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ABSTRACT

Aims. The distribution of angular momentum of matter during X-ray bursts in neutron stars is studied by means of axi-symmetric
general relativistic hydrodynamics.
Methods. The set of fully general relativistic Navier-Stokes equations is solved implicitly using the implicit solver GR-I-RMHD in
combination with a third order spatial and second order temporal advection scheme. The viscous operators are formulated using a
Kerr-like metric in the fixed background of a slowly rotating neutron star whose radius coincides with the corresponding last stable
orbit. The importance of these operators and their possible simplifications are discussed as well. To verify the consistency and accuracy
of the solution procedure, the time-dependent evolution of non-rotating heat bubbles during their rise to the surface of a white dwarf
are followed and compared with previous calculations.
Results. In the rotating case and depending on the viscosity parameter, αtur, it is found that the viscously-initiated fronts at the center
of bursts propagate at much faster speed than the fluid motion. These fast fronts act to decouple angular momentum from matter:
angular momentum is transported outwards while matter sinks inwards into the deep gravitational well of the neutron star, thereby
enhancing the compression of matter necessary to initiate ignition, that subsequently spreads over the whole surface of the neutron
star on the viscous time scale. Based on the numerical simulations, we find that a viscosity parameter αtur = O(0.1) is most suitable
for fitting observations of neutron stars during X-ray bursts. It is argued that the spin up observed in the cooling tails of X-ray bursts is
a transient phase, which eventually should be followed by a spin down phase. This delay can be attributed to a significant lengthening
of the viscous time scale due to rapid cooling of matter in the outer layers.
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1. Introduction

Some observed neutron stars (NSs) belong to the family of
ultra-compact objects, in which general relativistic effects are
prominent (Shapiro & Teukolsky 1983; Stergioulas 2003; Psaltis
2008). Depending on the equation of state, NSs may live even in-
side their last stable orbits, making the conversion efficiency of
gravitational energy into radiation even higher than that of ac-
creting Schwarzschild black holes (BHs, Camenzind 2007).

Neutron stars in low-mass X-ray binaries accrete material
from their companions via disks. The angular momentum as-
sociated with the accreted matter is capable of spinning up
NSs, possibly making them millisecond pulsars (Bhattacharya &
van den Heuvel 1991). Aside from spinning, the hydrogen and/or
helium-rich material accumulated over hours to days is expected
to spread over the surface of the NS and form a thin and highly
compressed shell. The matter in this shell is thermonuclear un-
stable and may easily undergo a runaway ignition that results in
liberating energy of the order of 1039–1040 erg in less than 100 s
(Lewin et al. 1995). Such thermonuclear explosions are believed
to be the origin of the observed X-ray bursts on accreting NSs
(for reviews, see Cumming 2004, and the references therein).

However, following the dynamical evolution of the accreted
matter from the disk, through the boundary layer down to the
mixing layer, its spread over the surface and finally into the ig-
nition phase is a complicated task and would require another
decade of additional investigations. Of particular importance is

understanding how the disk matter reaches and interacts with
the very outer envelopes of strongly or weakly magnetized NSs,
the rate of spreading of accreted matter over the surface of the
NS, the role and efficiency of the magnetic-rotational instabil-
ity (MRI) in re-distributing angular momentum in the boundary
layer (BL) as well as the dissipation rate of rotational kinetic en-
ergy. Also, the way the shear in the low-density BL viscous-heats
and chemically mixes the matter with the matter in the deeper
layers, taking into account magnetic-generated turbulence, heat
and radiation transfer is of vital importance for understanding
the mechanisms leading to X-ray burst events (Piro & Bildsten
2007).

BLs, on the other hand, are considered to be optimal regions
where the bulk of the kinetic energy of the inflowing matter is
re-directed into powering outflows and jets. Strong shearing and
enhanced dissipation in combination with appropriate topolog-
ical changes of the magnetic fields in the BL may provide the
mechanisms required for formation and acceleration of power-
ful jets from around compact objects (Chakrabarti 2001). Indeed,
numerous highly relativistic jets have been observed to also em-
anate from around accreting NSs with bulk Lorentz factors that
are comparable to those emanating from microquasars (Migliari
2006, 2008).

At the simulation site, numerous general relativistic hy-
drodynamical calculations have been carried out to study
different aspects of NSs, such as formation, merger, inner
structure, accretion or jets around NSs (Thielemann 1990;
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Liebendörfer et al. 2002; Marti & Müller 2003; Özel & Psaltis
2003; Shibata 2003; McKinney 2006; Shibata et al. 2006;
Abdikamalov et al. 2008), see also the references therein.

Duez et al. (2004) carried out general relativistic calculations
to study the formation of hypermassive NSs, taking into account
the effect of viscosity. The authors found that viscosity drives
the NS’s inner core into rigid rotation and simultaneously trans-
ports angular momentum outwards into the outer envelope. As a
consequence, the core is found to contract in a quasi-stationary
manner while the outer layers expand to form a differentially ro-
tating torus.

