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ABSTRACT

Context. Modelling the emission properties of compact high energy sources such as X-ray binaries, AGN or y-ray bursts represents
a complex problem. Contributions of numerous processes participate non linearly to produce the observed spectra: particle-particle,
particle-photon and particle-wave interactions. Numerical simulations have been widely used to address the key properties of the high
energy plasmas present in these sources.

Aims. We present a code designed to investigate these questions. It includes most of the relevant processes required to simulate the
emission of high energy sources.

Methods. This code solves the time-dependent kinetic equations for homogeneous, isotropic distributions of photons, electrons, and
positrons. We do not assume that the distribution has any particular shape. We consider the effects of synchrotron self-absorbed ra-
diation, Compton scattering, pair production/annihilation, e-e and e-p Coulomb collisions, e-p bremsstrahlung radiation and some
prescriptions for additional particle heating and acceleration.

Results. We illustrate the code’s computational capabilities by presenting comparisons with earlier works and some examples.
Previous results are reproduced qualitatively but some differences are often found in the details of the particle distribution. As a
first application of the code, we investigate acceleration by second order Fermi-like processes and find that the energy threshold for

acceleration has a crucial influence on the particle distribution and the emitted spectrum.

Key words. radiation mechanisms: general — plasmas — methods: numerical — galaxies: active — X-rays: binaries —

gamma rays: bursts

1. Introduction

High energy sources, such as X-ray binaries, active galactic nu-
clei (AGN hereafter), or y-ray bursts, exhibit spectra detectable
to very high energy. This radiation must originate in a plasma for
which a significant fraction of the particles have relativistic ener-
gies. Understanding the properties of these hot plasmas remains
a challenge in the modelling of X- and y-ray sources.

Among the many processes at work, there are particle-
particle interactions, such as Coulomb collisions, particle-
photon interactions such as Compton scattering, synchrotron
radiation, bremsstrahlung emission, or pair production/
annihilation, and particle-wave interactions that lead to par-
ticle acceleration. However, the way they add or compete is
highly non-linear and the cross sections involved are complex.
Investigating a large parameter space is required, and in spite
of important breakthroughs, these plasmas are still poorly
understood. Analytical studies provided interesting qualitative
results with approximations, but a more general approach
based on numerical simulations is required to explain the
details and complexity of contemporary observations. The first
detailed investigations were analytical attempts to model the
Compton scattering in thermal plasmas of fixed temperature
(Bisnovatyi-Kogan et al. 1971; Sunyaev & Titarchuk 1980;
Guilbert 1981; Zdziarski 1985; Guilbert 1986). In parallel, some
of these results were confirmed by Monte-Carlo simulations
(e.g. Pozdnyakov et al. 1983; Gorecki & Wilczewski 1984). The
additional role of pair production and annihilation in thermal

plasmas, whose temperatures were determined self-consistently,
was then studied both analytically (Svensson 1982b, 1983;
Guilbert & Stepney 1985; Kusunose 1987) and numerically
(Zdziarski 1984, 1985). These works constituted significant
advances because they explicitly accounted for the back reaction
of the radiation field on the plasma temperature. However, they
were limited to thermal distributions of particles, whereas
significant evidence of strongly non-thermal populations was
found in many sources. For instance, spectra of blazars or radio
loud AGN were shown to be shaped at least by the synchrotron
self-compton emission of purely non-thermal electrons (e.g.
Ghisellini et al. 1998b). At these high energies, accelerated
particles cool on very short timescales before they can be
thermalized for instance by two body collisions. The balance
between this cooling and acceleration typically produces non-
thermal distributions. Acceleration processes are still poorly
understood. A simple way to simulate the effect of particle
acceleration is to inject particles at high energy. Although it does
not reproduce exactly the physics involved, this prescription has
been widely used and produced interesting results (as shown
in most of the references cited here). Significant effort has also
been taken in developing more precise modelling of acceleration
mechanisms, but in such studies, the radiation field is treated
crudely (Li et al. 1996; Dermer et al. 1996; Li & Miller 1997,
Katarzynski et al. 2006b).

With the increasing number of considered processes and the
increasing precision of their description, numerical analysis has
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become a prime method of investigation. Even so, a full treat-
ment of the problem accounting for the coupled evolution of in-
homogeneous, anisotropic distributions of leptons and photons,
both in momentum and position spaces, appears to be still be-
yond the capabilities of present-day computers. Numerical sim-
ulations of high energy plasmas have been performed mainly
following three different approaches which all make trade-offs
between the various aspects of the problem.

First, the Monte Carlo technique (Pozdnyakov et al. 1977;
Stern et al. 1995) allows one to follow particles and photons in
space, time, and energy as they undergo mutual interactions. It
solves the full radiative transfer problem and accounts explicitly
for geometrical effects. At present, the MC method is probably
the mos effective way to model fully 3-dimensional problems.
However, this detailed procedure is time consuming, particularly
when modelling the rapid dynamics of the non-thermal electron
population in momentum space (Malzac & Jourdain 2000), and
when synchrotron self-absorption effects are important (see dis-
cussion in Stern et al. 1995). For this reason, the Monte-Carlo
methods have been applied to date to pure Maxwellian plasmas
and/or steady state problems with 3D geometry.

