the sample selection
and the photometric analysis of the dwarf galaxy candidates. We
present our results in Sect. 3. The findings are summarised and
discussed in Sect. 4.

1.1. The Centaurus cluster (Abell 3526)

The Centaurus cluster, which is categorised as a cluster of rich-
ness class zero and Bautz-Morgan type I/II (Abell 1958; Bautz
& Morgan 1970), is the dominant part of the Centaurus-Hydra
supercluster (da Costa et al. 1986, 1987). It is characterised by
an ongoing merger with an in-falling sub-group and irregular
X-ray isophotes (Churazov et al. 1999; Furusho et al. 2001).
The main cluster component is Cen30 with NGC 4696 at its dy-
namical centre, whereas Cen45 is the in-falling sub-group with
NGC 4709 at its centre (Lucey et al. 1986; Stein et al. 1997).

Mieske et al. (2005a) derived the distance to Centaurus by
means of surface brightness fluctuation (SBF) measurements.
They found the SBF-distance to be 45.3 ± 2.0 Mpc ((m − M) =
33.28 ± 0.09 mag). Tonry et al. (2001), however, measured
a significantly shorter distance of 33.8 Mpc, which may par-
tially be attributed to selection effects (see discussion in Mieske
& Hilker 2003). For 78 cluster galaxies, a mean redshift of
vrad = 3656 km s−1 is determined in Chiboucas & Mateo (2006).
This corresponds to a distance of 50.8 ± 5.6 Mpc, assuming
H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001), and agrees
with the SBF-distance within the errors. Throughout this paper,

Fig. 1. Map of the seven VLT/FORS1 cluster fields (large open squares)
with the selected dwarf galaxy candidates, the spectroscopically con-
firmed cluster members and background galaxies. The major cluster
galaxies NGC 4696, NGC 4709 and NGC 4706 are marked by open
triangles. Green open hexagons are compact elliptical galaxy (cE) can-
didates (see Sect. 3.3.2).

we adopt a distance modulus of (m − M) = 33.28 mag (Mieske
et al. 2005a), which corresponds to a scale of 220 pc/arcsec.

2. Observations and sample selection

The observations were executed in a service mode run at
the Very Large Telescope (VLT) of the European Southern
Observatory (ESO, programme 67.A-0358). Seven fields in the
central part of the Centaurus cluster of size 7′ × 7′ were ob-
served in Johnson V and I filters, using the instrument FORS1 in
imaging mode. The fields cover the central part of the Centaurus
cluster with its sub-components Cen30 and Cen45, which are
centred on NGC 4696 and NGC 4709, respectively (see Fig. 1).
The exposure time was 4 × 373 s in V and 9 × 325 s in I. The
seeing was excellent, ranging between 0.4′′ and 0.6′′. Additional
short images (30 s in both filters) were taken to be able to anal-
yse the brightest cluster galaxies, which are saturated on the
long exposures. Furthermore, an eighth (background) field lo-
cated about 2.5◦ west of NGC 4696 was observed.

In this study, we are interested in early-type galaxies. They
were selected based on morphology and spectroscopic redshifts.
Our images contain 21 spectroscopically confirmed early-type
cluster galaxies and one late-type (Sc) cluster galaxy (Jerjen
& Dressler 1997; Stein et al. 1997; Chiboucas & Mateo 2007;
Mieske et al. 2007b). The cluster membership criterion was
adopted to be 1700 < vrad < 5500 km s−1.

In order to identify new early-type dwarf galaxy candidates
on the images, we followed the same strategy as in our investi-
gations of the dwarf galaxy populations in Fornax and Hydra I
(Hilker et al. 2003; Mieske et al. 2007a; Misgeld et al. 2008). It
is a combination of visual inspection and the use of SExtractor
(Bertin & Arnouts 1996) detection routines. We first added sev-
eral simulated Local Group (LG) dEs and dSphs (projected to
the Centaurus cluster distance) to the images. Their magnitudes
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Fig. 2. Thumbnail images of four cluster dwarf galaxy candidates that fulfil our selection criteria (two dEs, one dE, N and one dSph). The objects’
absolute magnitudes from the left to the right are: MV = −14.4,−13.3,−13.2,−12.0 mag, assuming a distance modulus of (m − M) = 33.28 mag
(Mieske et al. 2005a). The thumbnail sizes are 40′′ × 40′′ (8.8 × 8.8 kpc at the cluster distance).

and central surface brightnesses were adopted according to the
relations found by Grebel et al. (2003) and McConnachie &
Irwin (2006). Afterwards, the images were inspected by eye,
and candidate cluster dwarf galaxies were selected by means
of their morphological resemblance to the simulated galaxies.
The main selection criterion was a smooth surface brightness
distribution and the lack of substructure or spiral arms. This
first search resulted in the identification of 89 previously un-
catalogued dE/dSph candidates, from which four are shown in
Fig. 2.

In a second step, we used the SExtractor detection routines
to quantify the detection completeness in our data (see also
Sect. 3.2) and to find more dwarf galaxy candidates, in particular
at the faint magnitude and surface brightness limits. The detec-
tion sensitive SExtractor parameters were optimised such that a
maximum number of objects from the by-eye catalogue was re-
covered by the programme. Only 12 of the 89 obvious by-eye de-
tections were not recovered, mostly due to their position close to
another bright object or close to the image border. In our search
for new dwarf galaxy candidates we focused on those sources
in the SExtractor output catalogue whose photometric parame-
ters matched the parameter range of the simulated dwarf galax-
ies. For this, we applied cuts in the SExtractor output-parameters
mupeak, area and fwhm to constrain the output parameter space
to the one found for the simulated LG dwarf galaxies (see also
Misgeld et al. 2008). We thus rejected barely resolved and appar-
ently small objects with high central surface brightnesses, both
being likely background galaxies. The applied cuts are described
in detail in Sect. 3.2. In this way, 8 additional objects in the mag-
nitude range −11.0 < MV < −9.4 mag were found and added to
the by-eye catalogue. On the background field, neither the visual
inspection nor the SExtractor analysis resulted in the selection
of an object.

To our photometric sample we also added five spectroscopi-
cally confirmed background early-type galaxies that are located
in the observed fields, in order to be able to compare their pho-
tometric properties with the ones of the objects in the by-eye
catalogue. In total, our sample contains 123 objects, for which
Fig. 1 shows a coordinate map.

2.1. Photometric analysis

For each selected object we created thumbnail images with
sizes extending well into the sky region (see Fig. 2). On these
thumbnails we performed the sky subtraction and fitted elliptical
isophotes to the galaxy images, using the IRAF-task ellipse

in the stsdas1 package. During the fitting procedure the centre
coordinates, the position angle and the ellipticity were fixed, ex-
cept for some of the brightest cluster galaxies (V0 <∼ 15.5 mag)
where the ellipticity or both the ellipticity and the position angle
considerably changed from the inner to the outer isophotes. In
those cases one or both parameters were allowed to vary.

The total apparent magnitude of each object was derived
from a curve of growth analysis. The central surface brightness
was determined by fitting an exponential as well as a Sérsic
(1968) law to the surface brightness profile. From the fit we
excluded the inner 1′′ (about 1.5 seeing disks) and the outer-
most part of the profile, where the measured surface bright-
ness was below the estimated error of the sky background.
Corrections for interstellar absorption and reddening were taken
from Schlegel et al. (1998), who give AV = 0.378 mag and
E(V − I) = 0.157 mag for the coordinates of NGC 4696. We
adopt these values for all of our observed fields. Zero points,
extinction coefficients and colour terms for the individual fields
and filters are listed in Table A.1 in the appendix (only available
on-line).

3. Global photometric and structural parameters

In this section the results of the photometric analysis are pre-
sented. In Sect. 3.1 we address the colour-magnitude and the
magnitude-surface brightness relation of the Centaurus early-
type dwarf galaxies and use these relations to facilitate the dis-
tinction of cluster and background galaxies. The galaxy luminos-
ity function of probable cluster members is studied in Sect. 3.2.
The structural parameters of the cluster galaxies, as obtained
from Sérsic fits to the surface brightness profiles, are presented
in Sect. 3.3. Table A.2 in the appendix summarises the obtained
photometric parameters of the 92 probable Centaurus cluster
early-type galaxies in our sample (only available on-line).

