
A&A 492, L13–L16 (2008)
DOI: 10.1051/0004-6361:200810911
c© ESO 2008

Astronomy
&

Astrophysics

Letter to the Editor

A nanoflare model for active region radiance: application
of artificial neural networks

M. Bazarghan1,2, H. Safari2,3,4, D. E. Innes3, E. Karami5, and S. K. Solanki3

1 IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007, India
2 Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
3 Max-Planck Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany

e-mail: innes@mps.mpg.de
4 Department of Physics, Zanjan University, Zanjan, Iran
5 Department of Electronics Science, University of Pune, Pune 411007, India

Received 4 September 2008 / Accepted 22 October 2008

ABSTRACT

Context. Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission.
Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate
the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater
than 2 is it considered possible that nanoflares contribute significantly to the energy input.
Aims. Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining
the power law exponent of the nanoflare energy distribution.
Methods. A simple nanoflare model based on three key parameters (the flare rate, the flare duration, and the power law exponent of
the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si iii, observed by
SUMER in the corona of an active region as it rotates around the east limb of the Sun. Light curve pattern recognition by an Artificial
Neural Network (ANN) scheme is used to determine the values.
Results. The power law exponents, α ≈ 2.8, 2.8, and 2.6 are obtained for Fe XIX, Ca XIII, and Si iii respectively.
Conclusions. The light curve simulations imply a power law exponent greater than the critical value of 2 for all ion species. This
implies that if the energy of flare-like events is extrapolated to low energies, nanoflares could provide a significant contribution to the
heating of active region coronae.
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1. introduction

Heating the corona by the dissipation of current sheets was
first suggested by Gold (1964) and later developed to form
the basis of the nanoflare heating model by Levine (1974)
and Parker (1983, 1988). The idea is that current sheets arise
spontaneously in coronal magnetic fields that are braided and
twisted by random photospheric footpoint motions. These cur-
rent sheets dissipate in many small-scale reconnection events,
heating and accelerating plasma in the coronal loops. In the
corona, they would give rise to multiple unresolvable loop
strands with specific observable signatures (Zirker & Cleveland
1994; Warren et al. 2002; Cargill & Klimchuk 2004; Patsourakos
& Klimchuk 2005). Recently Aschwanden (2008) found evi-
dence against such multi-temperature strands in TRACE coro-
nal images. He concludes that nanoflare heating is only pos-
sible if it occurs in the chromosphere/transition region where
heating across magnetic field lines can produce the isothermal
loops seen in the corona. Irrespective of where the nanoflare
energy input sites are, a key question is whether the energy of
nanoflares is sufficient to heat the corona or not. Most of the in-
dividual nanoflares would be too small to detect and the major-
ity would be small fluctuations on the overall background. That
background could be produced by the blending of many small
events.

The approach taken to estimate their contribution has been to
extrapolate the energy frequency distribution of detectable flare-
like events. The energy frequency distribution of larger flares
tends to follow a power law distribution

dN
dE
∼ E−α, (1)

where dN is the number of flares per energy interval dE. The
energy of small flares dominates if α > 2 (Hudson 1991). This
is therefore a critical parameter for the nanoflare heating model.
The standard method to determine α is to evaluate the energy of
many flares in a series of observations and then plot their fre-
quency in bins of energy dE. The majority of analyses based
on this type of event counting deduce α ≈ 1.7 (Lin et al. 1984;
Shimizu 1995; Aschwanden & Parnell 2002), a value smaller
than the critical 2. These results may, however, be misleading.
For example, Parnell (2004) demonstrated that one can obtain α
ranging from 1.5 to 2.6 for the same data set using different but
still reasonable sets of assumptions for the analyses.

Here we take an alternative approach and model ultraviolet
(UV) radiances observed by the Solar Ultraviolet Measurements
of Emitted Radiation (SUMER; Wilhelm et al. 1995, 1997) in
an active region corona, assuming that the radiance fluctuations
and the nearly constant “background” emission are caused by
small-scale stochastic flaring (Pauluhn & Solanki 2004, 2007).
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Fig. 1. EIT 195 Å images of the observed active region at two times,
showing the position of the SUMER slit, indicated by the vertical line.