Another method that accounts correctly for the geometry,
involves solving numerically the exact radiation transfer equa-
tion for given geometries and particle distributions (Poutanen
& Svensson 1996). This method is far more efficient than
Monte Carlo simulations which makes it easier to compare with
data. It is, however, far less versatile than Monte Carlo meth-
ods and does not solve the kinetic equations for particles. The
back reaction of the radiation field on the particle distribution is
modelled only for the assumption of a Maxwellian plasma (in
which case the plasma temperature may be adjusted according
to energy balance). The method applicability is also limited to
the resolution of steady state problems.

The third approach, which we adopt in this paper, abandons
the detailed description of the geometry to concentrate on the ki-
netic effects. It consists of solving the local kinetic equations for
the particle and photon distributions. To maximaze efficiency,
radiative transfer is usually modelled with a simple photon es-
cape probability formalism assuming isotropic photon and parti-
cle distributions. This method can be applied to different, possi-
bly time-dependent, problems for which geometry does not play
a crucial role!. Within the limits of the one-zone approximation,
it is more efficient than other methods and allows for fast data
fitting.

The first detailed investigations of high energy plasmas with
this technique concentrated on thermal pair plasmas (Fabian
et al. 1986; Ghisellini 1987). More precise modelling was then
proposed in which the particle distributions were decomposed
into the sum of a thermal low-energy pool and an arbitrary high
energy tail (Lightman & Zdziarski 1987; Svensson 1987; Coppi
1992; Zdziarski et al. 1993; Ghisellini et al. 1993; Li et al. 1996).
The latter models have been applied most to fitting and inter-
preting data. They do not however describe the possible devia-
tion from a Maxwellian distribution at low energy, nor do they
address explicitly any thermalization process. Only recent nu-
merical work considered fully arbitrary distributions of particles.
Ghisellini et al. (1998a) concentrated on the role of synchrotron
self-absorbed radiation in AGN. They confirmed previous

! For problems in which geometry is important, radiative transfer can
in principle be accounted for by coupling this kinetic code with a radia-
tion transfer solver or a Monte Carlo code (as demonstrated by Bottcher
& Liang 2001), although computing time may then become a serious
issue.
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analytical results (Ghisellini et al. 1988) by demonstrating that
the exchange of energy between particles by means of syn-
chrotron photons can be an efficient thermalization process in
magnetized sources. These simulations focused however on this
specific interaction, and other processes were only considered
by crude approximations, particularly Compton radiation, or not
considered at all. Nayakshin & Melia (1998) investigated the
thermalization of arbitrary distributions by two-body particle in-
teractions and heating by high energy protons. The additional
role of synchrotron radiation was not however considered. The
most complete numerical treatment of high energy plasmas was
probably one developed in the context of y-ray bursts by Pe’er
& Waxman (2005). Our code is similar to this study but differs
in that these authors considered neither particle stochastic accel-
eration nor the effect of Coulomb losses.

The code presented here solves the time-dependent equa-
tions simultaneously for isotropic, arbitrary photon, electron,
and positron distributions. The evolution of these populations
is modelled in time while being affected by self-absorbed
cyclo-synchrotron radiation, Compton scattering, pair produc-
tion/annihilation, e-e and e-p Coulomb collisions, self-absorbed
e-p bremsstrahlung radiation, and additional particle accelera-
tion and heating. Each process is described with minimal ap-
proximations and by using in most of cases the exact cross
sections. For instance, the formulae used for the synchrotron
emission and absorption are valid from the sub-relativistic to the
ultra-relativistic regime. This numerical strategy allows one to
investigate many different astrophysical situations that occur in
various high energy sources.

The structure of this paper is as follows. Section 2 provides a
description of the microphysics adapted into our code. Then, in
Sect. 3, we present the numerical techniques. Finally, in Sect. 4
the code is tested against previous published results, providing
an overview of its capabilities.

2. Radiation and kinetic processes

We describe the processes included in the code. We present first
the general notation used in this paper. The particle energy is de-
scribed either by the relativistic Lorentz factor y = E/m.c?, by

the adimensional momentum p = P/m.c = +/y? — 1, or by the
beta parameter 8 = p/y, where m, is the electron mass and c is
the speed of light. Similarly, the photon energies are described
by their frequencies v or w = hv/m.c?. The particle and photon
populations are described by their angle-integrated distribution

ggjp and N, = {gﬁgv, where N, and ON,
are the number of electrons, positrons and photons per unit vol-
ume &°x and per unit momentum dp or frequency dv. For sim-
plicity, the total lepton distribution is also used: N = Ne- + Ne+.
Finally, R is the typical length scale of the emission region. Since
we consider a homogeneous medium, most of the processes are
scale-free, meaning that most quantities are simply proportional
to R, R, or R>. For those quantities, R determines only the over-
all normalization factor. For instance, the total luminosity of un-
magnetized sources scales as R3, but there is no reference scale
in the problem. The only process that explicitly involves a ref-
erence length scale is the synchrotron self-absorption, since it is
independently determined by both the magnetic intensity and the
total magnetic energy of the source, which is related directly to
the source size for a given magnetic intensity.

functions Ne= =
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2.1. Self-absorbed synchrotron radiation

The cyclo-synchrotron radiation process is produced by charged
particles gyrating along magnetic field lines. It is one of the most
important processes in astrophysics and is invoked to explain
the radio emission of many magnetized sources, such as super-
nova remnants, pulsar wind nebulae, AGN, X-ray binaries, and
y-ray bursts. In particular, it produces soft photons that can be
up-scattered by Compton scattering producing the well known
double humped synchrotron self-compton spectra used to model
for example the emission of blazars or radio-loud AGN. The re-
verse process, cyclo-synchrotron absorption, is less well known,
although efficient at low energy. Besides explaining some ob-
served spectra, cyclo-synchrotron emission and absorption both
influence the involved particles by cooling and heating them
respectively. As we discuss later, these interactions can ther-
malize high energy particles (the so-called synchrotron boiler,
Ghisellini et al. 1988).