3.1. Fundamental scaling relations

Figure 3 shows a colour–magnitude diagram of our sample
of early-type galaxies, as defined in Sect. 2. Spectroscopically
confirmed cluster galaxies (V0 <∼ 18 mag) form a colour–
magnitude relation (CMR) in the sense that brighter galaxies are
on average redder. This sequence continues down to the faint

1 Space Telescope Science Data Analysis System, STSDAS is a prod-
uct of the Space Telescope Science Institute, which is operated by
AURA for NASA.
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Fig. 3. Colour–magnitude diagram of early-type galaxies in the
Centaurus cluster. Black dots are probable cluster galaxies, selected
by their morphology. Red open circles (blue open squares) mark spec-
troscopically confirmed cluster members (background galaxies). Blue
filled squares and grey filled triangles are probable background ob-
jects (see text for details). Grey open triangles are objects which do
not follow the magnitude-surface brightness relation (cf. Fig. 4). Green
open hexagons mark the candidates for compact elliptical galaxies (see
Sect. 3.3.2). Typical errorbars are indicated on the left. The solid line
is a linear fit to the cluster member candidates (Eq. (1)) with its 2σ
deviations (dotted lines).

magnitude limit of our survey (MV ∼ −10 mag), which is com-
parable to the absolute magnitudes of the LG dwarf galaxies
Sculptor and Andromeda III (Grebel et al. 2003; McConnachie
& Irwin 2006). The larger scatter at faint magnitudes is con-
sistent with the larger errors in (V − I)0. The mean measured
error in (V − I)0 is 0.03, 0.08 and 0.13 mag for the three mag-
nitude intervals indicated in Fig. 3. The intrinsic scatter of the
datapoints in the same intervals is 0.06, 0.09 and 0.14 mag, re-
spectively, only marginally larger than the measurement errors.
Our data do therefore not require an increase of metallicity or
age spread among individual galaxies at faint luminosities, com-
pared to brighter luminosities. For the linear fit, we weighted
each data point by its colour error, resulting in:

(V − I)0 = −0.042(±0.001) · MV + 0.33(±0.02) (1)

with a rms of 0.10. This is in good agreement with the CMRs
observed in Fornax and Hydra I (Mieske et al. 2007a; Misgeld
et al. 2008). Table 1 lists the CMR coefficients for each of those
clusters. For consistency, we re-fitted the Hydra I data using the
error weighted values, which slightly changes the coefficients
given in Misgeld et al. (2008).

The CMR can be used as a tool to distinguish cluster from
background galaxies. This is important, since the selection of
cluster galaxy candidates solely based on morphological cri-
teria can lead to the contamination of the sample with back-
ground objects that only resemble cluster dwarf ellipticals. In
the bright magnitude range the cluster galaxies are identified
by their redshift. In the intermediate magnitude range (17.8 <
V0 < 21.0 mag), however, seven objects turn out to be likely

Table 1. Fitting coefficients of the CMR, the magnitude-surface bright-
ness relation, and the power-law slope α of the LF, with errors given in
parentheses.

(V − I)0 = A · MV + B μV,0 = C · MV + D
A B C D α

Centaurus −0.042 0.36 0.57 30.85 −1.14
(0.001) (0.02) (0.07) (0.87) (0.12)

Hydra I −0.044 0.36 0.67 31.57 −1.40
(0.001) (0.01) (0.07) (0.99) (0.18)

Fornax −0.033 0.52 0.68 32.32 −1.33
(0.004) (0.07) (0.04) (1.12) (0.08)

background galaxies, although they passed our morphological
selection criteria (filled squares in Fig. 3). All seven arguable
objects have de Vaucouleurs (1948) surface brightness profiles
(also known as R1/4 profiles), typical of giant elliptical galaxies.
Five of those objects are too red to be a galaxy at z ∼ 0, the other
two share their position in the CMD with spectroscopically con-
firmed background galaxies (open squares in Fig. 3). Moreover,
Fig. 8 shows that the confirmed background galaxies as well as
the seven likely background objects clearly differ from the clus-
ter galaxies, because of their high central surface brightness and
their large Sérsic index. We consider 10 more morphologically
selected objects with V0 > 21 mag likely background objects, as
their colours are significantly redder than those of other objects
in the same magnitude range (see the filled triangles in Fig. 3).

We were not able to measure a colour for two objects in our
sample (C-3-30 and C-1-47, see Table A.2), since they were lo-
cated close to the image borders, only fully visible on the V-
band images. However, they have a typical dE morphology and
they fall onto the magnitude-surface brightness relation (Fig. 4).
We thus treat them as probable cluster dwarf galaxies in the
following analyses.

In Fig. 4, the central surface brightness μV,0 is plotted against
the apparent magnitude V0 for all objects in our sample, whose
surface brightness profiles are well represented by an expo-
nential law. These are all objects with V0 > 16.1 mag (see
Table A.2), except for two compact elliptical galaxy candidates,
whose properties we will discuss in Sect. 3.3.2. A linear fit to the
probable cluster galaxies (black dots) leads to:

μV,0 = 0.57(±0.07) · MV + 30.90(±0.87) (2)

with a rms of 0.48. Given that the scatter in the data is much
larger than the measured errors in both MV and μV,0, we do not
error weight the data points. The fit errors were derived from
random re-sampling of the data points within their measured
scatter. The same method was used in Mieske et al. (2007a) for
the Fornax dwarfs, and we re-analyse the Hydra I data (Misgeld
et al. 2008) in the same way. The magnitude-surface bright-
ness relations of the three clusters agree within the errors (see
Table 1).

When projected to the Centaurus distance, LG dwarf galax-
ies are mostly consistent with the same relation, with a few
slightly more compact objects (Grebel et al. 2003; McConnachie
& Irwin 2006). The likely background objects from Fig. 3 (grey
filled triangles) do not follow the relation, but they have central
surface brightnesses about 1 mag/arcsec2 higher than other ob-
jects of the same magnitude.

An interesting sub-group of morphologically selected ob-
jects is marked by the open triangles. These nine objects are
rather compact, having exponential scale lengths of <∼1′′, close
to the resolution limit of our images. Although they lie on the
cluster CMR (see Fig. 3), they are located more than 2σ away
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Fig. 4. Plot of the central surface brightness μV,0, as derived from fitting
an exponential law to the surface brightness profile, vs. the apparent
magnitude V0 for identified cluster dwarf galaxy candidates. Symbols
are as in Fig. 3. Errors are comparable to the symbol sizes. The solid
line is a linear fit to the black dots (Eq. (2)). Dotted lines are the 2σ
deviations from the fit. Local Group dEs and dSphs, projected to the
Centaurus distance, are given by the blue crosses (data from Grebel
et al. 2003; and McConnachie & Irwin 2006). A scale length of 0.6′′ for
an exponential profile, representing the resolution limit of our images,
is indicated by the dash-dotted line.

from the magnitude-surface brightness relation – just as the
likely background galaxies that were identified by their position
aside the CMR. This suggests that these nine questionable ob-
jects are in fact background galaxies with colours similar to the
cluster galaxies. However, the LG dwarf galaxy Leo I (Grebel
et al. 2003) falls into the same parameter range (Fig. 4). If
these objects were actual cluster galaxies, they would account
for about 10% of the whole dwarf galaxies population in our
sample. Given their uncertain nature, we will analyse in Sect. 3.2
how they affect the shape of the galaxy luminosity function.
Ultimately, it remains to be clarified by spectroscopic measure-
ments, whether they represent a family of rather compact early-
type cluster members or background galaxies.

3.2. The dwarf galaxy luminosity function

In order to study the faint-end of the galaxy luminosity function,
the detection completeness in our data has to be quantified and
the galaxy number counts have to be corrected to that effect. For
this, 10 000 simulated dwarf galaxies were randomly distributed
in 500 runs in each of the seven cluster fields, using a C++ code.
The background field was left out from this analysis, since we
did not identify any potential dwarf galaxy. The upper left panel
of Fig. 5 illustrates the input-parameter range of the simulated
galaxies, which extends well beyond the observed parameter
space. The artificial galaxies were then recovered by SExtractor,
and the SExtractor output-parameters magbest, mupeak, area
and fwhm were compared with the parameters of the sample of
probable cluster dwarf galaxies, as defined in Sect. 3.1.

Fig. 5. SExtractor output-parameters of recovered simulated galaxies
with an exponential scale length <1′′ (red dots). The upper left panel
shows the input parameters absolute magnitude MV and central sur-
face brightness μV of the artificial galaxies (grey dots), together with
the probable cluster dwarf galaxies (green solid squares) that were re-
covered by SExtractor. Equation (2) with its 2σ deviations is plotted
as in Fig. 4. The blue dashed line indicates a scale length of 1′′ for an
exponential profile. Blue open triangles are the questionable objects dis-
cussed in Sect. 3.1. The SExtractor output-parameter magbest is plot-
ted against mupeak (upper right), area (lower left) and fwhm (lower
right). Dash-dotted lines indicate the global cuts on mupeak and fwhm
(see text for details).

