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ABSTRACT

We used HARPS to measure oscillations in the low-mass star τ Cet. Although the data were compromised by instrumental noise, we
have been able to extract the main features of the oscillations. We found τ Cet to oscillate with an amplitude that is about half that of
the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 μHz, and we have identified
modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which,
combined with the interferometric radius, gives a mass of 0.783 ± 0.012 M� (1.6%).
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1. Introduction

In the past few years, a new generation of high-resolution, high-
precision spectrographs has been providing unprecedented op-
portunities for studying the fine details of stellar interiors and
evolution through the detection of tiny stellar oscillations. The
observation and analysis of stellar oscillations, or asteroseismol-
ogy, has the potential to change dramatically our views of stars.

The G8 V star τ Ceti (HR 509; HD 10700; HIP 8102; V =
3.50) is expected to have a convective envelope and therefore to
display solar-like oscillations. Since τ Cet has a lower metallic-
ity than the Sun ([Fe/H] = −0.5 ± 0.03; Soubiran et al. 1998),
it bridges the gap towards very metal-poor population II astero-
seismic target stars such as ν Ind, where solar-type oscillations
have been detected (Bedding et al. 2006; Carrier et al. 2007).
Moreover, among stars for which a detection of solar-type oscil-
lations have been attempted (see Bedding & Kjeldsen 2007; and
Aerts et al. 2008, for recent summaries), τ Cet has the lowest
mass.

As a nearby bright star, τ Cet has been intensively studied.
A rotational period of 34 days is suggested by sporadic period-
icities in Ca ii (Baliunas et al. 1996), but overall τ Cet is a very
inactive star with almost no rotational modulation. This led Gray
& Baliunas (1994) to propose that τ Cet is seen nearly pole-on,
while Judge et al. (2004) have suggested that it may be in a phase
analogous to the solar Maunder minimum. Its stability makes it
a favoured target for testing the velocity stability of exoplanet

� Based on observations collected at the European Southern
Observatory, La Silla, Chile (ESO Programme 74.D-0380).

programmes (e.g. Butler et al. 1996). Despite many velocity ob-
servations by different groups, no planetary companions have
been reported (Wittenmyer et al. 2006). Direct imaging with
the Hubble Space Telescope also failed to detect a companion
(Schroeder et al. 2000). However, Greaves et al. (2004) have im-
aged a debris disc around τ Cet that has a dust mass at least an
order of magnitude greater than in the Kuiper Belt.

We note that τ Cet is particularly suitable for an asteroseis-
mic observing campaign because its radius has been determined
interferometrically with an accuracy of 0.5%. The combination
of interferometric and asteroseismic results has been applied to
several other stars, as discussed in detail by Creevey et al. (2007)
and Cunha et al. (2007). As stressed by Brown & Gilliland
(1994), for example, oscillation frequencies are most valuable
for testing evolution theories when the other fundamental stellar
properties are well-constrained. τ Cet satisfies this requirement
as well as can be done for any single star.

2. Velocity observations and guiding noise

We were allocated six nights to observe τ Cet on
2004 October 2−7, using the HARPS spectrograph (High
Accuracy Radial velocity Planet Searcher) on the 3.6-m tele-
scope at the European Southern Observatory on La Silla in
Chile. This spectrograph includes a thorium emission lamp to
provide a stable wavelength reference.

We obtained 1962 spectra of τ Cet, with a dead time of 31 s
between exposures. For the first two nights we used an exposure
time of 40 s (resulting in a Nyquist frequency of 7.04 mHz) but
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Fig. 1. Time series of velocity measurements of τ Cet.

Fig. 2. Velocity measurements of δ Pav over 1.5 h at the start of night 3.

shortened this to 23 s (Nyquist frequency 9.26 mHz) for the re-
mainder, in order to sample better the noise at high frequencies
(see below). The velocities were processed using the method de-
scribed by Bouchy et al. (2001) and the resulting velocities are
shown in Fig. 1. The fourth and fifth nights were mostly lost to
poor weather.

For about 1.5 h at the start of each night, when τ Cet was
inaccessible, we observed the star δ Pav (HR 7665; HD 190248;
HIP 99240; G6-8 IV; V = 3.56). Small amounts of data on this
star were also obtained with UVES at the VLT and UCLES at the
AAT by Kjeldsen et al. (2005), who found oscillations centred
at 2.3 mHz with peak amplitudes close to solar. We obtained a
total of 225 spectra of δ Pav with HARPS, with exposure times
of 50 s (nights 1 and 2) and 23 s (nights 3 and 5). The velocities
for night 3 (100 data points) are shown in Fig. 2.