The model has been applied successfully to UV radiance fluctu-
ations in the quiet Sun (Pauluhn & Solanki 2007). The method
compares light curves generated assuming random flaring with
a power law frequency distribution to the light curves of an
observed emission line. It has the advantage that it takes into
account without bias weak, blended micro- and nanoflares that
produce a nearly continuous background.

Here we apply this technique to off-limb time series
recorded by SUMER. The three lines modelled, Fe XIX λ 1118.07
(6.3 MK), Ca XIII λ 1133.76 (2.2 MK) and Si iii λ 1113.23
(0.06 MK), cover two decades of formation temperature from
the lower transition region to the hotter gas in the corona.

The analysis described here uses Artificial Neural Networks
(ANNs) to find the optimum match to the three parameters of
the model. The main advantage of this method over previous
analyses based on the radiance distribution function (Pauluhn &
Solanki 2007; Safari et al. 2007) is that we are able to obtain
quantitative values for all parameters, including α. Another ad-
vantage of the ANN method is that it concentrates on the number
and shape of the emission peaks along the light curves with little
weight on the low radiance pixels, which was a problem with the
Safari et al. (2007) analysis.

2. SUMER data and analysis

The observed active region (AR 1967) is shown in Fig. 1. This
is the region and data set discussed in Wang et al. (2006). The
SUMER 300′′ × 4′′ slit was placed, as shown, at a fixed posi-
tion above the limb. Observations with a cadence of 90 s in six
spectral lines, Fe XIX λ 1118.07 (6.3 MK), Ca XV λ 1098.48 and
λ 555.38 (3.5 MK), Ca XIII λ 1133.76 (2.2 MK), Ne VI λ 558.62
(0.3 MK) and Si iii λ 1113.23 (0.06 MK) were transmitted, for
periods of 12.6 h followed by a full spectrum scan (800−1600 Å)
of 3.4 h. A typical time sequence in any one line consists of
500 exposures. The three strongest lines, Fe XIX, Ca XIII, and
Si iii, are analysed here. Images of their radiance along the slit
are shown in Fig. 2 for a typical 12.6 h period. Distinct events
can be seen in Fe XIX, but only the very strongest make an im-
pression on the bright active region Ca XIII emission when they
cool (Innes & Wang 2004). Si iii is seen close to the limb and
appears to be generated by small surge-like ejections. Our re-
sults are based on three such time series, taken over the days
16–18 September 2000.

The emission along each row was very noisy at several po-
sitions. To improve the signal-to-noise but at the same time not
to lose individual structures, the light curves were obtained by
first averaging SUMER data over five spatial pixels (5′′) along
the slit. Only the light curves with all 500 data points above a
chosen threshold were selected for analysis. We did not want to
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Fig. 2. Time series of line radiance along the SUMER spectrometer slit
for the period 16 Sep. 19:00 UT to 17 Sep. 7:36 UT. The distance in
pixels along the SUMER slit is shown on the vertical axis.

base the threshold on an absolute intensity because this would
have biased the input data against low background. So for the
Fe XIX and Ca XIII, the threshold was set such that the ratio of
the Ne VI to Fe XIX intensity was less than 0.5. This ensures that
only light curves from the central part of the active region were
taken. Most of the Si iii emission was concentrated near the limb
to the south (Fig. 2). The Si iii selection was based on the local
scatter in the second moment of the line, the line width. If the
standard deviation of the line width was greater than 1.0 over
a local 5 × 5 space-time block, then the central data point and
associated light curve were excluded from the analysis. This re-
sulted in 35 test light curves for both Fe XIX and Ca XIII and 11 test
curves for Si iii. Before being fed to the neural network, all light
curves were normalized to their maximum.

3. Model

3.1. Applicability

The emission in the active region corona is assumed to be caused
by many random flares with flare radiances following a power
law frequency distribution. Flares with a power law frequency
distribution, α, in radiance are assumed to erupt with a fre-
quency, p f , and have a flare duration τ = τr + τd, where τr is
the rise time and τd the decay time. We assume τr/τd = 0.5. The
other free parameter in the model is the ratio of the maximum to
minimum flare energy which is set to Emax/Emin = 50.