In a first step, we made use of the SExtractor star/galaxy sep-
arator (Bertin & Arnouts 1996) to sort out wrongly recovered
foreground stars, requiring class_star <0.05. Aiming at the
rejection of high surface brightness and barely resolved back-
ground objects, we then applied several cuts to other SExtractor
output-parameters. The objects to be rejected were required to
have an exponential scale length shorter than 1′′. This is close to
the seeing limit of our images and it is the maximum scale length
of the questionable objects from Sect. 3.1. The artificial galax-
ies with scale lengths <1′′ define well localised areas in plots of
magbest versus mupeak, area and fwhm (see Fig. 5). Since also
some of the previously selected dwarf galaxy candidates scatter
into the same areas, we finally rejected only those objects that
simultaneously occupied the locus of barely resolved galaxies in
all three parameters mupeak, area and fwhm. In this way, we
miss only one of the previously selected probable cluster dwarf
galaxies but reject more than 50% of objects with a scale length
shorter than 1′′. In order to further optimise the rejection of ob-
vious background objects we additionally applied global cuts at
the upper limit of mupeak and the lower limit of fwhm (Fig. 5).

Without the application of the cuts, SExtractor recovers
75–85% of the simulated galaxies at MV ≤ −12 mag, which
reflects the geometrical incompleteness caused by blending.
Applying the cuts in mupeak, area and fwhm rejects ∼25% more
artificial galaxies at MV ≤ −12 mag. This fraction is consis-
tent with the fraction of visually classified actual galaxies with
MV > −12 mag that are excluded by applying the same cuts (9
out of 36). Given that we include all visually classified galaxies
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Fig. 6. Completeness as a function of magnitude (in 0.5 mag bins) for
each of the seven cluster fields (cf. Fig. 1).

into the LF, we scale the completeness values for MV > −12 mag
up by 25%, so that they are consistent with the geometrical com-
pleteness at MV = −12 mag (see Fig. 6).

The completeness corrected galaxy luminosity function for
−17.5 < MV < −9.0 mag is shown in Fig. 7. Due to the relatively
low galaxy number counts (81 in this magnitude range), the LF
is only moderately well represented by a Schechter (1976) func-
tion. From the best fitting Schechter function we derive a faint-
end slope of α = −1.08 ± 0.03 (excluding galaxies fainter than
MV = −10 mag). As the slope α dominates the shape of the LF
for magnitudes MV > −14 mag, we alternatively fit a power-
law to this interval, resulting in α = −1.14 ± 0.12. This charac-
terises best the faint-end slope of the LF. Our result is consis-
tent with the results of Chiboucas & Mateo (2006), who found
α ∼ −1.4 ± 0.2 for the Centaurus cluster. They used statisti-
cal corrections as well as spectroscopic redshifts and surface
brightness–magnitude criteria for the construction of the LF.

The nine questionable objects discussed in Sect. 3.1 have ab-
solute magnitudes of −12.4 < MV < −11.2 mag. Including them
into the LF does not significantly change the slope α in the inter-
val −14 < MV < −10 mag (see bottom panel of Fig. 7). Fitting a
power-law leads to α = −1.17 ± 0.12.

In Table 1 the slope α is compared to the ones derived for the
Fornax and Hydra I clusters (Mieske et al. 2007a; Misgeld et al.
2008). Also for those clusters α is obtained by fitting a power-
law to the faint end of the galaxy LF (MV > −14 mag). With
−1.1 � α � −1.4 all slopes are significantly shallower than the
predicted slope of ∼−2 for the mass spectrum of cosmological
dark-matter haloes (e.g. Press & Schechter 1974; Moore et al.
1999; Jenkins et al. 2001).

3.3. Structural parameters from Sérsic fits

In addition to the exponential we also fitted Sérsic models to
the galaxy surface brightness profiles. The fit parameters cen-
tral surface brightness μ0 and profile shape index n are plot-
ted versus the galaxy magnitude in Fig. 8. μ0 is given by

Fig. 7. Luminosity function of the Centaurus dwarf galaxies. The
shaded histogram in the upper panel shows the uncorrected galaxy
number counts. The open histogram gives the completeness corrected
number counts. The thin grey and thick black curves are binning in-
dependent representations of the counts (Epanechnikov kernel with
0.5 mag width). Dashed curves are the 1σ uncertainties. The lower
panel shows the completeness corrected galaxy number counts in log-
arithmic representation (filled circles). The best fitting Schechter func-
tion (red solid line) is overlaid. Open circles give the galaxy number
counts including the questionable objects discussed in Sect. 3.1. Three
different slopes α are indicated. The 50% completeness limit (averaged
over all fields) is given by the vertical line.

μ0 = μeff − 2.5bn/ln(10), where μeff is the effective surface
brightness and bn is approximated by bn = 1.9992n− 0.3271 for
0.5 < n < 10 (Graham & Driver 2005, and references therein).
Three bright cluster galaxies (C-4-03/NGC 4706, C-3-04 and
C-7-07, see Table A.2), morphologically classified as SAB(s)0,
SB(s)0 and S0, showed two component surface brightness pro-
files (bulge+ disk), which could not be fitted by a single Sérsic
profile. They were excluded from the analysis.

The vast majority of cluster galaxies defines a continuous
relation in the μ0 vs. MV diagram (top panel of Fig. 8). This rela-
tion runs from the faintest dwarf galaxies in our sample to bright
cluster elliptical galaxies (MV ∼ −20 mag). Our results are con-
sistent with other studies that report on a continuous relation for
both dwarf galaxies and massive E/S0 galaxies (e.g. Graham &
Guzmán 2003; Gavazzi et al. 2005; Ferrarese et al. 2006; Côté
et al. 2008; Misgeld et al. 2008). Only the two brightest galax-
ies in our sample (NGC 4696 and NGC 4709) deviate from this
relation.

The bottom panel of Fig. 8 shows that also the profile shape
index n continuously rises with the galaxy magnitude for MV <∼
−14 mag. Only the brightest cluster galaxy, NGC 4696, has an
exceptionally low Sérsic index (n = 2.5). For MV � −14 mag, n
basically stays constant with a mean value of 0.85. The spectro-
scopically confirmed background galaxies as well as the likely
background objects in our sample can clearly be identified by
their large Sérsic index and their high central surface brightness
in comparison to the cluster galaxies. This motivates again the
rejection of those object from the cluster galaxy sample. Our re-
sults agree with former observations of a correlation of the Sérsic
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Fig. 8. Parameters of the Sérsic fits to the galaxy surface brightness pro-
files. The top (bottom) panel shows the central surface brightness μ0

(profile shape index n) plotted vs. the galaxy magnitude. Black dots are
all galaxies that were considered cluster members. Spectroscopically
confirmed cluster galaxies are marked by red open circles. Blue open
(filled) squares are confirmed (likely) background galaxies (cf. Fig. 3).
The green open hexagons mark the three compact elliptical galaxy can-
didates (see Sect. 3.3.2).

index with the galaxy luminosity (e.g. Young & Currie 1994;
Infante et al. 2003; Ferrarese et al. 2006; Misgeld et al. 2008).

3.3.1. Galaxy sizes

In Fig. 9 we show the effective radii and absolute magnitudes
of the Centaurus early-type galaxies together with the Hydra I
early-type galaxies from Misgeld et al. (2008), galaxies from
the ACS Virgo Cluster Survey (Ferrarese et al. 2006), Local
Group dwarf galaxies and known compact elliptical galaxies.
References for the LG dwarfs and the cEs are given in the cap-
tion. The sizes of the Centaurus galaxies agree very well with
the sizes of the Hydra I galaxies and the sizes of bright galax-
ies (−20 < MV < −16 mag) in both samples are fully con-
sistent with the ones obtained in Ferrarese et al. (2006) for
the ACS Virgo Cluster Survey galaxies. The apparent g-band
magnitudes of the ACS Virgo Cluster Survey galaxies were
transformed into absolute V-band magnitudes, using the trans-
formation V = g + 0.026 − 0.307(g − z) mag given in Peng
et al. (2006). The transformation is derived from a study of
diffuse star clusters around the ACS Virgo galaxies. Since the
cluster colours are very similar to those of the host galaxies
(1.1 < (g − z) < 1.6 mag), we consider the transformation a
good approximation for the purposes of our study. We adopt a
Virgo distance modulus of (m−M) = 31.09 mag, corresponding
to a scale of 80.1 pc/arcsec (Mei et al. 2007). For the calcula-
tion of the V-band magnitude of the cE galaxy NGC 5846A we
applied V − R = 0.61 mag (Fukugita et al. 1995) and the dis-
tance modulus (m − M) = 32.08 mag, corresponding to scale of
126 pc/arcsec (Smith Castelli et al. 2008, and references therein).