From the scatter in the velocities and the noise in the power
spectra for both τ Cet and δ Pav, it was obvious that an unex-
pected noise source was affecting the velocities. Figure 3 shows
the power spectrum for night 3 for both stars. For τ Cet (upper
panel), there is a clear excess at 4 mHz, as expected for oscilla-
tions in this star. However, there is also a significant power ex-
cess around 6 mHz. For δ Pav (lower panel of Fig. 3), the power
centred at about 2.2 mHz is from oscillations (see Kjeldsen et al.
2005) but we again see additional power at 6 mHz. The effect
of this instrumental noise is clearly visible by comparing the
time series of δ Pav in Fig. 2 of this paper with that in Fig. 2
of Kjeldsen et al. (2005).

The spurious signal at 6 mHz was later traced to a peri-
odic error in the telescope guiding system. Noise spikes at 3.1
and 6.2 mHz have been reported in HARPS observations of other
oscillating stars, namely 70 Oph (Carrier & Eggenberger 2006),
α Cen A (Bazot et al. 2007) and β Hyi (Bedding et al. 2007). In
the case of τ Cet, the 6 mHz noise is particularly problematic be-
cause it covers a fairly broad range of frequencies and because
the stellar oscillations have very low amplitude. There does not
seem to be a strong noise signal at 3 mHz in our data, although
it is difficult to be certain.

Fig. 3. Power spectrum of velocity measurements for night 3 only,
for τ Cet (9.1 h) and δ Pav (1.5 h).

3. Data analysis and results

Our analysis of the velocity data and of the extracted power
spectrum for τ Cet follows the method developed and used for
α Cen A (Butler et al. 2004; Bedding et al. 2004), α Cen B
(Kjeldsen et al. 2005), ν Ind (Bedding et al. 2006) and β Hyi
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(Bedding et al. 2007). As usual, we have used the measurement
uncertainties, σi, as weights in calculating the power spectrum
(according to wi = 1/σ2

i ). The main difference between τ Cet
and other stars that we have analysed, apart from the problem of
excess noise from the periodic guiding error, is the single-site na-
ture of the observations. Because of this, we have not attempted
to optimize the weights to reduce the sidelobes, in the way that
we did for other stars.

3.1. Adjusting the weights

As for previous stars, we adjusted the statistical weights to ac-
count for bad data points and for night-to-night variations in the
noise level. We did this by measuring the noise at frequencies
where the oscillation signal and the long-term drifts are neg-
ligible. The first step was therefore to remove all power be-
low 800 μHz (to avoid the slow drifts), as well as all power
between 3000 μHz and 5500 μHz (which is dominated by the
oscillations). This filtering was performed by the standard
method of iterative sine-wave fitting (sometimes known as “pre-
whitening”). In this method, the highest peak is identified in the
region of the power spectrum that is to be removed, the corre-
sponding sinusoid is subtracted from the time series, the power
spectrum is recomputed and the procedure is repeated until all
the power is removed.

Once this was done, the filtered time series for each night
was examined for bad data points. These were identified as those
deviating from the mean scatter by more than 4-σ, and were re-
assigned lower statistical weights. We found that more than 10%
of data points had to be significantly down-weighted. This frac-
tion is much greater than for previous stars that we have observed
and indicates the serious effects of the guiding errors. At the
same time, we scaled the statistical weights on a night-to-night
basis, in order to reflect the noise measured at high frequencies.

The consequence of using the revised weights is a significant
improvement in the signal-to-noise, as can be seen in Fig. 4.
Comparison of the left and right panels in that figure shows
that the adjustment of weights has removed essentially all the
excess noise at 6−7 mHz and also decreased the noise level in
the range 1−3 mHz. The mean noise in those regions, measured
in the amplitude spectrum of the whole data set, was reduced
from 6.0 to 4.0 cm s−1. Most of this reduction came from the
down-weighting of bad data points, as described above. Also
note that the strongest oscillation peaks are not as high in the
combined data (top panel of Fig. 4) as in the shorter subsets
(middle and bottom panels). This reflects the finite lifetime of
the modes (see Sect. 3.3).

3.2. The large separation

The final power spectrum of τ Cet is shown in the top-right panel
of Fig. 4. There is a clear excess due to oscillations which is cen-
tred at 4.5 mHz. The next step was to search for a regular series
of peaks, as expected for p-mode oscillations, and to measure
the large frequency separation, Δν. We did this in two ways. The
first was to smooth the power spectrum and then calculate the
autocorrelation in the region of excess power, between 2.5 and
6.0 mHz. This produced a clear peak at 169μHz.