Following the main assumption of the code, we assume
isotropy in the radiation field and particle pitch angle. These are
accurate approximations when the magnetic field is tangled. The
cyclo-synchrotron emission and absorption are characterized by
the emissivity spectrum ji(p, v) (erg s~! Hz™!) of one single par-
ticle of momentum p and the cross section os(p, v) (cm?). Both
quantities are related to each other by the formula® (Le Roux
1961; Ghisellini et al. 1988; Ghisellini & Svensson 1991):

1 1 1
os(p,v) = ————0 is(p, v 1
s(pv) = o e p207 [pyis(p,v)] (1)
where m, is the electron mass. The emissivity and cross section
depend on the magnetic field, whose intensity is characterized

by the magnetic compactness (Ghisellini et al. 1988):

orR B2

Iy= 2152 2
B mec? 8 2)

As mentioned earlier, the synchrotron self-absorption depends
explicitly on the source size. Although the overall normaliza-
tion of the emissivity and absorption is only proportional to
a combination of the magnetic field intensity and source size
(namely Ip), their shape depends on the cyclotron frequency
vg = eB/2nm.c, which depends only on the magnetic field inten-
sity. For a given magnetic compactness parameter, simulations
of sources with different sizes correspond to cases with differ-
ent magnetic field intensities and therefore produce different ob-
served spectra.

In uniform systems, the time evolution in the mean intensity
integrated over solid angles I, = hvcN, (erg s™! Hz™! em™) is
described by the equation:

6111//6 =Ky = KVIV (3)
with

[y = f Neju(pdp  (ergem™s™ Hz™), @)
« = f Neos(povdp  (cm™). )

We note that this equation differs from one often used in pre-
vious works (for example Ghisellini et al. 1988, 1998a). These
have concentrated mostly on the steady state properties of mag-
netized sources and did not include this time dependence. To

2 The term 1/47 in Egs. (1) and (8) relates to the average over the solid
angle.
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account for photon escape and the non-absorbed part of the ob-
served spectra, a finite size domain is assumed in these papers
and the space equation 9., = u, — kI, is solved for uniform
emissivity s and absorption «; on a typical length scale R, which
yieds the synchrotron self-absorbed radiation: I, = pt/x(1 —e™*F).
This is an approximate way to deal with the space dependence of
the simulated system since it implies a non-uniform synchrotron
radiation whose feedback onto the lepton equation would need
to be incorporated in a fully space-dependent model. This solu-
tion would holds also only when synchrotron self-absorption is
involved. Other processes, such as Compton scattering or pair
production/annihilation, would also contribute to the emissiv-
ity u and absorption « in some way and in this description it
is unclear how the synchrotron interaction couples with others
in the global equation for the radiation field. We consider a ho-
mogeneous (or averaged) radiation field which, associated with
the photon escape probability (see discussion in Sect. 2.6) rep-
resents another approximate way to model crudely the geome-
try. However, this method solves the exact time-dependent equa-
tion and the synchrotron emission is added consistently to other
emission processes.

Simultaneously, the equation for the time evolution of the
lepton populations is (McCray 1969; Ghisellini et al. 1988):

ONes = 0, | ZANe: | + =0, | 26, [ £ DN, (©)
’ p(p ) 277 p " \p

where the y/p factors result from the choice of p as a variable
instead of y and

1
— | Gsi—osh)dv s™h, (7)
1

1 Jsly
Dl = — d
€ 47T mgczf V2 4

Equation (6) can be written in many different ways that are ana-
lytically equivalent. The one used (Egs. (6)—(8)), associated with
a specific numerical scheme to estimate derivatives, enable good
numerical accuracy. In particular, the energy conservation can be
easily satisfied to machine precision when particles and the pho-
ton field exchange energy, since dE. /dt = mc? f 0, [AcN:]dp =
= [[Gs = osI,)Nedpdv = — [(us — kIv)dv = —dE, /dt.

There is no exact analytical expression for pitch angle
averaged- and photon direction integrated- emissivity and ab-
sorption that is valid in all regimes. The exact values are de-
rived from numerical integrations, which are time-consuming
and hard to perform, especially for low energy particles when
the emission is dominated by a few narrow harmonics. However,
approximations have been proposed, which are valid in some
regimes (e.g. Marcowith & Malzac 2003). We use a combina-
tion of two approximations. For sub-relativistic particles, we use
the formula for js first proposed by Ghisellini et al. (1998a)
and corrected by Katarzynski et al. (2006a) both to match the
relativistic spectrum more accurately and to describe the spec-
trum more closely close to the minimal frequency. This approx-
imation is less accurate for very low energy particles (typically
B < 0.1). However, for most astrophysical cases, the emission
is produced mainly by energetic particles, and this regime has
little influence on the total particle distribution and radiation
field. Numerical experiments have confirmed that the choice of
Js and o at low energy has negligible effect. In the relativis-
tic regime, we use the well-known synchrotron power spec-
trum integrated over an isotropic distribution of pitch angles
(Crusius & Schlickeiser 1986; Ghisellini et al. 1988). We note

A =

(S

s™h. (8)
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that we correct this formula similarly to match more accurately
the sub-relativistic regime. The transition between both regimes
is achieved by applying an exponential threshold/cut-off to the
formulae at y = 2. The formulae for o5 are computed analyti-
cally from j; with Eq. (1) and implemented into the code.