The most striking feature in Fig. 9 is the continuous size-
luminosity relation over a wide magnitude range. The effective
radius slowly increases as a function of galaxy magnitude for
−21 < MV < −10 mag. The relation between log(Reff) and MV

is indicated by the solid line in Fig. 9 and can be quantified as

log(Reff) = −0.041(±0.004) · MV + 2.29(±0.06) (3)

with an rms of 0.17. At magnitudes fainter than MV � −13 mag,
the slope of the relation becomes slightly steeper. A fit to the
data yields

log(Reff) = −0.107(±0.007) · MV + 1.51(±0.07) (4)

with an rms of 0.17 (dashed line in Fig. 9). In their study of
photometric scaling relations of early-type galaxies in Fornax,
Coma, Antlia, Perseus and the LG, De Rijcke et al. (2008) re-
ported on a very similar behaviour. However, comparatively few
data points are available for MV > −10 mag, i.e. the regime of
faint LG dwarf spheroidals, and there might be a bias towards
the selection of more compact objects at fainter magnitudes, in
the sense that at a given magnitude very extended low surface
brightness galaxies are more likely to be missed than more com-
pact ones. Moreover, the two smallest LG dwarf galaxies Segue I
and Willman I (Martin et al. 2008) are suspected to be globu-
lar star clusters or dSphs out of dynamical equilibrium, close to
disruption, rather than ordinary dwarf galaxies (Gilmore et al.
2007).

Two groups of objects clearly deviate from the size-
luminosity relations defined by the other objects. These are the
brightest core galaxies (MV <∼ −21 mag) which show a very
strong dependence of effective radius on absolute magnitude,
and a few rather compact galaxies which fall below the main
body of normal elliptical galaxies. The latter are discussed in
more detail in the following subsection.

3.3.2. Compact elliptical galaxy candidates

Three unusual objects, having rather small effective radii com-
pared to other cluster galaxies with similar magnitudes, stand
out in Fig. 9. Do they belong to the class of the so-called com-
pact elliptical galaxies (cEs)? For the three candidates, Table 2
lists the coordinates, the absolute magnitude MV , the extinction
corrected colour (V−I)0, the central surface brightness μ0, the ef-
fective radius Reff , the Sérsic index n, the available radial veloc-
ity vrad and the projected distance DNGC 4696 to the central cluster
galaxy NGC 4696. Also given are the position angle (PA) and the
ellipticity ε used for the fit of elliptical isophotes to the galaxy
image. In Fig. 10 we show for each of the cE galaxy candidates
the Sérsic fits and the according residuals to their surface bright-
ness profiles. In the following three paragraphs we describe in
detail how the photometric parameters were obtained and try to
judge whether the objects belong to the class of cE galaxies.

C-1-10 is a spectroscopically confirmed member of the
Centaurus cluster. It is listed as CCC 70 in the Centaurus Cluster
Catalogue and it is morphologically classified as an E0(M32)
galaxy (Jerjen & Dressler 1997). The isophote fitting was per-
formed on the 30s exposure, since the long-exposure image was
saturated at the object centre. Due to the projected proximity of
C-1-10 to the giant galaxy NGC 4696, we created and subtracted
a model of the latter before modelling the dwarf galaxy.

With an effective radius of 1.90′′ (418 pc) C-1-10 is the most
compact object among the galaxies with similar magnitude in
our sample. However, it is larger than most of the cE galaxies
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Fig. 9. Plot of the effective radius Reff against the absolute magnitude MV of the Centaurus early-type galaxies in comparison to Hydra I early-type
galaxies from Misgeld et al. (2008), galaxies from the ACS Virgo Cluster Survey (Ferrarese et al. 2006), Local Group dwarf galaxies and compact
elliptical galaxies. The established cEs are M32 (Bender et al. 1992, 1993; Grebel et al. 2003), A496cE (Chilingarian et al. 2007), NGC 4486B
(Kormendy et al. 2008), NGC 5846A (Mahdavi et al. 2005; Smith Castelli et al. 2008) and the two cEs from Mieske et al. (2005b). The two Antlia
cE candidates are taken from Smith Castelli et al. (2008). Sources for the LG dwarf galaxies are: Grebel et al. (2003) and Gilmore et al. (2007, and
references therein) for Fornax, Leo I/II, Sculptor, Sextans, Carina and Ursa Minor; Martin et al. (2008) for Draco, Canes Venatici I/II, Hercules,
Leo IV, Coma Berenices, Segue I, Bootes I/II, Ursa Major I/II and Willman I; McConnachie & Irwin (2006) for And I/II/III/V/VI/VII and Cetus;
Zucker et al. (2007) for And IX/X; Martin et al. (2006) for And XI/XII/XIII and McConnachie et al. (2008) for And XVIII/XIX/XX. The solid
line indicates the size-luminosity relation given by Eq. (3), the dashed line traces Eq. (4).

Table 2. Photometric and structural parameters of the cE galaxy candidates.

ID RA Dec PA ε MV (V − I)0 μ0 Reff n vrad DNGC 4696

(J2000.0) (J2000.0) [deg] [mag] [mag] [mag/arcsec2] [pc] [km s−1] [kpc]
C-1-10 12:48:53.9 –41:19:05.3 69 0.1 –17.76 1.18 17.42 418 1.23 2317a 13
C-1-21 12:48:48.6 –41:20:52.8 39 0.0 . . . 0.2 –15.57 1.18 18.56 279 1.27 3053b 30
C-2-20 12:49:33.0 –41:19:24.0 –68 0.1 –15.69 1.15 18.51 363 1.55 – 109

a Stein et al. (1997); b Chiboucas & Mateo (2007).

mentioned in the literature (see Fig. 9). Only for NGC 5846A an
even larger effective radius of∼500 pc is reported (Mahdavi et al.
2005). Moreover, C-1-10 does not have a particular high central
surface brightness, but it falls exactly on the sequence of regular
cluster dwarf galaxies (see upper panel of Fig. 8). Also its colour
is consistent with the cluster CMR (Fig. 3). Given these proper-
ties, C-1-10 is rather a small elliptical galaxy than an exemplar
of a cE galaxy.

C-1-21 is a confirmed Centaurus member (Chiboucas & Mateo
2007). The best model for C-1-21 was obtained with fixed cen-
tre coordinates and position angle, while the ellipticity ε was
allowed to vary (0.0 < ε < 0.2). Its effective radius of 1.27′′, or

279 pc, is at least three times smaller than the ones of other clus-
ter galaxies of the same luminosity (Fig. 9). This is comparable
to the size of the two M32 twins in Abell 1689 (Mieske et al.
2005b), the cE galaxy A496cE (Chilingarian et al. 2007) and
the cE candidate FS90 192 in the Antlia cluster (Smith Castelli
et al. 2008). The central surface brightness of C-1-21 is about
2 mag/arcsec2 higher than the one of equally bright cluster galax-
ies (see Fig. 8) and its colour is about 0.15 mag redder than ex-
pected from the cluster CMR (Eq. (1)). Interestingly, both colour
and central surface brightness would be consistent with other
cluster galaxies, if the object was about 2 mag brighter. This
suggests that C-1-21 might originate from a higher mass ellipti-
cal or spiral galaxy, which was stripped by the strong tidal field
of NGC 4696 (e.g. Faber 1973; Bekki et al. 2001).
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Fig. 10. Surface brightness profiles of the cE galaxy candidates. The extinction corrected surface brightness μV is plotted as a function of semi
major axis radius R. The solid curve is the best fitting Sérsic law. The residuals Δμ = μV,obs − μV,fit are shown in the lower panels. Vertical dotted
lines mark the seeing affected region R < 1′′, which was excluded from the fit. The dashed lines indicate the effective surface brightness μeff and
the effective radius Reff .

Since three common characteristics of cE galaxies, namely
the small effective radius, the high central surface brightness and
the projected location close to a brighter galaxy, are given, we
consider C-1-21 a true cE galaxy.

C-2-20 has no available spectroscopic redshift. Whether it is a
cluster galaxy or a background galaxy can at this point only be
determined by an educated guess on the basis of its morphologi-
cal and photometric properties. Absolute magnitude, colour and
central surface brightness are very similar to those of C-1-21 (see
Table 2). Its very compact morphology (Reff = 363 pc) suggests
that it is indeed a cluster cE. However, its relatively isolated po-
sition (see Fig. 1), far away from the giant galaxies, is unusual
for a cE galaxy. We conclude that C-2-20 is definitely a good
candidate for a cE galaxy, but whether it really belongs to the
Centaurus cluster has to be confirmed by spectroscopic redshift
measurements.

4. Summary and discussion

Based on deep VLT/FORS1 imaging data in Johnson V and I we
studied the early-type dwarf galaxy population of the Centaurus
cluster. We combined visual classification and SExtractor based
detection routines in order to select candidate objects on the im-
ages (Sect. 2).