This behavior is similar to accretion of matter via rotating
disks. Here the viscosity acts to decouple matter from angular
momentum, in that it transports angular momentum outwards,
while forcing the matter to sink deeper into the gravitational well
of the central object (Pringle 1981). In the absence of viscosity,
angular momentum as well as magnetic fields in ideal MHD are
frozen-in to the matter. Thus, while strong magnetic fields are
essential to enable rigid rotation, viscosity, on the other hand,
drives the outer layers into differential rotation.

The type of rotation in the outer layers, differential or rigid
rotation, may have profound effects on the conditions leading to
the X-ray bursts observed on NSs (Bildsten & Strohmayer 1999;
Spitkovsky et al. 2002).

Indeed, recent observations of X-ray bursts revealed so
called burst oscillations, in which a spin-up or spin-down of the
NSs in their cooling tails have been detected, reaching a plateau
on the asymptotic limit (see Strohmayer et al. 1997; Strohmayer
& Markwardt 1999; Strohmayer 2001a, for a detailed discus-
sion). It has been argued that the increase/decrease of the spin
of NSs during bursts is connected to the redistribution of angu-
lar momentum of the thermonuclear shell (Strohmayer 2001b).
Accordingly, when a thermonuclear shell starts to expand at the
burst onset, the moment of inertia increases while its spin de-
creases. When the shell starts to contract and subsequently re-
couples to the NS, the inertia decreases and the spin increases.

Also, several X-ray bursts on NSs display a spin down rather
than spin up in their cooling tails (Strohmayer 1999b). In this
case, however, it was suggested that the spin down probably be-
gins episode of thermonuclear energy release, most likely in lay-
ers underlying those responsible for the initial runaway.

Cumming & Bildsten (2003), however, investigated in de-
tail the hydrostatic expansion during bursts and the expected
change of spin due to angular momentum conservation and con-
cluded that a shell expansion/contraction alone cannot explain
the mechanisms underlying the observed spin-up/down of the
NSs during bursts. The model in which ignition starts at a point
and spreads over the whole surface of the NS via burning fronts
appears to fit observations, which reveals that the X-ray emit-
ting area increases during the bursts (Strohmayer et al. 1997).
However, the role of rotation, the nature of these burning fronts
and the manner in which they affect their surrounding are poorly
understood.

In this paper we present a first attempt to model the rotational
evolution of thermally induced bursts beneath the atmosphere of
a rotating NS and to study the role and effects of the viscosity
on the redistribution of angular momentum under strong gravi-
tational field conditions. Our investigation relies on employing
a general relativistic hydrodynamical solver, in which turbulent-
eddies have the effect of friction that gives rise to an enhanced
re-distribution of angular momentum.

The paper is organized as follows: In Sect. 2 we describe the
additional viscous operators that have been incorporated into the
solver to study the viscous-redistribution of angular momentum.

The results of several model calculations aimed at studying the
distribution of angular momentum during X-ray bursts on NSs
are presented and discussed in Sect. 3, while in Sect. 4 the results
are summarized.

2. The general relativistic Navier-Stokes equations

The set of the general relativistic hydrodynamical equations and
their derivations are well described in Sect. 2 of Hujeirat et al.
(2008). In this section we list the viscous operators of the mo-
mentum equations, which we have incorporated into the implicit
solver.

The stress energy tensor for viscous flows has the following
form (Richardson & Chung 2002; Font 2003; Camenzind 2007):

Tμν = TμνPF +

{
TμνVis

}
= ρ h uμuν + P gμν +

{
−η[σ̄μν + Θ

3
hμν]

}
, (1)

where μ, ν are indices that correspond to the four coordinates
{t, r, θ, ϕ} and TμνPF, TμνVis denote the stress energy tensor due to
perfect and viscous flows, respectively. P, η, Θ, are the pressure,
which is calculated from the equation of state corresponding to
a polytropic or to an ideal gas, the dynamical viscosity which
is assumed to be identical to the shear viscosity, and Θ(� ∇μuμ),
which measures the divergence or convergence of the fluid world
lines, respectively. hμν = uμuν + gμν is the spatial projection ten-
sor, whereas σ̄ corresponds to the symmetric spatial shear ten-
sor: σ̄μν = ∇ςuμhςν + ∇ςuνhςμ.

For the X-ray burst calculations, the general relativistic
Navier-Stokes equations are solved using the Boyer-Lindquist
coordinates in the background of a slowly rotating NS. We use
the Kerr metric to describe the spacetime outside the NS. The
spin “a” in the Kerr metric is set to describe the slow rotation
ΩNS of the NS, whose radius is set to be located far away out-
side its corresponding event horizon. Therefore, this validates
the use of this metric to describe the dynamics of the matter in
the atmosphere which is located outside the NS, especially as the
atmosphere has a negligibly small mass compared to the mass
of the enclosed degenerate core. We note that the large matter-
density in the core forces the geometry to deviate considerably
from flat space. Therefore, studying the dynamics inside and out-
side the core necessitates the construction of a combined metric
in a manner similar to the Hartle formalism (Hartle 1967).