The second method, which we developed for the Kepler
pipeline (Christensen-Dalsgaard et al. 2007), involved measur-
ing the highest peak in the collapsed power spectrum for a range
of values of the large separation. The collapsed power spec-
trum for a given value of Δν is calculated by dividing the power

spectrum into intervals of length Δν and summing these. The
result is shown in Fig. 5, and again we see a peak at 169μHz.

3.3. Oscillations frequencies and mode lifetime

Mode frequencies for low-degree p-mode oscillations in main-
sequence stars are well approximated by a regular series of
peaks, with frequencies given by the following asymptotic
relation:

νn,l = Δν(n + 1
2 l + ε) − l(l + 1)D0. (1)

Here n (the radial order) and l (the angular degree) are in-
tegers, Δν (the large separation) depends on the sound travel
time across the whole star, D0 is sensitive to the sound speed
near the core and ε is sensitive to the surface layers. See
Christensen-Dalsgaard (2004) for a recent review of the theory
of solar-like oscillations.

We have extracted the individual oscillation frequencies for
τ Cet using the standard method of iterative sine-wave fitting
down to S/N = 2.5. The single-site nature of the observations
and the relatively low signal-to-noise ratio mean that this process
is susceptible to one-cycle-per-day ambiguities (±11.57 μHz).
On the other hand, we are helped greatly by the fact that both
the large and small separations are much greater than the ex-
pected mode linewidth, and so all modes are well separated.
Furthermore, τ Cet is an unevolved star and so we expect the
oscillation frequencies to follow quite closely the asymptotic
relation, without the presence of mixed modes. We have used
this information to guide our selection of the correct peaks, but
we stress that there is some uncertainty in the correct mode
identification.

The extracted frequencies are listed in Table 1. They are also
shown in Fig. 6 in echelle format, where the frequencies are
stacked in segments of length Δν. As noted above, the mode
identification is uncertain, and this is particularly true for the
l = 0 and l = 2 modes above 5 mHz.

A fit to these frequencies provides the various large and small
separations, as listed in Table 2. For the definitions of these
separations see Bedding & Kjeldsen (2003), for example. The
separations generally vary with frequency and so the values in
Table 2 are given at 4.3 mHz. The scatter of these frequencies
about smooth ridges in the echelle diagram is about 1−2 μHz,
which indicates the uncertainties in the individual frequencies in
the table. From this scatter we can estimate the mode lifetime,
using the method described by Kjeldsen et al. (2005). We find
a value of 1.7 ± 0.5 d, which is slightly lower than the value of
2.88 ± 0.07 d measured for the Sun (Chaplin et al. 1997).

3.4. Stellar parameters

Detailed fitting of the oscillation frequencies of τ Cet with the-
oretical models is beyond the scope of this paper. However, we
can use our results to determine the mean density of the star,
via the empirical method described by Kjeldsen et al. (2008b).
This method corrects the frequencies of stellar models for near-
surface effects by making use of the fact that the offset between
observations and models should tend to zero with decreasing fre-
quency. The method involves fitting both Δν and the absolute
frequencies of the radial modes (i.e., those having degree l = 0).
We applied the method to τ Cet, using models computed with the
Aarhus stellar evolution code (ASTEC, Christensen-Dalsgaard
2008a) and the Aarhus adiabatic oscillation package (ADIPLS,
Christensen-Dalsgaard 2008b). The result is a mean density
for τ Cet of 2.21 ± 0.01 g cm−3 (0.45%).
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Fig. 4. Power spectrum of τ Cet for different subsets of the data. The left panels show the spectrum with the use of the raw weights, and the right
panel show the spectrum after the weights had been adjusted to account for bad data points and for night-to-night variations in the noise level (see
text).

Fig. 5. Summed power of τ Cet, using different values of the large sepa-
ration. The dotted line marks the maximum, which occurs at a frequency
separation of 169.2 μHz.