2.2. Compton scattering

Compton scattering is a well-known interaction between leptons
and photons. Most of the previous studies assume thermal dis-
tributions of particles. In such cases, only the temperature and
total number of particles are computed. This assumption enables
rapid computation with simple formulae but omits the physics
of non-thermal particles. We therefore use exact analytical ex-
pressions for unpolarized radiation and arbitrary distributions of
isotropic particles and photons.

2.2.1. Basic equations

The effect of Compton scattering can be described by the sum of
individual encounters over the entire distributions. The scatter-
ing of isotropic photons of energy hvy = womec* off isotropic
particles of energy Ey = yomc? is fully characterized by the
resulting distribution of scattered photons o.(pg,vo — V).
This differential Klein-Nishina cross section has been computed
by several authors (Jones 1968; Brinkmann 1984; Nagirner &
Poutanen 1994). The numerical evaluation of these analytical
expressions can be difficult, in particular for low or high en-
ergy particles and photons. We use an expression based on the
formulae by Jones (1968) and modified to overcome numerical
accuracy issues (Belmont 2008).

The exact time evolutions of the full particle and photon dis-
tributions are described by the following equations:

Nes (p) = ﬂ Ne- (p0)N, (vo)eere(po. vo — v(p)dpodve
%HMIMMMﬁmmM» ©
0N, (v) = ﬂNe(Po)Nv(Vo)CO'c(Po,Vo — v)dpodvo

—N,(v) f Ne(po)ca(v, po)dpo, (10)

where the photon frequency v(p) is constrained by the energy
conservation during one scattering event: Av(p) — hvy + ymec> —
Yomec® = 0. For each distribution, the first integral provides the
number density of scattered particles/photons that have a par-
ticular energy after one single scattering and the second one
is the probability that particles/photons of this energy are scat-
tered to some other energy. This is what we refer to as the in-
tegral approach. As discussed hereafter, the numerical compu-
tation of this integral suffers from accuracy issues because of
discretization.

In the small-angle scattering limit, when the scattered pho-
tons (or particles) have energies similar to those incoming, a
Fokker-Planck approximation can be used (FP hereafter). In this
case, a second-order series expansion of the exact equations pro-
duces the FP evolution equations for the different species:

1
9:N,(v) = d,, [A°N, ] + Eafuz [DEN,], (11)

Y

4 L1y
ANe=(p) = 0 (—AgNe+)+—6 [—a (—DQ%)] (12)
t )4 p 2 P P P p

R. Belmont et al.: Simulating relativistic plasmas

with
A =— fNecof(p, vydp, D= fNecoé(p, v)dp, (13)
AS = fNycof(p, vydv, D= fNVCO'g(P, v)dv, (14

and where we have introduced the first 3 moments of the scat-
tered photon distribution:

0% (Do, Vo) = f e(posvo — V)dv, (15)
o< (P, v0) = f (@ = w0)Te(Po, vo = V), (16)
%P, v0) = f (@ = w0 oe(posvo — V)dv, (17)

which are the total cross section, the mean photon energy, and
the dispersion, respectively.

This approximation allows far quicker computation since,
when the first moments have been tabulated, only single integrals
are required whereas the exact computation requires double in-
tegrals. However, the Fokker-Planck approach used to model the
evolution of particle and photon distributions is valid only in re-
gions of the incident energy space (vo, po) for which the relative
energy exchange in one scattering is small: Ap(po,vo)/po < 1
and Av(po, vo)/v(vp) < 1, respectively. These conditions will be
presented in a forthcoming publication (Belmont 2008).

2.2.2. Numerical strategy

In contrast to the Fokker-Planck approximation, the integral ap-
proach is exact analytically. However, when used to compute the
evolution numerically, it leads to some numerical issues directly
related to the use of non-linear grids (Nayakshin & Melia 1998).

With logarithmic grids, the energy bin size is larger at high
energy. For example when, low energy photons are up-scattered
from high energy particles, their relative energy gain is high, and
these photons are scattered numerically from low energy bins
to higher energy bins. During this interaction, the particles lose
only a small fraction of their energy. If the energy bin size is
too large, these particles remain in their original bin and nu-
merically, they do not lose energy. The energy balance is not
therefore exactly satisfied and the error can propagate and be-
come large when the density of low energy photons is also high.
Although less relevant to most astrophysical situations, a sym-
metrical problem appears when high energy photons are scat-
tered by low energy particles.

This numerical issue is not present in regions of the inci-
dent energy space (po, vo) for which the scattered distributions
are far wider than the energy bin size: Av(pg,vo)/ov(vy) > 1
and Ap(po, vo)/po > 1 for the evolution of the photon and par-
ticle distributions respectively. After selecting the ranges and
resolution of the photon and particle energy grids, these con-
ditions constrain the region in which the integral approach is
valid. Fortunately, the regions for which the integral and the
Fokker-Planck approaches are valid are in part complementary.
The code therefore combines the two approaches:

e For the particle evolution: in the integral approach, the inte-
gration over the photon distribution in Eq. (9) is only com-
pleted above a given photon energy v.(po) that depends on the
incident particle energy, whereas the integrals on frequency
in Eq. (14) are completed up to v, in the Fokker-Planck ap-
proach. The total time evolution is then given by the sum of
both contributions: d;Nes = (0;Ne)pp + (0:Nes Iintegral -
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e For the photon evolution: a similar combination is used for
the photon equation, with the definition of a critical particle
momentum p.(vy) under which the FP approach is used and
above which the integral approach is used.