The elements of the metric read as follows:

gμν =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
gtt 0 0 gtϕ
0 grr 0 0
0 0 gθθ 0
gϕt 0 0 gϕϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gtt = βϕβ
ϕ − α2

gtϕ = gϕt = βϕ = gϕϕβ
ϕ

grr =
ρ̄2

Δ
, gθθ = ρ̄

2, gϕϕ = ω̄
2

Δ = r2 − 2rgr + Ω2
NS

ρ̄2 = r2 + Ω2
NS sin2 θ

Σ2 = (r2 + Ω2
NS)2 − Ω2

NSΔ cos2 θ
ω̄ = Σ

ρ̄
cos θ

α2 =
ρ̄2

Σ2Δ

βr = βθ = 0

Υ =
ρ̄2Σ2

Δ
cos2 θ√−g = ρ̄2 cos θ = α

√
Υ.

(2)
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In this formulation, the parameter “ΩNS” denotes the spin of the
neutron star, which is taken to be much smaller than the break-up
frequency. βϕ is the frame-dragging frequency associated with
the rotation of the NS:

βϕ = ΩFD =

[
2G
c2

]
J∗

( r
Σ2

)
=

[
2GM

c2

] (
1
r3

)
R2

NSΩNS, (3)

where J∗ = I∗ΩNS, and I∗ = 2
5 MNSR2

NS is the moment of iner-
tia of the NS. The parameters: c, MNS, G, rg(= GMNS

c2 ), α denote
the speed of light, mass of the NS, the gravitational constant,
the gravitational radius and the lapse function, respectively. In
writing these expressions, we made use of the coordinate trans-
formation θ̄ = π/2−θ, where we use the latitude θ instead of the
polar distance angle θ̄; hence the appearance of “cos” instead of
“sin” in the metric terms.

The set of general relativistic Navier-Stokes equations in axi-
symmetry can be written as the residual vector equation:

R = 0. (4)

The components of this vector read as follows:

1. The continuity equation

R1 = ∂tD + L1r θD = 0 (5)

2. The radial momentum equation

R2 = ∂t Mr + L1r θMr − fr − L2r
r θMr = 0 (6)

3. The vertical momentum equation

R3 = ∂t Mθ + L1r θMθ − fθ − L2θr θMθ = 0 (7)

4. The angular momentum equation

R4 = ∂t Mϕ + L1r θMϕ − fϕ − L2ϕr θMϕ = 0 (8)

5. The internal energy equation

R5 = ∂tEd + L1r θEd + (γ − 1)Ed

[
∂ut

∂t
+ L1rθu

t

]
= 0, (9)

where L1r θ are first order advection operators that have the form:

L1r θ q = (−g)−1/2∂r((−g)1/2 q Vr) + (−g)−1/2∂θ((−g)1/2 q Vθ)
= ∇̄r · qVr + ∇̄θ · qVθ.

fr, θ, ϕ are force terms that include pressure gradients, cen-
trifugal and gravitational forces acting along the radial, po-
lar and azimuthal directions, respectively. D(� ρut) is the
modified relativistic mass density. Mμ are the four-momenta:
(Mt,Mr,Mθ,Mϕ) � D(ut, ur, uθ, uϕ),where D � Dh, and ut is the
time-like velocity, Vμ = uμ/ut is the transport velocity and “h”
denotes the enthalpy. L2ξrθ are the spatial projections of the vis-
cous stress energy tensor TμνVis (see Eq. (1)) in the respective
direction. These are obtained from the projection of the viscous
tensor along the vector normal to the hyperspace, i.e., constant
in time:

L2ξrθ = ∇μTμξVis = ∂̄μT
μξ
Vis + Γ

ξ
μλT

μλ
Vis,

where ξ = {r, θ, ϕ}. ∇μ corresponds to the spatial divergence of a
tensor taken in the Boyer-Lindquist coordinates and Γξμλ are the
Christoffel’s symbols of the second kind.

For completeness, we re-write the forms of these second or-
der viscous operators explicitly as follows:

L2r
rθ = ∇̄r · η

[ (
∂ur

∂r +
1
2

(
grr ∂grr

∂r

)
ur

)
(urur + 1)

+ ∂ur
∂r − 1

2

(
grr ∂grr

∂r

)
ur

) (
(ur)2 + grr

)
− 2

3

(
∇̄r · ur + ∇̄θ · uθ

)
(urur + 1)

]

+ ∇̄θ · η
[(
∂uθ

∂r +
1
2

(
gθθ ∂gθθ

∂r

)
(urur + 1)

+ ∂u
θ

∂θ
+ 1

2

(
gθθ ∂gθθ

∂θ

) (
uruθ

)
+ ∂ur
∂r − 1

2

(
grr ∂grr

∂r

)
ur)

(
uruθ

)
+ ∂ur
∂θ
− 1

2

(
grr ∂grr

∂θ

)
ur)