As mentioned in the Introduction, the angular diameter of
τ Cet has also been measured. This was first done by Pijpers
et al. (2003) with the VINCI instrument on the VLTI. They
obtained an angular diameter, corrected for limb darkening,
of 1.97 ± 0.05 mas (2.5%), where the uncertainty was domi-
nated by the uncertainty in the angular diameter of the cali-
brator star. Subsequently, Di Folco et al. (2004) used the VLTI
with smaller calibrator stars to obtain an improved diameter of
2.032± 0.031 mas (1.5%). An even more accurate measurement
was obtained by Di Folco et al. (2007) using the FLUOR instru-
ment on the CHARA array, giving 2.015±0.011mas (0.5%). The
weighted mean of these measurements, which we adopt here, is
2.022± 0.010 mas (0.5%). Using the revised Hipparcos parallax
for τ Cet of 273.96± 0.170 mas (van Leeuwen 2007) gives a ra-
dius of 0.793 ± 0.004 R� (0.5%). Finally, combining this radius
with our estimate from asteroseismology of the mean density
gives a mass for τ Cet of 0.783 ± 0.012 M� (1.6%).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810746&pdf_id=4
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Table 1. Oscillation frequencies in τ Cet (in μHz).

n l = 0 l = 1 l = 2 l = 3
18 3293.4
19 3461.7 3692.9
20 3634.5 3863.7
21 3799.3 3885.3 4030.3
22 3976.1 4046.8 4126.1 4202.5
23 4139.9 4222.7 4298.2
24 4388.3 4469.5 4545.1
25 4481.4
26 4652.3 4811.8
27 4816.2 4903.1 5060.5
28 5072.3 5151.8
29 5240.0 5317.5
30 5411.2 5492.8
31 5497.9

Fig. 6. Echelle diagram of oscillation frequencies for τ Cet, using the
frequencies listed in Table 1.

For convenience, we also give an estimate of the luminosity
of τ Cet. The apparent visual magnitude of V = 3.50±0.01, with
the revised parallax, gives an absolute magnitude of MV = 5.69±
0.01. Using a bolometric correction for τ Cet of −0.17 ± 0.02
(Casagrande et al. 2006) and adopting an absolute bolometric
magnitude for the Sun of Mbol,� = 4.74 (Bessell et al. 1998), we
derive a luminosity for τ Cet of 0.488 ± 0.010 L� (2.0%).

3.5. Oscillation amplitudes

We have determined the oscillation amplitude per mode from
the smoothed power spectrum, using the method described by

Table 2. Oscillation parameters for τ Cet (see Sect. 3.3).

Parameter Value at 4.3 mHz
Δν0 (μHz) 169.6 ± 0.2
Δν1 (μHz) 170.0 ± 0.3
Δν2 (μHz) 170.5 ± 0.3
Δν3 (μHz) 171.0 ± 0.3
δν01 (μHz) 4.7 ± 1.3
δν02 (μHz) 12.7 ± 1.2
δν03 (μHz) 21.4 ± 1.2
δν13 (μHz) 16.7 ± 1.4
D0 (μHz) 1.77 ± 0.13
mode lifetime (d) 1.7 ± 0.5

Fig. 7. Smoothed amplitude curve for τ Cet. For comparison, similar
curves are shown for the Sun and α Cen B (Kjeldsen et al. 2008a).

Kjeldsen et al. (2008a). This produces a result that is indepen-
dent of the stochastic nature of the excitation and damping. The
result is shown in Fig. 7. The peak of the envelope occurs at fre-
quency νmax = 4.49 mHz and the peak amplitude per mode (for
radial oscillations) is 11.2 ± 0.8 cm/s, where the uncertainty is
estimated using Eq. (3) of Kjeldsen et al. (2008a). For compar-
ison, we also show in Fig. 7 the amplitude curves measured for
the Sun (using stellar techniques) and for α Cen B, both taken
from Fig. 8 of Kjeldsen et al. (2008a). Note that the luminosity
and mass of α Cen B are, respectively, 0.51 L� (Yıldız 2007) and
0.93 M� (Pourbaix et al. 2002). With this in mind, we see that the
relative amplitudes of the three stars in Fig. 7 are in reasonable
agreement with the L/M scaling relation proposed by Kjeldsen
& Bedding (1995; see also Samadi et al. 2007)

4. Conclusions

We have used HARPS to measure oscillations in the low-mass
star τ Cet. Although the data were compromised by instrumen-
tal noise, we have been able to extract the main features of
the oscillations. We found τ Cet to oscillate with an ampli-
tude that is about half that of the Sun, and with a mode life-
time that is slightly smaller than solar. The large frequency
separation is 169 μHz, and we have identified modes with de-
grees 0, 1, 2 and 3. It is important to stress that, given the rel-
atively low signal-to-noise ratio and the single-site nature of
the observations, there is some uncertainty in the correct mode
identification.

We used the frequencies of the radial modes to estimate the
mean density of the star to an accuracy of 0.45%, from which
we derived a mass of 0.783 ± 0.012 M� (1.6%). More detailed

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810746&pdf_id=6
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modelling of the oscillation frequencies will be the subject of a
future paper.
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