If the number of energy bins per decade is too small, the valid-
ity domains for both calculations may become independent and
the accuracy of the computation may decrease. This will be true,
however, only for small regions of the grids for which there are
few particles and photons, corresponding to very small errors.
By combining the two approaches, we find empirically that an
energy resolution of typically 10 energy bins per decade pro-
vides errors that are smaller than other truncation errors.

2.3. Pair production/annihilaton

As for Compton scattering, we describe the pair production and
annihilation for the case of isotropic distributions of particles and
photons. Single photon-photon pair production and pair annihi-
lation events are characterized by the differential cross sections
op(vi,v2 — p) which corresponds to the pair (i.e. electrons or
positrons) momentum spectrum produced by the recombination
of photons of frequencies v and v,, and o, (p-, p+ — v), which
corresponds to the emission spectrum generated by the annihila-
tion of one electron of momentum p_ and one positron of mo-
mentum p., respectively. Then, the evolution of the distributions
is described by:

0iNe=(p) = ﬂ N, (vDN,(v2)cap(vi, va = p)dvidr,

—Ne=(p) fNex(P')O'S(P’ pHdp’, (18)
0N, (v) = ﬂNe*(P—)Ne+(P+)CUa(P—’P+ — v)dp_dp,
=N, (v) fNV(V')O'S(v, VHdy' (19)

where, as for Compton scattering, the zeroth moment of both
the annihilation spectrum o{(p-, p+) = 1/2 f oi(p-, p+ = v)dv
and the pair-produced distribution O'S(Vl, vy) =2 f op(vi,v2 —
p)dp have been used’. The analytical expressions for photon-
photon pair production and pair annihilation correspond to
Egs. (24)—-(29) of Boettcher & Schlickeiser (1997) and
Eqgs. (23), (33), (55)—(58) of Svensson (1982a), respectively.

In contrast to Compton scattering, there are no numerical
problems in computing directly the integral over the particle and
photon distributions, even for low resolution grids.

2.4. Coulomb scattering

Two kinds of Coulomb-type interactions are considered: scat-
tering of leptons by other leptons and scattering of leptons by
protons. When the particles are not too energetic, e-e collisions
tend to thermalize the pair distributions. In some astrophys-
ical situations, protons are assumed to have a high tempera-
ture, so that e-p collisions tend to heat the lepton populations.
Both kinds of interactions are described by the Boltzmann col-
lision integral. Computing this integral numerically is challeng-
ing, mainly because the Coulomb cross section diverges when
the energy exchange becomes too small. We assume instead the

3 The 1/2 and 2 factors result from the fact that one pair annihila-
tion produces 2 photons and one photon-photon annihilation produces
2 leptons.
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approximation of small angle scattering, which leads to simple
Fokker-Planck equations. As has been already discussed in the
literature, the contribution of large angle scattering is negligible
(Dermer & Liang 1989; Nayakshin & Melia 1998).

2.4.1. Moeller and Bhabha e-e scattering

The FP coeflicients (A and D®°) for Moeller e*-e* and
Bhabha e*-e* scattering are similar. The relative difference is
typically of the order of ~1/InA, where the Coulomb loga-
rithm In A is large (Dermer & Liang 1989). Neglecting these
terms, the FP coefficients are computed from the following inte-
grations over the mirror distributions:

AL (pe) = f Ne=(p=)ac(p-, p+)dp=, (20)

D5 (p+) = fNe+(p+)d (p-. p+)dp=. (2D
The specific coefficients a. and d. were first given by Nayakshin
& Melia (1998) (Egs. (24) and (35) respectively). The equation
for d however contains typos that were corrected by Eq. (6) of
Blasi (2000).

2.4.2. Coulomb e-p scattering

In some astrophysical situations, protons are believed to have
temperatures far higher than those of electrons. In these cases,
Coulomb collisions with leptons tend to heat the electrons. As
for the e-e collisions, the FP coefficients (A°"P and D°7P) for e-p
Coulomb scattering are computed from integrals over the proton
distribution:

A" (pe) = pr(Pp)ap(Pe,Pp)de» (22)

Dz;p(pe) = pr(pp)dp(pe» Pp)dpp (23)
where a,, and d, are derived from Eqs. (45)—(48) of Nayakshin
& Melia (1998). The code could calculate the exact proton dis-
tribution as for electrons and positrons. However, it would add
a fourth kinetic equation and require more computational time.
We use instead a thermal proton distribution. Depending on the
physical situation being modelled, the proton temperature can
be set to equal a constant at the beginning of the simulations
or evolved with time to provide a constant electron heating (see
Sect. 2.7).

2.5. Particle and photon injection

The code also allows for injection of particles into the system.
This can represent a real injection from an outer source (e.g.
particles from the standard disc into an ADAF). But injection
of high energy particles is most commonly used to mimic parti-
cle acceleration processes. Any distribution N .+ can be injected
at each time step. Thermal, Gaussian, power-law and mono-
energetic injections have already been included into the code.
The injection of particles is controlled by the particle injection

compactness4:

Einj O'T 47Tf in
[+ = = N"d 24
“ T mecRlor =4 24)

4 Note that some authors use instead the kinetic energy to define the
compactness parameter: [« = 47R207 /3¢ f (y - DNZdp.
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Similarly, the code allows for photons injection that can account
for example for seed photons from the cold accretion disc in
X-ray binaries. The photon injection rate is controlled by the
parameter:

I = Linj _ RZO'T iy hV de
" me3R/or T ¢ 3 mec?