(
(uθ)2 + gθθ

)
− 2

3

(
∇̄r · ur + ∇̄θ · uθ

)
(urur + 1)

]
,

(10)

L2θrθ = ∇̄r · η
[ (
∂uθ
∂r − 1

2

(
gθθ ∂gθθ

∂r

)
uθ

)
(ur)2 + grr

)

− 2
3

(
∇̄r · ur + ∇̄θ · uθ

)
(uθur)

]

+ ∇̄θ · η
[(
∂uθ

∂r +
1
2

(
gθθ ∂gθθ

∂θ

) (
uθuθ + 1

)
− 2

3

(
∇̄r · ur + ∇̄θ · uθ

) (
uθuθ + 1

) ]

+
(
∂uθ

∂θ − 1
2

(
gθθ ∂gθθ∂θ

)
uθ

)
(uθ)2 + gθθ)

]
,

(11)

L2ϕrθ = ∇̄r · η
[ (
∂uϕ
∂r − 1

2

(
gϕt ∂gϕt

∂r + g
ϕϕ ∂gϕϕ
∂r

)
uϕ

)
(ur)2 + grr

)

+

(
∂uϕ
∂θ
−1

2

(
gϕt ∂gϕt

∂θ
+gϕϕ

∂gϕϕ
∂θ

)
uϕ

) (
uruθ

)
−
(

1
2

(
grr ∂gϕt

∂r

)
uϕuϕut−( 1

2 (grr ∂gϕϕ
∂r ) uϕ(uϕuϕ+1)

]

+∇̄θ · η
[
( ∂uϕ
∂r − 1

2 (gϕt ∂gϕt

∂r +g
ϕϕ ∂gϕϕ
∂r ) (uruθ)

+( ∂uϕ
∂θ
− 1

2

(
gϕt ∂gϕt

∂θ
+gϕϕ

∂gϕϕ
∂θ

)
uϕ)

( (
uθ

)2
+gθθ

−
(

1
2g
θθ ∂gϕt

∂θ

)
uϕuϕut −

(
1
2g
θθ ∂gϕϕ
∂θ

)
uϕ(uϕuϕ + 1)

]
,

(12)

where gμν is the covariant form of the metric tensor gμν.

2.1. Simplifying considerations

Most of the above-described collection of viscous terms con-
tains highly non-linear, first and second order operators, some of
which are difficult to handle numerically and in most cases en-
large the band-width of the coefficient matrix, while others may
decelerate, rather than accelerate, the convergence of the numer-
ical solution procedure. In axi-symmetry, few of these terms can
be simplified or even neglected without violating the physical
consistency of the numerical scheme.

To outline our simplification strategy, we first mention the
following relevant issues:

1. in most astrophysical fluid flows the molecular viscosity is
too small to be relevant on observationally reasonable time
scales. This implies that the corresponding Reynolds num-
ber, which expresses the ratio of inertial to viscous forces,
is too large and cannot be captured by solving the hydrody-
namical equations numerically. Thus, in the absence of other
forms of viscosity, e.g., turbulent viscosity, the above opera-
tors have negligible effects on the dynamical evolution of the
flow;
moreover, these operators must vanish asymptotically when-
ever the fluid velocity approaches the speed of light;
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2. turbulent viscosity is more common in modeling astrophysi-
cal fluid dynamics. In rotating astrophysical flows, turbulent
viscosity is a fundamentally important mechanism for angu-
lar momentum transport. Therefore, the viscous operators of
the angular momentum equation are important and should
converge to the usual Newtonian form whenever the velocity
becomes sub-relativistic;

3. the viscous operators appearing in the radial and vertical
momentum equations act, in general, to diffuse and smooth
strong velocity gradients. However, the mixed derivatives1

appearing in these two equations are numerically difficult
to handel and their inclusion in the implicit solution proce-
dure may significantly lower the efficiency of the solver. In
particular, they enlarge the band width of the corresponding
Jacobian, make it difficult to find an appropriate and easy-to-
invert pre-conditioners and subsequently increase the com-
putational costs. On the other hand, the physical effect of
mixed derivatives in fluid dynamics is generally small or
even negligible, depending on the properties of the flow.
For example, mixed derivatives have vanishingly small ef-
fects in advection-dominated plasmas due to the low viscous
interaction. In turbulent dissipative flows however, they act
to mainly enhance the viscous coupling between the veloc-
ity components. However, as the turbulence in most gravi-
tationally bound astrophysical flows is generally subsonic,
the coupling between the momentum equations is predomi-
nated by the pressure gradients. This implies that the mixed
derivatives in the hydro-equations describing the dynamics
of subsonic turbulent flow, can, to first order approximations,
be neglected. From the numerical point of view, neglecting
such operators is necessary to enhance the sparseness of the
Jacobian and to enable the use of pre-conditioners that are
based on the directional splitting strategy.