We investigated fundamental scaling relations, such as the
colour–magnitude relation and the magnitude-surface brightness
relation (Sect. 3.1). Both relations were found to be consis-
tent with the ones in the Fornax and Hydra I galaxy clusters
(see Table 1). Moreover, LG dwarf galaxies projected to the
Centaurus distance follow the same magnitude-surface bright-
ness relation. Both scaling relations enabled us to define a sam-
ple of probable cluster galaxies, which was used to construct
the galaxy luminosity function down to a limiting magnitude of
MV = −10 mag (Sect. 3.2).

4.1. The faint end of the galaxy LF

From the completeness corrected galaxy number counts we de-
rive a very flat faint-end slope of the Centaurus galaxy LF. A

power law describes best the shape of the faint end of the LF. We
measure a slope of α = −1.14 ± 0.12 (see Fig. 7 and Table 1).
A similar value is obtained when fitting a Schechter function to
the data (α ∼ −1.1). A flat LF for the Centaurus cluster was also
derived by Chiboucas & Mateo (2006). Moreover, our result is
consistent with the flat LFs observed in other nearby galaxy clus-
ters, for which the LF was similarly constructed using morpho-
logical selection criteria (e.g. Trentham & Tully 2002; Hilker
et al. 2003; Mieske et al. 2007a; Misgeld et al. 2008).

The cluster membership assignment by means of morphol-
ogy and surface brightness is, of course, the key step for the
entire analysis. Misclassifications have to be prevented as far
as possible, but they can hardly be avoided entirely. In partic-
ular, it is often difficult to distinguish cluster dwarf galaxies
with rather high surface brightnesses from background galax-
ies which only resemble the cluster galaxies. We indeed iden-
tified nine questionable objects in our sample, having colours
similar to the cluster dwarfs but with significantly higher sur-
face brightnesses along with a rather compact morphology (cf.
Sect. 3.1). Due to the fact that they deviate more than 2σ from
the magnitude-surface brightness relation (Eq. (2)), which is de-
fined by the probable cluster dwarf galaxies (see Fig. 4), we con-
clude that most of those objects do not belong to the cluster. In
any case, they do not significantly influence the galaxy LF, rais-
ing the faint-end slope marginally from α = −1.14 to α = −1.17
(cf. Sect. 3.2).

Another caveat of a morphological selection is that one could
potentially misclassify compact, M32-like cluster members as
background objects, or vice versa (Trentham & Tully 2002).
We found three cE galaxy candidates in our sample, of which
two are confirmed cluster members and the third one has photo-
metric properties very similar to confirmed cluster galaxies (see
Sect. 3.3.2). However, cE galaxies are rare and have (like our
candidates) rather bright magnitudes (Fig. 9), so that they do not
affect the shape of the faint end of the galaxy LF.

Altogether, we are confident not to have misclassified a large
number of objects, since we were sensitive to very low surface
brightnesses, the seeing of our images was excellent, and we
made use of photometric scaling relations to substantiate the
morphological classifications.
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Besides Virgo, Coma, Fornax and Hydra I, Centaurus is now
the fifth galaxy cluster in the local Universe, whose LF has been
investigated down to the regime of dwarf spheroidal galaxies
(MV ∼ −10 mag). Flat luminosity functions, which are contra-
dictory to the predicted mass spectrum of cosmological dark-
matter haloes (e.g. Press & Schechter 1974; Moore et al. 1999;
Jenkins et al. 2001), have been derived for all of these envi-
ronments. It seems to become apparent that this discrepancy
to hierarchical cold dark matter models of galaxy formation is
a common feature of various galaxy clusters/groups. However,
one has to note that we primarily investigate early-type galaxies
in a rather limited region in the central part of the cluster. The
slope of the LF might considerably change when including the
outer parts of the cluster into the analysis. Moreover, although
not found in our study, late-type dwarf irregular galaxies might
affect the shape of the LF as well.

In the end it is essential to have direct cluster membership
determination via deep spectroscopic surveys for magnitudes
MV � −14 mag, where the faint-end slope α starts to dominate
the shape of the LF (cf. Fig. 7). Beyond the Local Group, this has
up to now only been achieved in studies of the galaxy clusters
Fornax, Perseus and Virgo (e.g. Hilker et al. 1999; Drinkwater
et al. 2001; Penny & Conselice 2008; Rines & Geller 2008). The
next step should therefore be the extension of those surveys to
other galaxy clusters like Centaurus or Hydra I in order to thor-
oughly verify the results of the photometric studies. With a rea-
sonable amount of observing time (∼2 h integration time) the
spectroscopic confirmation of low surface brightness objects is
technically feasible for objects with μV <∼ 25 mag/arcsec2, us-
ing low-resolution spectrographs like FORS or VIMOS at the
VLT (see http://www.eso.org/observing/etc/ for expo-
sure time calculators). This surface brightness limit corresponds
to an absolute magnitude limit of MV ∼ −11 mag at the dis-
tance of Centaurus (cf. Fig. 4). Naturally, at a given magnitude
the surface brightness limit introduces a bias towards more suc-
cessfully measuring the redshifts of smaller objects with higher
surface brightnesses. However, the cluster membership assign-
ment via morphological classification for exactly those rather
compact objects turns out to be more difficult than for extended
low surface brightness galaxies (see Sect. 3.1). This means that
the observational bias primarily excludes objects for which the
morphological membership assignment is more accurate, thus,
contamination by background objects is smaller.

4.2. The dependency of effective radius on luminosity

We derived structural parameters, such as central surface bright-
ness μ0, effective radius Reff and profile shape index n, of the
probable cluster galaxies by fitting Sérsic (1968) models to the
galaxy surface brightness profiles (Sect. 3.3).

In plots of μ0 and n versus the galaxy magnitude we ob-
serve continuous relations, ranging 10 orders of magnitude from
MV = −20 mag to the magnitude limit of our survey (Fig. 8).
This confirms observations of continuous relations in the LG and
other galaxy clusters, such as Fornax, Virgo and Hydra I (e.g.
Young & Currie 1994; Graham & Guzmán 2003; Ferrarese et al.
2006; Côté et al. 2008; Misgeld et al. 2008). Only the bright-
est cluster galaxies have central surface brightnesses which are
lower than expected from the extrapolation of the relation de-
fined by galaxies of lower luminosity. The deviation of these
core galaxies from the MV –μ0 relation can be explained by mass
depleted central regions due to the dynamical interaction of a
supermassive black hole binary (Ferrarese et al. 2006, and refer-
ences therein). A different point of view is, however, that these

galaxies belong to a different sequence, almost perpendicular
to the dE sequence, populated with bright early-type galaxies
(MV <∼ −20 mag), for which the surface brightness decreases
with increasing magnitude (e.g. Kormendy 1985; Bender et al.
1992; Kormendy et al. 2008).

The size-luminosity diagram is another tool to visualise
a dis-/continuity between dwarf and giant elliptical galaxies.
Combining our data with studies of early-type galaxies in Virgo
(Ferrarese et al. 2006), Hydra I (Misgeld et al. 2008) and the LG,
we find a well defined sequence in such a diagram (see Fig. 9).
For a wide magnitude range (−21 <∼ MV <∼ −13 mag) the ef-
fective radius changes little with luminosity. For fainter mag-
nitudes the slope of the size-luminosity relation steepens and
the sequence continues all the way down to the ultra-faint LG
dwarf galaxies (MV ∼ −4 mag), which have been identified in
the SDSS (e.g. Martin et al. 2006, 2008; McConnachie & Irwin
2006; Gilmore et al. 2007; Zucker et al. 2007; McConnachie
et al. 2008). Only the brightest core galaxies and compact el-
liptical galaxies deviate from the relation of ordinary elliptical
galaxies (but see Graham & Worley 2008). Both the continuous
surface brightness vs. absolute magnitude relation and the con-
tinuous sequence in the size-luminosity diagram are consistent
with the interpretation that dwarf galaxies and more massive el-
liptical galaxies are one family of objects. In this scenario the
scaling relations are caused by the gradual change of the Sérsic
index n with the galaxy magnitude (e.g. Jerjen & Binggeli 1997;
Graham & Guzmán 2003; Gavazzi et al. 2005).