For a large number of independent random flares, the distri-
bution of normalized radiances, J = I/I where I is the radiance,
is lognormal with shape parameterσ (Pauluhn & Solanki 2007):

f (J) =
1

σJ
√

2π
exp

(
− (log J)2

2σ2

)
· (2)

σ is inversely proportional to
√
τp f (Pauluhn & Solanki 2007),

with a slight α dependence (Safari et al. 2007). A small shape
parameter (σ < 0.3) indicates a symmetric distribution due to
high background emission caused by either a long duration time,
τ, or a high flare frequency, p f . The radiance distributions of the
three lines of Fe XIX, Ca XIII and Si iii and their lognormal fits
are shown in Fig. 3. This gives us confidence that the stochastic
flare model is applicable. It is interesting to note that both the
Fe XIX and the Si iii lines have the same shape parameter.

Light curves for the stochastic flare model are shown for α =
1.6 and α = 2.4, and two combinations of τp f = 2 in Fig. 4. The
light curves are visibly different, although they all have shape
parameter σ ≈ 0.6. The effect of α on the light curve is seen in
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Fig. 3. Distribution functions of SUMER data in the active region
corona (solid lines) and best fit lognormal functions (dashed lines). The
radiances are normalized to their median and their distributions to the
number of data points.
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Fig. 4. Light curves for flare models run with different τ, pf and α
parameters. All light curves have τpf = 2.

the ratio of strong to weak flares. The left-hand light curves have
more large flares because they have a smaller exponent. Picking
up these pattern changes is the strength of the ANN method.

3.2. Neural networks and parameter estimation

We applied the ANN method to probe the unknown parameters
(power law exponent, α, duration time, τ, and flare rate, p f ) of
the three lines. ANNs have become a popular tool in almost ev-
ery field of science. In recent years, ANNs have been widely
used in astronomy for applications such as star/galaxy discrim-
ination, (Andreon et al. 2000; Cortiglioni et al. 2001), morpho-
logical classification of galaxies, (Storrie-Lombardi et al. 1992;
Ball et al. 2004), and spectral classification of stars (von Hippel
et al. 1994; Bazarghan & Gupta 2008; Bazarghan 2008).

We employ probabilistic neural networks (PNNs Specht
1988, 1990). The PNN learns to approximate the probability
density function of the training samples. It uses a supervised
training set to develop distribution functions within a pattern
layer. These functions in the recall mode are used to estimate
the likelihood of an input feature vector being part of a learned
category or class.

An example of a PNN is shown in Fig. 5. This network has
four layers. The network contains an input layer which has as
many elements as there are separable parameters needed to de-
scribe the objects to be classified. It has a pattern layer, which
organizes the training set such that each input vector is repre-
sented by an individual processing element. The third layer is
the summation layer, which has as many processing elements
as there are classes to be recognized. Each element in this layer
combines via processing elements with the pattern layer which

Fig. 5. Schematic of a typical probabilistic neural network.

relates to the same class and prepares that category for output.
Finally, there is the output layer that corresponds to the summa-
tion unit with the maximum output.

For the identification of SUMER light curves, the input vec-
tor, X = (x1, x2, ..., xn), is the light curve with 500 data points
(n = 500). The network is first trained to classify light curves
corresponding to all the possible combinations of α, τ, and p f .
For this we synthetically generate light curves with the nanoflare
code described in Pauluhn & Solanki (2007). We generate one
light curve for each combination of the parameters:

- the power law exponent spanning 1.5 ≤ α ≤ 3.2 in steps
of 0.1;

- the duration time spanning 1.5 ≤ τ ≤ 52 in steps of 1;
- the flare rate spanning 0.1 ≤ p f ≤ 0.9 in steps of 0.1 with

additional values at 0.05 and 0.95.

This gives a set of 6930 pattern groups (k = 6930), one group
for each combination of α, τ, and p f . Each pattern group, k, is
characterized by Nk Gaussian functions (Specht 1988, 1990).