Therefore, our simplification strategy relies on considering only
second order, mixed-free and Laplace-like operators. In numeri-
cal matrix algebra, such operators generally enhance the diago-
nal dominance of the coefficient matrix and stabilize its inversion
procedure.

Specifically, using our time-implicit formulation, the follow-
ing viscous operators are used in the numerical solution proce-
dure:

L̃2
r
rθ = ∇̄r · η

{[
2 ∂u

r

∂r − 2
3

(
∇̄r · ur

) ]
(urur + 1)

}

+ ∇̄θ · η
{(
∂ur
∂θ

) ((
uθ

)2
+ gθθ

)} (13)

L̃2
θ
rθ = ∇̄r · η

{
( ∂uθ∂r )

[
(ur)2 + grr

]}
+ ∇̄θ · η

{(
∂uθ

∂θ

)
− 2

3 ∇̄θ · uθ)
(
uθuθ + 1

)}
+ ∇̄θ · η

{(
∂uθ
∂θ

) [
(uθ)2 + gθθ

]} (14)

L̃2
ϕ
rθ = ∇̄r · η

[
( ∂uϕ
∂r − 1

2 (gϕt ∂gϕt

∂r +g
ϕϕ ∂gϕϕ
∂r )uϕ) (ur)2 + grr)

−( 1
2 (grr ∂gϕt

∂r ) uϕuϕut−( 1
2 (grr ∂gϕϕ

∂r ) uϕ(uϕuϕ + 1)
]

+ ∇̄θ · η ( ∂uϕ
∂θ
− 1

2 (gϕt ∂gϕt

∂θ
+gϕϕ

∂gϕϕ
∂θ

)uϕ) ((uθ)2+gθθ)
−( 1

2g
θθ ∂gϕt

∂θ
) uϕuϕut−( 1

2g
θθ ∂gϕϕ
∂θ

) uϕ(uϕuϕ + 1)].

(15)

We note that in carrying out these simplifications, care should
be taken to still recover the classical non-relativistic form of the
Navier-Stokes equations.

1 i.e., ∂r( f∂θq) and ∂θ( f∂rq), where f denotes an arbitrary non-linear
viscous function.

Indeed, it can be easily verified that in the non-relativistic
regime the radial component of the diffusion operator L̃2

ϕ
rϕ re-

duces to the classical Newtonian form:

L̃2
ϕ
r =

1
r2

∂

∂r
r4η
∂Ω

∂r
, (16)

where η = ρν and ν denotes the kinematic viscosity.

2.2. Viscosity prescription

Similar to classical accretion disks, we assume that molecular
viscosity is too small to have a significant effect on the angular
momentum distribution on a short time scale such as the ther-
monuclear one. Therefore, we adopt the turbulent viscosity pre-
scription:

νtur � 〈Vtur〉〈�tur〉 ≈ αturVS × α2RNS, (17)

where 〈Vtur〉, 〈�tur〉 correspond to mean values of velocity and
length scale of eddies in a turbulent medium, respectively. These
are set to be respectively smaller than the sound speed VS and
smaller than the radius of the NS. Thus, αtur, α2 are constants
that are set to be smaller than unity. In the present paper, all
model calculations assume 〈�tur〉 = 0.1RNS, i.e., α2 = 0.1,
whereas the parameter αtur may differ from one model calcu-
lation to another.

3. Heat bubble calculations

3.1. Numerical solution method

The set of hydrodynamical equations are solved using a pre-
conditioned defect-correction iteration procedure. The matrix
equation to be solved in each iteration is:

Ãμ = d, (18)

where Ã is a preconditioner, i.e., a coefficient matrix that is sim-
ilar to the Jacobian J, but which is much easier to invert.

J is obtained by calculating the entries resulting from ∂R/∂q,
where R denotes the vector of equations (Eq. (4)) and q the vec-
tor of variables.

In this formulation μ = qi+1 − qi corresponds to the correc-
tion between two successive iterations and d is the defect (for
a detailed description of the method see Hujeirat 2005; Hujeirat
et al. 2008).

We mention that the solver employed here relies on the
conservative formulation of the hydrodynamical equations, us-
ing the finite volume formulation. For strongly time-dependent
simulations, an advection scheme of third order spatial and
second order temporal accuracies is used (Hujeirat 2005).
As a pre-conditioner we use the approximate factorization
method (AFM), which is proven to be most appropriate for mod-
eling low and high Mach number flows (Hujeirat et al. 2007a).
Low Mach number flows in astrophysics are generally encoun-
tered in the interior of stars. As these flows are gravitationally
bound and pressure supported, their motions are extremely sub-
sonic, hence their corresponding Mach number is rather low. On
the other hand, the velocities in high Mach number flows are su-
personic and they may easily turn into shock-dominated flows.