In contrast to this interpretation, Kormendy et al. (2008) and
Janz & Lisker (2008) most recently reported on a pronounced
dichotomy of elliptical and spheroidal galaxies in the size-
luminosity diagram, which is not caused by the gradual change
of the galaxy light profile with luminosity. Kormendy et al.
(2008) reaffirm results of older studies (e.g. Kormendy 1985;
Binggeli & Cameron 1991; Bender et al. 1992, 1993) and claim
that the dwarf galaxy sequence intersects at MV ∼ −18 mag a
second (much steeper) sequence, which consists of giant ellipti-
cal and S0 galaxies and extends to the regime of cE galaxies (see
also Dabringhausen et al. 2008). They conclude that massive el-
liptical and spheroidal galaxies are physically different and have
undergone different formation processes. The latter were cre-
ated by the transformation of late-type galaxies into spheroidals,
whereas the giant ellipticals formed by mergers. By comparing
the observations to models of ram-pressure stripping and galaxy
harassment, Boselli et al. (2008) indeed find evidence for differ-
ent formation mechanisms. Although the bulk of galaxies inves-
tigated in Ferrarese et al. (2006) falls into the magnitude range
where the dichotomy should become apparent, these authors did
not report on two distinct sequences (but see Appendix B in
Kormendy et al. 2008).

Based on our data we cannot confirm the existence of an
E – Sph dichotomy. Our data rather show a continuous sequence
of structural properties across a wide range of galaxy luminosi-
ties (masses), supporting the interpretation that dSphs as well
as Es are one family of objects. Merely, the most massive core
galaxies and the cE galaxies are clearly separated from normal
ellipticals. In this context, however, one has to keep in mind that
cE galaxies are extremely rare, whereas normal elliptical galax-
ies are much more frequent. This raises the question of which
process is responsible for the peculiar properties of cEs. More
than one formation channel is being discussed for cEs like M32.
If they are the results of galaxy threshing (Bekki et al. 2001),
their “original” location in Fig. 9 was at higher luminosity and
larger radius, probably consistent with the main body of ordinary
elliptical galaxies. They would rightfully deserve to be termed
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low mass counterparts of giant ellipticals (Kormendy et al. 2008,
and references therein) only if they were intrinsically compact at
the time of their formation (Choi et al. 2002).
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Table A.1. Photometric calibration coefficients.

Field ZPV ZPI kV kI CTV CTI

1 27.531 26.672 –0.135 –0.061 0.026 –0.061
2 27.523 26.675 –0.135 –0.061 0.026 –0.061
3 27.518 26.668 –0.135 –0.061 0.026 –0.061
4 27.505 26.659 –0.135 –0.061 0.026 –0.061
5 27.516 26.678 –0.135 –0.061 0.026 –0.061
6 27.516 26.678 –0.135 –0.061 0.026 –0.061
7 27.531 26.672 –0.135 –0.061 0.026 –0.061
8 27.510 26.628 –0.135 –0.061 0.026 –0.061

Appendix A: Tables

Table A.1 gives the photometric calibration coefficients for the
seven observed cluster fields, as indicated in Fig. 1, and the back-
ground field (field 8). Zero points (ZP), extinction coefficients k
and colour terms (CT) are given for the two filters V and I.

Table A.2 lists the photometric parameters of our sample of
92 probable Centaurus cluster early-type galaxies. The table
is ordered by increasing apparent magnitude. The first column
gives the object ID, in which the first number refers to the field in
which the object is located (cf. Fig. 1). Right ascension and dec-
lination (J2000.0) are given in columns two and three. The fourth
and fifth column contain the extinction corrected magnitude V0
and colour (V− I)0. In columns six and seven, the central surface
brightness μV,0 and the scale length hR of an exponential fit to the
surface brightness profile are listed. μV,0 and hR are not given for
objects, whose surface brightness profiles are not well described
by an exponential law, i.e. objects brighter than V0 = 16.1 mag
and the three cE galaxy candidates (see Sect. 3.3.2). Columns
eight, nine and ten give the effective surface brightness μeff , the
effective radius Reff and the profile shape index n, as obtained
from a Sérsic fit. The physical scale is 0.22 kpc/arcsec at the as-
sumed distance modulus of (m −M) = 33.28 mag (Mieske et al.
2005a).
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Table A.2. Catalogue of the probable Centaurus cluster early-type galaxies in our sample.

ID α(2000.0) δ(2000.0) V0 (V − I)0 μV,0 hR μeff Reff n
[h:m:s] [◦:′:′′] [mag] [mag] [mag arcsec−2] [arcsec] [mag arcsec−2] [arcsec]