(25)

So far the code can account for photon injection with a
pure black-body spectrum of specific temperature or a multi-
temperature black-body spectrum characterised by the inner and
outer temperatures.

2.6. Particle and photon losses: geometry of the source

In general, photons and particles can also escape from the sys-
tem. The precise way in which they escape depends on the de-
tailed geometry of the simulated source, which goes beyond the
scope of such a 1-zone kinetic code. Although the losses must
occur at the boundaries of the simulated plasma, we use a stan-
dard method and we consider all photons (or particles) to have
the same averaged probability p;* (or pS) of escape. We as-
sume spherical geometry and use probability laws describing
this geometry approximately. The total luminosity of the source
at each frequency is then:
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The code allows for fully trapped pairs in extremely magnetized
systems (no loss) and for freely escaping pairs (with an escape
probability proportional to their velocity: pi® = Bc/R). Other
escape laws can be defined and 1mplemented easily.

The photon escape is more debatable. The photon dynamics
are affected strongly by Compton scattering. high energy pho-
tons do not scatter and can escape freely, whereas, when the
optical depth is large, low energy photons can be scattered so
significantly that they become trapped in the system. Depending
on their energy, the exact way in which they escape strongly
involves geometrical effects. In the code, we use the escape
rate 5°° (or escape probability defined as p* = r5*¢ X R/c) de-
rived by Lightman & Zdziarski (1987):

L, =

hvpiN,. (26)

c/R
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where T is the averaged escape time,
oo,
7(w = hv/mec?) = Ror f N, 0( P )dp (28)

is the Compton interaction probability of photons (of fre-
quency v) with the lepton distributions and

1 forw < 0.1
flw = hv/mec?) = (1 —w)/0.9 for0.1 <w< 1 (29)
forw >1

is a relativistic factor correcting for the fact that forward colli-
sions are less efficient in trapping the photons.

The choice of escape probability is important and different
laws can lead to substantially different results®. Although it was

> For instance, when comparing his results with those of Lightman
& Zdziarski (1987), Coppi (1992) attributed the difference to different
descriptions of the microphysics, whereas, from the results of several
simulations, we believe that the difference is due to a different choice
for the escape rate: he used (R/c)/(1 + 7(w)f(w)) instead of Eq. (27).
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shown that this escape probability reproduces well the results
of Monte Carlo simulations in a spherical geometry (Lightman
et al. 1987; Lightman & Zdziarski 1987), the conclusions of
Stern et al. (1995) imply that the escape probability may be
slightly underestimated. Since the escape luminosity must equal
the injected power in a steady state, a smaller escape proba-
bility implies a stronger radiation field inside the source. The
consequences on the shape of the photon and lepton distribu-
tions become significant only when pair production and annihi-
lation are extremely efficient (typically at high optical depths).
Figure 1 shows spectra in these cases when the deviation from
the Monte Carlo simulations become significant. Other escape
probabilities were proposed (e.g. Stern et al. 1995) to reproduce
more successfully the results from MC simulations in some spe-
cific regimes, but none were shown to be fully consistent with
MC results. The use of an escape probability to mimic geo-
metrical effects is of course the main limitation of our code.
However, significant deviations appear only in optically thick
plasmas when steep gradients in temperature and intensity ap-
pear, whereas jets and coronae in XRB and AGN are optically
thin media, the largest optical depths observed being 7 ~ 2-3.
The precise geometry of the sources is also unknown and de-
scribing accurately the escape probability in one peculiar geom-
etry is therefore not necessarily helpful.

2.7. Additional particle heating/acceleration

Particle heating and acceleration are probably amongst of the
most mysterious problems of high energy sources. Observations
show evidence for hot plasmas or high energy tails in the particle
distributions, but little is known about the precise mechanisms
that generate these populations. Most previous work did not ad-
dress this problem directly. Non-thermal high energy particles
were instead injected into the system with an arbitrary (usually
power law) distribution. This ad hoc injection assumes an instan-
taneous acceleration of particles. It does not take into account the
fact that particle acceleration has to compete with other cool-
ing processes. Another simple approach, often used to account
for lepton heating, consists of assuming that power is provided
by some unspecified process to the supposedly thermal distri-
bution of electrons. These prescriptions for particle acceleration
and heating are implemented in the code. However, in addition,
we also attempted to follow a more physical approach by im-
plementing two additional specific mechanisms for heating and
acceleration, namely Coulomb heating and second order Fermi
acceleration.

e ¢-p Coulomb-like heating: as has already been discussed,
collisions with hot protons can heat the pair distributions. The
way in which the interaction is adapted into the code is described
in Sect. 2.4.2. When the Thomson optical depth is lower than
unity, this heating is known to become inefficient and other pro-
cesses must operate, which are not fully understood. A possi-
ble means of accounting for this additional heating is to mimic
the heating by thermal protons but with enhanced efficiency
(Nayakshin & Melia 1998). Although we do not aim to de-
scribe any precise microphysics, this heating prescription esti-
mates consistently both FP coefficients: the heating rate and its
related diffusion coefficient. For this heating prescription, the
temperature is set and the total number of protons is constrained
by the initial neutrality. The usual cooling and diffusion coeffi-
cients A..” (Eq. (22)) and D_.” (Eq. (23)) are then multiplied by
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an efficiency factor 7. This efficiency is computed at each time
step so that the total heating is controlled by a constant heating
parameter