When a SUMER light curve of an unknown classification is
fed to the network, the summation layer of the network computes
the probability functions S k of each class. Finally at the output
layer we have C, the value with the highest probability.

4. Results and conclusions

4.1. Results

In the present work, PNN is used as a tool to extract the three
flare model parameters required to reproduce the SUMER light
curves. All 35 Fe XIX and Ca XIII, and 11 Si iii SUMER light
curves from the three days of observations were fed individu-
ally into the neural network and the parameters were obtained
for each light curve separately. The final PNN outputs are shown
in Table 1. The bold numbers are the statistically maximum oc-
currence for each parameter. For example for Fe XIX, α = 2.8 is
found in more than 70% of the light curves. The minimum and
maximum values, given on the left and right, indicate the scatter
in the light curve parameters.

In each line there is 20% scatter in α, and 50% scatter in τ.
The range of p f values for Fe XIX and Si iii is much broader,
suggesting that events producing emission in these temperature
ranges do not have the same rate everywhere but are seen in ir-
regular bursts. We also note that the value of τp f is roughly the
same for both Fe XIX and Si iii, as suggested by their shape pa-
rameter (Fig. 3). The Ca XIII light curves are all matched with
a high value of p f , consistent with the idea that the 1 MK ac-
tive region corona requires almost continuous flaring. The four
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Table 1. The SUMER spectral lines and the parameter values given by
PNN.

SUMER spectra PNN outputs1

lines α τ pf

Fe XIX 2.5 2.8 3.1 9 14 20 0.1 0.2 0.7
Ca XIII 2.6 2.8 3.0 41 45 45 0.8 0.9 0.9
Si III 2.4 2.6 2.8 5 9 12 0.2 0.3 0.9

1 The most frequent values are given in bold, and the minimum and
maximum on the left and right. τ is per exposure time (90 s) and pf is
per exposure time per 5′′ × 4′′ spatial element.

Fig. 6. Samples of the radiance time series: left panel: SUMER data,
and right panel: simulation data obtained with the parameters given in
Table 1.

times higher rate for Ca XIII than Fe XIX suggests that most of the
Ca XIII emission is produced by heating events below the Fe XIX

formation temperature (6.6 MK).
Example light curves obtained using these parameters are

compared with the observed ones in Fig. 6. Both the Si iii and
Ca XIII simulations look remarkably similar to their observed
light curves. The background radiance of the Fe XIX light curve
is about a factor of 2 too low. The Fe XIX light curves had a p f
ranging from 0.7 to 0.1, so we suspect that in this case the p f
value is slightly too low. Also for Fe XIX, the ratio τr/τd deduced
from the data is smaller than the fixed value 0.5 used here. This
may influence the accuracy of the method.

The sensitivity of the PNN output depends on the training
set. During the training session, the network must see all possible
patterns that it is supposed to classify in the testing session. With
500 simulated light curves in the training set, PNN was not able
to converge for several of the SUMER light curves. When we
increased the number of simulated light curves to 6930, we were
able to obtain unique parameters for all observed light curves.

4.2. Conclusions

The concept that the solar corona may be heated by numerous,
randomly distributed, small flare-like events called nanoflares is

considered by comparing simulated and observed emission line
light curves. The difference between this and previous methods
is the fully automated modelling of the light curve structure.
There is no human decision required for background/event cut-
off levels or best fit parameters.

The result is power law flare energy frequency exponents
greater than 2.5 for all three emission lines considered, Si iii,
Ca XIII and Fe XIX. This is consistent with the corona being
heated mainly by nanoflares, and demonstrates the importance
of nanoflare “background” emission in determining the power
law exponents. The parameter with highest uncertainty or largest
scatter is the flare rate, especially for the lines formed at transi-
tion region and hot flare temperatures. Coronal plasma at these
temperatures is produced sporadically and is associated with
more specific coronal and chromospheric loop structures than
the general active region corona, so the scatter is to be expected.

The next step will be to determine the actual flare energies
producing the nanoflare emission. This is a much more compli-
cated exercise because the modelled light curves are observed in
the corona which may be heated by events occurring lower in the
atmosphere (Aschwanden 2008), so that it requires a model for
the energy transfer to the observation position.
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