3.2. Heat bubble propagation in the atmosphere
of a non-rotating white dwarf

Rising bubbles in stellar environments of white dwarfs have been
extensively studied by Almgren et al. (2006, see also the refer-
ences therein). Although white dwarfs are degenerate stars, their
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Fig. 1. The starting distribution of the temperature in the domain of cal-
culation. Low (high) values correspond to blue (yellow) color. The red
color corresponds to the hot bubble. The radius is in RNS units (see
Eq. (19)).

typical radii are approximately three orders of magnitude larger
than their corresponding horizons, so that the dynamics of their
atmosphere can be safely treated within the Newtonian regime.

To test the capability of our general relativistic solver at cap-
turing the propagation of strongly time-dependent heat bubbles
in strong gravitational fields, such as X-ray bursts on neutron
stars, we adopt the same setup of the heat bubble problem as de-
scribed in Sect. 4.3 of Almgren et al. (2006). Although we use
spherical geometry and solve the equations using a general rel-
ativistic formulation, we expect our solver to provide solutions
that agree well with the results of Almgren et al. (2006), that
have been obtained using Cartesian coordinates, uniform grid
distribution and a Newtonian solver.

The domain of calculation is restricted to the first quadrant:

D = [Rin ≤ r ≤ Rout] × [0 ≤ θ ≤ π/2]
= [1 ≤ r ≤ 1.35] × [0 ≤ θ ≤ π/2],

where length scales are measured in units of the radius of the
star’s core.

The domain D is divided into non-uniformly distributed fi-
nite volume cells: 100 in the radial and 170 in the polar direction,
where the minimum grid spacings is set to coincide with the cen-
ter of the initial heat bubble.

As initial conditions, a constant density and temperature are
assumed. As such a configuration is dynamically unstable, the
flow is set to evolve hydrodynamically until a hydrostatic equi-
librium is recovered. Such a strategy for constructing initial con-
ditions is recommended when rotation, heat diffusion or a com-
plicated equation of state are used. In the present paper however,
we neglect chemical composition and use the equation of state
which corresponds to an ideal gas.

A small region is then chosen (Fig. 1), where the matter is
replaced by a thinner but much hotter plasma, while keeping it
in pressure equilibrium with the surrounding media.

In Fig. 2 we show several snapshots of the rising bubble. The
location in time, internal structures and surface morphology of
the bubble during its rise to the surface of the white dwarfs are
quite similar and agree well with those obtained using the un-
split and low Mach number schemes reported by Almgren et al.
(2006).

Fig. 2. A rising bubble in the white dwarf atmosphere. The domain of
calculation is covered by 100 × 170 non-uniformly distributed finite
volume cells (top left panel). The colored images are snapshots of the
temperature of the rising bubble after 0.25, 0.5. 0.75 and 1.0 s after the
flash. Low-to-high values of temperature correspond to blue-to-red. On
the left panel, snapshot of the density distribution at 0.5, 0.75 and 1.0 s
in black and white are shown. Radii are given in 5 × 108 cm units.

3.3. Rotating heat bubbles in deep gravitational fields
of neutron stars

Similar to Sect. 3.2, we apply our general relativistic solver
to model the rise of a rotating bubble starting from below the
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atmosphere of a rotating neutron star. The radius of the neutron
star’s core RNS is set to be equal to the following radius,

RNS = 3 rg

(
1 +

√
1 −Ω2

NS

)
, (19)

which is smaller than the classical last stable orbit of a
Schwarzschild black hole. The inner boundary of the domain
of calculation is taken to be the radius of the core, whereas the
outer boundary is located at Rout = 1.35 RNS. The core is set to
rotate at 40% the break-up velocity, whereas Ω at the outer ra-
dius is 10 times smaller. The matter in the domain is set to adjust
its rotation to the boundaries through viscous interaction.

The initial distribution of the variables is constructed by
solving the general relativistic Navier-Stokes equations to obtain
stationary and differentially rotating flow configurations. The
procedure runs as follows: for a given distribution of the angular
velocity Ω, quasi-stationary solutions for the density, tempera-
ture and poloidal components of the momentum equations are
sought. Using these distributions as initial conditions, we then
re-run the calculations to seek quasi-stationary solutions for the
equations describing the time-evolution of the density, tempera-
ture, poloidal component and also for the toroidal component of
the momentum equations.

As in the previous section, the heat bubble is injected into the
domain by replacing the medium at a certain location by a hot
and tenuous plasma, while keeping it in pressure and rotational
equilibrium with the surrounding media.

To assure consistency of the numerical scheme with the
physical problem and minimize possible numerical errors, we
use an advection scheme of third order accuracy in space and
second order in time. The grid spacing, (dx j, rdθk), at the center
of the burst is taken to be 0.001. This means that numerical er-
rors resulting from the spatial discretization of the transport op-
erators are of the order of 10−9. Errors may result also from the
time-discretization of the equations. However, as the problem is
strongly time-dependent, the time step size has been taken to be
equivalent to CFL = 0.5. This implies a time step size of the
order δt ∼ 2 × 10−4. In this case, the maximum possible tempo-
ral error is of order 10−7. Consequently, the combined maximum
numerical error resulting from the advection scheme would be of
order 10−7. An additional source of numerical errors is the dis-
cretization of second order operators, i.e., viscous operators in
the Navier-Stokes equations. Within the context of finite volume
formulation, the maximum possible numerical errors here can-
not be larger than dx2

j , which is of the order of 10−6. This is three
orders of magnitude smaller than the smallest turbulent viscosity
coefficient used in the present investigations.