47 R2or
l. = —
3 ¢

f pASPN,dp. (30)

e 2nd order Fermi-like acceleration: this type of acceleration
could be generated for example by the interaction between the
electron and wave turbulence. Diffusion of particles in momen-
tum space is then described by the general equation:

0 1 0 G0
_f:__ 2Dd1ﬁ_-f (31)
ot p*op op

where f(p) is the phase-space density. When considering an
equation about N,: it yields a Fokker-Planck equation with the
two coefficients:

. 1 3o
A = —an(%Dd‘ﬁ), (32)
p2 .
D = 2= D (33)

We assume a Fermi-like process for particles with an energy
above some minimal energy, and we use paft — pze‘(pc/ P [Dtoce,
where p. is the threshold momentum, a is the threshold width
(we use typically a = 3), and #, is the typical acceleration time
of the particles (Katarzynski et al. 2006b). The FP coefficients
are then:

2 a
puee oL P (5 +4p* +ay’ (&) )e_(p"/”)a, (34)
¢ 2tacc V3 p
4
e — Lp_e—(Pc/P)a 35)
e* '

Tacc 72

The precise values of acceleration time and the threshold fre-
quency depend on the microphysics and turbulent properties of
the plasma, which are poorly known. We set instead the total
energy injected into accelerated particles by defining a constant
compactness parameter:

47 R
lacc = ?ﬂ :-T f—AgECNedp

(36)

and compute the corresponding acceleration time at each time
step.

2.8. Bremsstrahlung emission

The bremsstrahlung process has several contributions to the sys-
tem evolution: it produces additional soft photons that can then
be up-scattered by high energy particles, it cools down emit-
ting, high energy particles and, in the absorbed part, it heats low
energy particles. In arbitrary plasmas, there are three different
contributions: lepton-proton (e-p), electron-electron or positron-
positron (e-e), and electron-positron (e"e*) bremsstrahlung.
Electron-proton self-absorbed bremsstrahlung is included in
the code. Proton are assumed to have non-relativistic tempera-
ture and to be at rest in the plasma frame and the emission is
generated by the motion of leptons in the external electrostatic
potential of protons. The situation is formally the same as in the
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case of synchrotron emission, which is generated by the motion
of leptons in an external magnetic field, and a similar formalism
can be used (Le Roux 1960; Ghisellini & Svensson 1991). The
exact interaction cross section O'QP valid for all lepton energies
(Heitler 1954; Jauch & Rohrlich 1976) is used to compute the
emissivity spectrum jg, (erg s™' Hz™!) of individual electrons
and the absorption cross section o, (cm?):

Jep(P2v) = hvBeal,(p. vIN}! (37)
1 1 1 .
Ter(po¥) = s 500 [PYialp. )] (38)

where N is the proton density, 8 = v/c is the lepton veloc-
ity, and o, is evaluated numerically. Approximations of the
total loss rate and the spectrum emitted by a thermal plasma
are recovered by integrating je, over a thermal distribution of
leptons. Then, the evolution equations for particles and pho-
tons are derived exactly as in the case of synchrotron emission
(Egs. (3)=(8)).

Electron-proton bremsstrahlung is the dominant contribu-
tion in low energy, e-p plasmas. In low-energy, pair plasmas the
e*-e~ process dominates, whereas at high temperatures the ma-
jor contribution originates in e-e bremsstrahlung. Differential
cross sections for e-e and e™-e* bremsstrahlung can be found
in various regimes, either in the rest frame of one of the lep-
tons or of the centre of mass of the two interacting particles
(Heitler 1954; Alexanian 1968; Haug 1975, 1985). However,
there is no formula in the frame of the plasma for the cross sec-
tion integrated over all directions of the emitted photon; simpler
thermal approximations are also often irrelevant since the cross
section typically increases with particle energy and non thermal
emission of high energy particles often dominates the overall
bremsstrahlung emission. In principle, these difficulties could be
overcome numerically.

However, in many astrophysical cases bremsstrahlung emis-
sion is insignificant. For plasmas in thermal equilibrium, simple
approximations were proposed for the cooling rates, which al-
lowed for comparison with other processes (e.g. Gould 1980;
Stepney & Guilbert 1983). It was found that bremsstrahlung
cooling dominates over pair-annihilation cooling and Coulomb
relaxation only of highly relativistic temperatures: kg7 2 1 MeV
(Svensson 1982b; Stepney 1983, respectively). By integrating
the synchrotron and Compton cooling rates over a hot thermal
distribution of particles (kg7 = 1 MeV) of radiation energy
density U,, we find that, for plasmas with optical depth of the
order of unity, bremsstrahlung emission dominates only when
RorU,/mec? + 1g < 4 x 1073, that is for unmagnetized, photon-
starved plasmas. For these compactness parameters, only hot-
ter plasmas have a significant bremsstrahlung contribution, al-
though, for astrophysical sources, these high temperatures are
unrealistic since pair production and annihilation tend to pre-
vent temperatures reaching above a few hundreds keV (Svensson
1984). Similarly, it is has been shown that non-thermal particles
emit primarily synchrotron radiation, even for weak magnetic
fields (Wardzinski & Zdziarski 2000; Coppi 1992).