C-1-01c 12:48:49.3 −41:18:39.1 10.05 ± 0.01 1.25 ± 0.03 22.29 ± 0.01 82.07 ± 0.03 2.49 ± 0.01
C-3-02d 12:50:04.0 −41:22:54.1 11.10 ± 0.02 1.28 ± 0.02 23.28 ± 0.01 77.25 ± 0.14 4.02 ± 0.01
C-4-03b,e 12:49:54.2 −41:16:44.9 12.56 ± 0.01 1.22 ± 0.01
C-3-04b 12:49:38.0 −41:23:20.2 13.17 ± 0.01 1.13 ± 0.01
C-4-05 12:49:51.6 −41:13:34.2 13.65 ± 0.01 1.17 ± 0.02 21.29 ± 0.01 8.57 ± 0.01 3.57 ± 0.01
C-3-06 12:50:08.0 −41:23:49.3 13.86 ± 0.01 1.21 ± 0.01 19.79 ± 0.01 4.38 ± 0.01 2.61 ± 0.01
C-7-07b 12:48:43.5 −41:38:36.8 14.05 ± 0.01 1.11 ± 0.01
C-1-08 12:48:31.1 −41:18:23.3 15.03 ± 0.03 1.12 ± 0.04 20.52 ± 0.01 3.77 ± 0.01 2.09 ± 0.01
C-2-09 12:49:18.6 −41:20:07.3 15.29 ± 0.01 1.13 ± 0.01 20.22 ± 0.01 2.73 ± 0.01 1.41 ± 0.01
C-1-10 12:48:53.9 −41:19:05.3 15.52 ± 0.01 1.18 ± 0.01 19.72 ± 0.01 1.90 ± 0.01 1.23 ± 0.01
C-3-11 12:49:40.2 −41:21:60.0 15.74 ± 0.02 1.02 ± 0.03 23.54 ± 0.01 11.67 ± 0.01 1.38 ± 0.01
C-4-12 12:49:42.0 −41:13:44.9 16.03 ± 0.01 1.10 ± 0.01 21.75 ± 0.01 3.73 ± 0.01 1.71 ± 0.01
C-4-13 12:49:56.4 −41:15:35.8 16.17 ± 0.01 1.10 ± 0.01 21.24 ± 0.01 4.62 ± 0.01 23.08 ± 0.01 7.77 ± 0.01 1.08 ± 0.01
C-1-14 12:48:39.8 −41:16:05.7 16.23 ± 0.01 1.09 ± 0.01 21.26 ± 0.01 4.24 ± 0.01 23.12 ± 0.01 7.19 ± 0.01 1.15 ± 0.01
C-5-15 12:48:36.1 −41:26:23.2 16.89 ± 0.01 0.89 ± 0.02 21.42 ± 0.01 3.72 ± 0.01 23.31 ± 0.01 6.28 ± 0.01 1.32 ± 0.01
C-1-16 12:48:30.1 −41:19:17.8 17.34 ± 0.01 0.96 ± 0.01 21.36 ± 0.01 2.80 ± 0.01 23.29 ± 0.01 4.85 ± 0.01 1.15 ± 0.01
C-2-17 12:49:02.0 −41:15:33.7 17.35 ± 0.01 0.96 ± 0.01 21.24 ± 0.01 2.67 ± 0.01 22.97 ± 0.01 4.33 ± 0.01 0.89 ± 0.01
C-3-18 12:49:56.2 −41:24:04.0 17.40 ± 0.01 1.00 ± 0.01 21.97 ± 0.01 4.18 ± 0.01 23.33 ± 0.01 5.75 ± 0.01 1.43 ± 0.01
C-3-19 12:49:54.1 −41:20:21.9 17.50 ± 0.01 1.05 ± 0.01 21.53 ± 0.01 3.39 ± 0.01 23.40 ± 0.01 5.73 ± 0.01 1.11 ± 0.01
C-2-20 12:49:33.0 −41:19:24.0 17.59 ± 0.01 1.15 ± 0.01 21.53 ± 0.01 1.65 ± 0.01 1.55 ± 0.01
C-1-21 12:48:48.6 −41:20:52.8 17.71 ± 0.01 1.18 ± 0.01 20.95 ± 0.01 1.27 ± 0.01 1.27 ± 0.01
C-2-22 12:49:22.7 −41:15:18.7 18.19 ± 0.02 0.95 ± 0.04 22.38 ± 0.01 3.63 ± 0.01 23.98 ± 0.01 5.48 ± 0.01 1.39 ± 0.01
C-3-23 12:49:46.6 −41:22:08.7 18.42 ± 0.01 0.97 ± 0.01 22.51 ± 0.01 3.00 ± 0.01 24.33 ± 0.01 5.02 ± 0.01 1.04 ± 0.01
C-2-24 12:49:05.4 −41:18:25.6 18.42 ± 0.01 0.87 ± 0.02 22.15 ± 0.01 2.40 ± 0.01 23.88 ± 0.01 3.88 ± 0.01 0.87 ± 0.01
C-2-25 12:49:32.3 −41:20:23.8 18.53 ± 0.01 0.99 ± 0.02 22.38 ± 0.01 2.58 ± 0.02 24.16 ± 0.01 4.21 ± 0.03 0.99 ± 0.01
C-4-26 12:49:48.7 −41:14:18.3 18.87 ± 0.01 0.88 ± 0.02 22.72 ± 0.01 2.78 ± 0.01 24.60 ± 0.01 4.76 ± 0.02 1.09 ± 0.01
C-2-27 12:49:06.5 −41:16:13.4 19.10 ± 0.01 0.96 ± 0.02 22.88 ± 0.01 2.47 ± 0.01 24.70 ± 0.01 4.13 ± 0.03 1.05 ± 0.01
C-3-28 12:49:56.2 −41:23:23.4 19.29 ± 0.02 0.86 ± 0.03 22.84 ± 0.01 2.59 ± 0.01 24.60 ± 0.01 4.31 ± 0.01 0.73 ± 0.01
C-4-29 12:49:56.1 −41:16:56.4 19.50 ± 0.04 0.87 ± 0.05 23.32 ± 0.01 3.18 ± 0.01 25.18 ± 0.02 5.41 ± 0.05 1.06 ± 0.02
C-3-30a 12:49:34.1 −41:22:38.8 19.53 ± 0.01 23.34 ± 0.01 2.75 ± 0.02 25.11 ± 0.01 4.56 ± 0.03 0.75 ± 0.02
C-6-31 12:48:52.5 −41:32:24.5 19.64 ± 0.03 0.88 ± 0.05 23.06 ± 0.02 2.40 ± 0.02 24.92 ± 0.09 4.13 ± 0.02 0.65 ± 0.01
C-3-32 12:49:38.3 −41:23:57.5 19.95 ± 0.01 0.98 ± 0.02 22.71 ± 0.02 1.27 ± 0.01 24.43 ± 0.01 1.99 ± 0.02 1.50 ± 0.05
C-4-33 12:49:46.1 −41:17:56.7 19.99 ± 0.05 0.94 ± 0.07 24.17 ± 0.01 3.53 ± 0.03 25.91 ± 0.02 5.68 ± 0.07 0.89 ± 0.01
C-2-34 12:49:20.9 −41:17:11.0 20.00 ± 0.03 0.82 ± 0.06 23.07 ± 0.02 2.05 ± 0.02 24.90 ± 0.01 3.49 ± 0.02 0.78 ± 0.01
C-2-35 12:49:13.2 −41:17:56.0 20.11 ± 0.04 0.92 ± 0.05 24.11 ± 0.03 2.92 ± 0.06 25.84 ± 0.02 4.72 ± 0.06 0.78 ± 0.02
C-1-36 12:48:37.9 −41:19:48.7 20.15 ± 0.03 0.75 ± 0.06 23.30 ± 0.02 2.00 ± 0.02 25.11 ± 0.02 3.37 ± 0.03 0.82 ± 0.02
C-2-37 12:49:15.1 −41:17:10.9 20.15 ± 0.01 0.86 ± 0.02 23.35 ± 0.04 2.09 ± 0.04 24.15 ± 0.01 2.27 ± 0.01 1.13 ± 0.01
C-1-38 12:48:40.8 −41:19:48.7 20.21 ± 0.04 0.86 ± 0.05 24.05 ± 0.01 2.70 ± 0.03 25.72 ± 0.03 4.18 ± 0.06 0.84 ± 0.03
C-4-39 12:49:38.9 −41:16:39.5 20.24 ± 0.03 0.83 ± 0.05 22.81 ± 0.01 1.82 ± 0.01 24.55 ± 0.01 2.97 ± 0.01 0.85 ± 0.01
C-3-40 12:50:02.6 −41:19:48.9 20.59 ± 0.01 0.94 ± 0.02 22.79 ± 0.01 1.48 ± 0.01 24.50 ± 0.01 2.39 ± 0.01 0.82 ± 0.01
C-5-41 12:48:47.4 −41:23:19.8 20.60 ± 0.03 0.84 ± 0.04 24.29 ± 0.03 2.44 ± 0.05 25.95 ± 0.04 3.78 ± 0.07 0.78 ± 0.03
C-1-42 12:48:45.1 −41:21:06.5 20.62 ± 0.04 0.84 ± 0.05 23.89 ± 0.05 2.03 ± 0.05 25.92 ± 0.02 3.79 ± 0.05 0.76 ± 0.02
C-3-43 12:50:00.9 −41:19:07.9 20.65 ± 0.05 0.87 ± 0.09 24.07 ± 0.03 2.27 ± 0.04 25.83 ± 0.02 3.75 ± 0.04 0.66 ± 0.02
C-7-44 12:49:02.6 −41:37:05.7 20.72 ± 0.05 0.66 ± 0.07 23.86 ± 0.05 2.12 ± 0.05 25.67 ± 0.02 3.57 ± 0.04 0.54 ± 0.01
C-5-45 12:48:40.6 −41:24:19.3 20.76 ± 0.02 0.86 ± 0.03 23.03 ± 0.02 1.64 ± 0.02 24.75 ± 0.01 2.69 ± 0.01 0.61 ± 0.01
C-1-46 12:49:00.3 −41:18:48.0 20.78 ± 0.04 0.88 ± 0.06 23.71 ± 0.01 1.80 ± 0.02 25.56 ± 0.05 3.04 ± 0.07 1.08 ± 0.07
C-1-47a 12:48:27.2 −41:17:35.1 20.79 ± 0.05 24.06 ± 0.03 2.46 ± 0.04 25.84 ± 0.03 4.07 ± 0.06 0.93 ± 0.03
C-4-48 12:50:03.8 −41:11:36.0 20.82 ± 0.03 0.74 ± 0.04 22.98 ± 0.01 1.27 ± 0.01 24.57 ± 0.01 1.96 ± 0.01 0.69 ± 0.02
C-3-49 12:49:35.9 −41:21:07.5 20.87 ± 0.06 1.03 ± 0.07 24.40 ± 0.02 3.01 ± 0.04 26.09 ± 0.04 4.71 ± 0.10 0.90 ± 0.03
C-3-50 12:49:47.9 −41:22:04.0 20.90 ± 0.05 0.82 ± 0.07 24.11 ± 0.02 2.07 ± 0.03 25.80 ± 0.02 3.30 ± 0.02 0.63 ± 0.01
C-2-51 12:49:32.0 −41:17:18.2 20.97 ± 0.03 0.79 ± 0.04 23.24 ± 0.03 1.69 ± 0.03 25.01 ± 0.02 2.81 ± 0.03 0.74 ± 0.02
C-5-52 12:48:52.3 −41:27:13.7 21.04 ± 0.09 1.03 ± 0.13 24.13 ± 0.07 2.17 ± 0.06 26.21 ± 0.05 4.07 ± 0.09 0.65 ± 0.08
C-5-53 12:48:47.4 −41:26:05.1 21.13 ± 0.04 0.87 ± 0.06 23.83 ± 0.06 1.59 ± 0.04 25.67 ± 0.02 2.73 ± 0.03 0.64 ± 0.03
C-4-54 12:50:01.9 −41:12:46.9 21.16 ± 0.08 0.91 ± 0.12 24.49 ± 0.04 2.30 ± 0.05 26.25 ± 0.04 3.77 ± 0.07 0.84 ± 0.03
C-6-55 12:49:01.4 −41:30:17.6 21.19 ± 0.01 0.79 ± 0.02 23.18 ± 0.03 1.18 ± 0.02 24.85 ± 0.02 1.88 ± 0.02 0.62 ± 0.03
C-7-56 12:48:32.6 −41:35:41.9 21.27 ± 0.22 0.77 ± 0.31 25.79 ± 0.03 4.64 ± 0.14 27.12 ± 0.03 6.04 ± 0.10 0.46 ± 0.02
C-4-57 12:50:05.1 −41:12:38.8 21.30 ± 0.17 0.69 ± 0.21 24.67 ± 0.01 2.32 ± 0.03 26.61 ± 0.06 4.12 ± 0.13 1.14 ± 0.06
C-3-58 12:49:40.8 −41:21:06.5 21.34 ± 0.08 0.84 ± 0.10 24.75 ± 0.03 2.21 ± 0.06 26.35 ± 0.04 3.34 ± 0.08 0.76 ± 0.04
C-3-59 12:49:57.9 −41:19:22.2 21.38 ± 0.03 0.76 ± 0.04 23.18 ± 0.01 1.24 ± 0.01 24.87 ± 0.01 1.98 ± 0.01 0.75 ± 0.02
C-1-60 12:48:36.5 −41:18:37.1 21.48 ± 0.04 0.80 ± 0.10 24.58 ± 0.04 2.78 ± 0.08 26.25 ± 0.05 4.34 ± 0.10 0.78 ± 0.05
C-2-61 12:49:08.2 −41:21:13.8 21.50 ± 0.04 0.91 ± 0.07 25.09 ± 0.03 5.93 ± 0.33 26.35 ± 0.10 6.31 ± 0.40 0.69 ± 0.06
C-6-62 12:48:59.3 −41:30:19.3 21.52 ± 0.02 0.82 ± 0.04 23.69 ± 0.04 1.25 ± 0.03 25.35 ± 0.04 1.96 ± 0.04 0.72 ± 0.04
C-2-63 12:49:07.1 −41:19:38.4 21.62 ± 0.04 0.98 ± 0.06 23.77 ± 0.15 1.25 ± 0.07 25.95 ± 0.05 2.49 ± 0.07 0.79 ± 0.04
C-4-64 12:49:58.0 −41:15:11.6 21.75 ± 0.10 0.95 ± 0.15 25.38 ± 0.03 2.50 ± 0.06 27.06 ± 0.08 3.94 ± 0.16 0.81 ± 0.06
C-4-65 12:50:06.5 −41:13:39.7 21.83 ± 0.04 0.90 ± 0.09 24.11 ± 0.02 1.68 ± 0.02 25.95 ± 0.05 2.84 ± 0.07 0.99 ± 0.07
C-1-66 12:48:34.1 −41:21:20.8 21.92 ± 0.12 0.84 ± 0.16 25.07 ± 0.15 2.07 ± 0.16 26.81 ± 0.10 3.37 ± 0.18 0.59 ± 0.08
C-3-67 12:49:54.7 −41:19:00.7 21.94 ± 0.05 1.03 ± 0.07 24.12 ± 0.10 1.42 ± 0.07 26.12 ± 0.05 2.59 ± 0.06 0.75 ± 0.05
C-5-68 12:48:47.3 −41:22:05.1 21.98 ± 0.03 0.91 ± 0.05 24.23 ± 0.02 2.41 ± 0.05 25.83 ± 0.05 3.56 ± 0.10 0.85 ± 0.04
C-3-69 12:49:42.0 −41:21:33.0 22.18 ± 0.11 0.86 ± 0.15 25.02 ± 0.07 1.77 ± 0.08 26.70 ± 0.09 2.79 ± 0.15 0.78 ± 0.09
C-6-70 12:48:45.5 −41:30:18.8 22.24 ± 0.04 0.65 ± 0.04 23.86 ± 0.02 0.97 ± 0.02 25.64 ± 0.09 1.58 ± 0.09 0.97 ± 0.06
C-4-71 12:49:39.4 −41:12:21.1 22.28 ± 0.09 0.88 ± 0.13 25.01 ± 0.05 1.71 ± 0.06 26.85 ± 0.11 2.89 ± 0.15 0.94 ± 0.12
C-3-72 12:50:00.9 −41:21:32.5 22.33 ± 0.05 0.93 ± 0.08 24.28 ± 0.05 1.24 ± 0.04 25.99 ± 0.06 2.00 ± 0.07 0.79 ± 0.08
C-3-73 12:49:59.6 −41:20:16.1 22.37 ± 0.07 0.67 ± 0.15 24.38 ± 0.09 1.35 ± 0.01 26.05 ± 0.08 2.14 ± 0.08 0.60 ± 0.20
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Table A.2. continued.