Unlike the calculations in the previous section, the purpose
of the present calculations is to unveil the response of the sur-
rounding region to violent events associated with a dramatic
change in the distribution of the angular momentum.

Therefore we run several numerical calculations with αtur =
1.0, 0.1, 0.01, 0.001. The initial stationary configurations have
been obtained using the corresponding value of αtur. The results
are shown in Fig. 3 and can be summarized as follows:

1. all model calculations show a pronounced deficiency of an-
gular momentum at the central part of the burst, accompa-
nied by a significant increase at the boundary of the bubble.
Thus, the burst leads to the formation of a dynamically un-
stable flow-configuration: a shell of slow rotating matter is
bounded both from below and from above by relatively fast
rotating matter;

Fig. 3. The distribution of the angular velocity in the bursting region
for four different viscosity parameters αtur shortly after burst events
(≈0.1 ms). In the left panel 30 uniformly distributed isolines of the an-
gular frequency Ω are shown. In the right panel we display the radial
profiles of Ω across the bursts. The solid line in the second-right plot
corresponds to a relaxed Ω-profile after 10 ms. Radii are given in RNS

units (see Eq. (19)).

2. the viscous-induced fronts of angular momentum are found
to propagate outwards at much faster speed than inwards.
This implies that the matter in the deeper layers adapts its
conditions to the inner boundary much faster than at the outer
boundary. This is a consequence of the adopted prescription
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Fig. 4. The profile of the radial velocity across the heat bubble shortly
after the burst (0.3 ms), using αtur = 0.1. Obviously, the outward-
oriented fluid motion is much stronger than the inward one. The radius
is in RNS units (see Eq. (19)).

of the viscosity η, which is more effective in hotter and
denser regions of the plasma. Also, the outwards-oriented
velocity is obviously higher than the inward one (Fig. 4);

3. the difference between the rotational velocity at the center of
the bubble and that at its boundaries becomes more signifi-
cant, the smaller the αtur-parameter chosen.

In the αtur = 1.0 case (see Fig. 3a1), the rise time of the bubble
is found to be extremely long compared to those obtained with
smaller αtur.

Here the viscous pressure in the radial direction Pr
visc ∼

αtur
∂ur

∂r has an opposite sign and acts to reduce the effects of the
thermal pressure Pth. In the extreme case, when Pth + Pvisc → 0,
the effective sound speed, Veff

S ∼ δ(Pthe + Pvisc)/δρ → 0, hence
the propagation time τpro ∼ R/Veff

S → ∞. The same effect would
have occurred if weak magnetic fields were included. Since the
media is magnetic-rotation unstable, the generation and dissipa-
tion of turbulence would yield an effective viscosity coefficient
comparable to αtur. However, this effect becomes irrelevant when
magnetic fields are beyond equipartition.

In this case turbulence will be diminished and the strong
magnetic flux tubes will quickly float up to the surface, prob-
ably prior to burst events.

On the other hand, τpro becomes of the order of one second,
when using αtur ∼ O(10−1), which fits well into the observed
duration of burst events on NSs.

In the low αtur cases, (see Figs. 3b1,c1,d1 and Fig. 5), the sig-
nificant increase of the rotational velocity at the outer Ω-fronts
is obvious, but unreasonably large. In the Fig. 3d1, the matter
at the outer front is found to be gravitationally unbound to the
central NS, giving rise to strong outflows.

However, as outflows during X-ray bursts can be excluded on
observational grounds, we conclude that αtur must acquire much
larger values, and that specifically αtur ∼ O(10−1).

To study the viscous-reaction of the matter in the adjusting
layers to the sudden increase of rotation induced by a burst, we

have run separate calculations in the following manner. A so-
lution for the hydrodynamical equations including rotation has
been hydrodynamically calculated. As a second step, we mod-
ified the Ω−profile by including a Gaussian perturbation of the
form τ0 depicted in Fig. 6. We then followed the time evolution
of this profile on the viscous time scale. The profiles τ1, τ2, τ10
correspond to τvisc/10, τvisc/5, τvisc.

These calculations show that the effect of turbulent viscosity
is to mainly transport angular momentum outwards. As a con-
sequence, the deficiency in the rotational support in the deep
layers enhances the compression of matter and give rise to an
additional burst in the neighboring shell. This chain of reactions
may run away to spread over the whole surface of the NS on the
viscous time scale, which is of the order of one second, assuming
αtur ≈ 0.1.

When the outer layers cool, the turbulent viscosity decreases
and the corresponding viscous time scale increases as τvisc ∼
1/
√

T . This implies that after the burst, the time scale needed
for the outer layers to adjust their rotation to the bulk of the star
might lengthen by an additional order of magnitude. As a con-
sequence, the observed spin up of NSs in their cooling tail is
a manifestation of the increased rotational velocity of the outer
layers caused by the burst events, but which, eventually, should
decrease at later times.

We note that, if magnetic fields were included, the dynami-
cal evolution of the rotating bubbles would proceed in a similar
manner as presented here, provided they are in sub-equipartition
with the thermal energy. The effective time scale of X-ray burst
on NSs is much shorter than the dynamical time scale and there-
fore is too fast for the magnetic-rotational instability (MRI;
Hawley et al. 1996) to fully develop during the burst. On the
other hand, a highly turbulent pre-burst media with a fully de-
veloped MRI on the verge of entering an enhanced-dissipation
phase cannot be excluded as a possible mechanism that could
lead to runawy ignition and subsequently to X-ray bursts.

4. Summary and conclusions

In this paper we have presented the set of general relativis-
tic Navier-Stokes equations in axi-symmetry, using the Boyer-
Lindquist coordinates in the background of a slowly rotating
neutron star.

To make the numerical solution method viable, the collection
of viscous operators has been reduced considerably by consid-
ering the dominant second order operators only. Such operators
generally stabilize the matrix inversion procedure and enhance
the convergence rate of the numerical method.

The set of equations are solved numerically using an implicit
solution procedure which is based on a pre-conditioned defect-
correction iterative method. Similar to Taylor-flows between
concentric spheres, we use the “Approximate Factorization
Method” as a pre-conditioner, which has superior converging
properties over other non-symmetric methods, such as the black-
white line Gauss-Seidel method.

In the non-rotating case, we have shown that the solver is
capable of accurately reproducing the time-evolution of heat
bubbles during their rise to the surface of the white dwarfs, as
reported by Almgren et al. (2006) and Nonaka (2008).

In the rotating case, it has been shown that viscous-generated
fronts inside heat bubbles propagate into the surrounding quite
rapidly. The effect of these fronts is mainly to transport angular
momentum to the outer layers, leaving the matter in the deeper
layer with less rotational support, hence more compressed.
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Fig. 5. 25 isolines of the angular velocity (left,
Ωmin = 0.03,Ωmax = 0.45) and of the Lorentz
factor (right panel, Γmin = 1.1,Γmax = 1.43)
overlayed on their corresponding colored im-
ages after 0.5 ms are shown, using αtur = 0.01.
Blue-to-red color corresponds to low-to-high
values of Ω an Γ. Radii are given in RNS units
(see Eq. (19)).

Fig. 6. Successive snapshots of the omega-profiles in the outer layers of
a neutron star. Shell I shows the burst-induced propagation of omega-
fronts into the neighboring shells. In shell II, the viscous-induced reac-
tion to the omega-fronts is shown. The schematic picture above shows
that viscosity transports the excess of angular momentum preferably in
the outward direction. The lower figure, which is obtained using hydro-
dynamical calculations, clearly confirms this behavior. The radius is in
RNS units (see Eq. (19)).

Our numerical results show that a viscosity parameter of the
order of αtur ∼ 0.1 is the most reliable value for fitting observa-
tions of NSs during X-ray bursts. A much larger value yields a
propagation time that is much longer than one second, whereas
smaller values yield unstable shell configurations and give rise
to gravitationally unbound outflows.

In addition, a possible mechanism that may underly the
rapid spread of burning ignition fronts has been presented.
Accordingly, the viscous-generated fronts inside a heat bubble
may transport angular momentum into the adjusting layers in

the polar direction. The viscosity then acts to decouple matter
from angular momentum, subsequently enhancing compression
in the deeper layers and giving rise to thermonuclear runaway.
This chain of reactions may run away to spread over the whole
surface of the NSs on the viscous time scale τvis ∼ 1 s .

We note that for the process of decoupling of angular mo-
mentum from matter to operate efficiently, the matter must be
viscous and highly stratified. This is contrary to the case when
the flow is ideal and the angular momentum is frozen-in to the
matter. Here an excess of angular momentum would, of course,
shed the matter away. In the non-ideal case, viscous torques acts
to spread angular momentum in the opposite direction to gravity,
which in turn attracts the matter and tries to sink it deeper into
the gravitational well of the central object. As gravity in gravi-
tationally bound flows is the dominant force, the viscosity coef-
ficient αtur must be sufficiently large for the decoupling process
to operate efficiently.

Apparently, as our calculations show, αtur ∼ 0.1 is not only
the preferable value in accretion disks, but in the outer pre-burst
turbulent layers of accreting NSs also.

Finally, the increased rotational velocity of the outer layers
may be connected to the observed spin up of neutron stars during
X-ray bursts. However, this increase will eventually be followed
by a spin down in later times when the outer layers cool down to
their pre-burst thermal state.

Concerning frame dragging, while included in the present
simulations, its effects are still to be quantified. Also, the effects
of magnetic fields and thermal diffusion is the subject of an on-
going work.
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