ID α(2000.0) δ(2000.0) V0 (V − I)0 μV,0 hR μeff Reff n
[h:m:s] [◦:′:′′] [mag] [mag] [mag arcsec−2] [arcsec] [mag arcsec−2] [arcsec]

C-1-74 12:48:39.4 −41:17:00.0 22.41 ± 0.06 0.67 ± 0.11 24.78 ± 0.06 1.58 ± 0.06 26.66 ± 0.11 2.73 ± 0.16 1.05 ± 0.11
C-4-75 12:49:42.8 −41:13:12.6 22.42 ± 0.06 0.74 ± 0.07 24.23 ± 0.05 1.12 ± 0.03 26.02 ± 0.09 1.85 ± 0.07 0.98 ± 0.21
C-1-76 12:48:42.0 −41:18:02.6 22.57 ± 0.06 0.58 ± 0.08 24.09 ± 0.08 0.96 ± 0.04 25.90 ± 0.08 1.59 ± 0.07 1.00 ± 0.19
C-3-77 12:49:41.5 −41:18:34.6 22.71 ± 0.13 0.81 ± 0.13 24.93 ± 0.16 1.48 ± 0.12 26.57 ± 0.07 2.37 ± 0.07 0.76 ± 0.09
C-1-78 12:48:37.6 −41:17:16.7 22.77 ± 0.12 1.03 ± 0.18 25.25 ± 0.09 1.56 ± 0.10 27.02 ± 0.13 2.58 ± 0.18 0.87 ± 0.16
C-2-79 12:49:05.6 −41:16:43.4 22.80 ± 0.06 0.93 ± 0.07 25.19 ± 0.14 1.55 ± 0.27 27.10 ± 0.59 2.73 ± 1.68 1.06 ± 0.55
C-4-80 12:49:45.9 −41:14:52.7 22.80 ± 0.16 0.79 ± 0.26 25.51 ± 0.14 1.80 ± 0.14 27.76 ± 0.42 3.99 ± 1.23 0.91 ± 0.43
C-5-81 12:48:49.6 −41:23:01.5 22.86 ± 0.05 0.70 ± 0.08 24.46 ± 0.07 1.16 ± 0.05 26.31 ± 0.16 1.97 ± 0.17 1.00 ± 0.25
C-2-82 12:49:06.9 −41:18:48.5 22.90 ± 0.10 0.84 ± 0.14 25.61 ± 0.14 1.54 ± 0.22 27.03 ± 0.12 1.98 ± 0.20 0.80 ± 0.02
C-2-83 12:49:25.4 −41:18:21.9 22.98 ± 0.12 0.88 ± 0.15 25.69 ± 0.08 2.53 ± 0.18 27.39 ± 0.43 3.96 ± 1.30 0.92 ± 0.40
C-1-84 12:48:31.1 −41:15:34.4 23.01 ± 0.07 0.75 ± 0.08 24.97 ± 0.11 1.09 ± 0.07 27.02 ± 0.15 2.03 ± 0.20 1.39 ± 0.11
C-2-85 12:49:24.6 −41:15:14.5 23.13 ± 0.14 0.64 ± 0.19 24.91 ± 0.18 1.16 ± 0.15 26.75 ± 0.22 2.00 ± 0.35 0.93 ± 0.16
C-1-86 12:48:40.0 −41:19:17.4 23.17 ± 0.06 0.53 ± 0.09 24.63 ± 0.12 1.12 ± 0.10 26.44 ± 0.17 1.88 ± 0.20 0.79 ± 0.21
C-7-87 12:48:42.4 −41:36:52.1 23.21 ± 0.19 0.41 ± 0.27 25.41 ± 0.09 1.38 ± 0.14 27.29 ± 0.26 2.44 ± 0.47 1.02 ± 0.25
C-5-88 12:48:28.3 −41:21:24.5 23.37 ± 0.10 0.82 ± 0.11 25.01 ± 0.16 1.03 ± 0.11 26.90 ± 0.45 1.79 ± 0.70 1.00 ± 0.37
C-7-89 12:48:45.2 −41:36:57.3 23.40 ± 0.04 0.90 ± 0.04 24.47 ± 0.16 0.78 ± 0.08 26.25 ± 0.25 1.28 ± 0.22 0.99 ± 0.25
C-6-90 12:48:59.5 −41:32:02.1 23.44 ± 0.14 0.65 ± 0.19 25.23 ± 0.05 1.12 ± 0.05 27.00 ± 0.12 1.84 ± 0.13 0.93 ± 0.09
C-5-91 12:49:02.2 −41:22:47.5 23.57 ± 0.04 0.80 ± 0.05 24.75 ± 0.11 1.01 ± 0.10 27.04 ± 0.17 2.41 ± 0.27 1.19 ± 0.13
C-2-92 12:49:08.2 −41:18:08.3 23.88 ± 0.12 0.86 ± 0.15 25.25 ± 0.15 1.30 ± 0.17 26.89 ± 0.20 2.01 ± 0.30 0.76 ± 0.14

a Galaxies for which no colour could be measured; b galaxies showing a two component surface brightness profile, not well fitted by a single Sérsic
law; c NGC 4696; d NGC 4709; e NGC 4706.
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