For these reasons, e-¢ and e -e* bremsstrahlung have not
been included in our code and modelling of unmagnetized,
highly relativistic plasmas with a weak radiation field is post-
poned to future work.
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3. Numerical methods
Including all processes outlined above, the total physical sys-

tem is described by the following set of 3 integro-differential
equations:

1
ath :SV_PVNV+6LU [A,N,] + 563,2 [D,N,], (39)
OiNe= = S¢= — Pe=Ne+ + ap [v/pAe:Nex ]
1
+50, [%ap(%% )} (40)

The source terms S, (¢, v, Ny, Ne-, Ne+) and S (%, p, Ny, Ne-, Ne+)
combine the contributions of injection, Compton scattering
(treated in the integral approach), annihilation/production,
bremsstrahlung, and synchrotron emission:

S, =N, v)

+ f dVO f
0 Pe(vo)

+}IT‘ Ne- (pINe- (p2)ca(ps po:v)dp_dps
0

dpoNe(po)N, (vo)co(po, vo; V)

1 .
b [ NG+ i, 1)
v
Ser = W%t p)
+f dpof dvoNe(po)N, (vo)co(po, vo; v(p))
0 ve(po)
+ﬂ NV(VI)NV(VZ)C(TP(Vl,V2;p)dV1dV2. (42)
0

The loss terms P,(t,v, Ny, Ne-, Ne+) and Pe:(t, p, N,, Ne=) also
combine contributions from escape, Compton scattering,
pair production/annihilation, Bremstrahlung, and synchrotron
absorption:

00

P, = p‘e/SC(V’Ne*,Ne‘f) + f
Pe(v)

Ne(p)eay(p,v)dp

+va(v')c0'S(v, v’)dv’+fNec(0'S+0'ep)dp, (43)
Pe=pS+ | Noea(p.vdv
ve(Po)
+fNez(p/)CO'8(p,p')dp/. (44)

The total Fokker-Planck coefficients are then the sums of the
individual coefficients defined for each process:

PC(V)

Ne(p)coi(v, p)dp, (45)
0
Pe(V)

Ne(p)eas(v, p)dp (46)
0
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and

Ape =

1
D f((]s + Jep) — (o5 + U'ep)hVNv) dv

MmeC

ve(p)
+ | Ny(W)eo{(v, p)dv
0

+ f Ne=(pHae(p, pHdp’ + f N,y(p"ay(p, pHdp’
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ve(p)
+ N,(v)co5 (v, p)dv
0

+ f Ne=(p")de(p, p")dp’ + f Ny(p"dy(p, p)dp’

c—p acc
+D. + D" (48)
In this section, we describe the numerical strategy used to solve
these equations.

3.1. Tables

Solving Egs. (39) and (40) for the aforementioned physical pro-
cesses involves significant application of the many cross sections
(Js» T Jep> Teps Ocs 0'6, 01,05, 0a, 0'3, Op, 0'8, e, dg,a,,dp). The
Compton differential cross section o°(vp, pg — V) is a three-
entry table that contains typically over tens of millions of el-
ements, as is also the case for the differential cross sections
for pair production/annihilation. These coefficients are evaluated
once at the beginning of the simulation and stored into tables.
This enables faster computation, although the memory require-
ments can become significant as the grid resolution increases.
For instance, resolutions of above 256 points per grid require
more than 100 Mo of RAM to store only one of these tables,
which can be a limiting factor for some desktop computers.

3.2. Boundaries

The total set of equations to be solved is given by an integro-
differential system. To account for particles and photons that
have energies beyond the limits of the grids (very low- or very
high energy particles/photons), specific conditions must be set
at the grid boundaries Wmin, Wmax,> Pmin, aNd Pmax. For the differ-
ential Fokker-Planck part of the equation which corresponds to
a local operator, the boundary conditions set values only for the
ghost bins just behind the boundaries and are used to define the
derivative at the boundaries. For the integral part, they include
the physics of all particles and photons outside the grids. We
have chosen to use wall-type boundary conditions. These con-
ditions do not allow particles/photons to travel in and out of the
grids and conserve their total number precisely. In the Fokker-
Planck part, it corresponds to a zero-flux condition. For the inte-
gral part, a specific derivation of the differential cross section is
completed: the total probability that particles/photons are scat-
tered or produced outside the grids is summed and added to the
probability that they are scattered or produced at the final bin of
the relevant boundary. As a result, all particles/photons remain
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inside the grids. These conditions are of course artificial and can
generate spurious effects at the boundaries. While most parti-
cles/photons have energies inside the grids, these effects will,
however, remain small.

For example, although the total number of particles/photons
is conserved, the no flux condition for the FP part of the equa-
tions introduces a small energy flux at the boundaries which
can be evaluated easily, that is the energy losses are dE,,/df =
mec> [DuNylom and dEe:/dt = mec? [y/ pDeiNei]ﬁj:?: for pho-
tons and leptons respectively. When the grid is not sufficiently
large, this effect can introduce significant errors. By selecting
the boundaries far from the bulk of the distribution however, the
distributions N, and N+ vanish and the losses are negligible.

3.3. Numerical solver

Solving the time-dependent problem is challenging for a number
of reasons.

First, the problem involves many different scales of energy
and time spanning many orders of magnitude. This implies sub-
tracting very large numbers or multiplying very small numbers
by very large ones, which can lead to numerical accuracy issues.

This also involves considering very short timescales. For in-
stance, when low energy photons are scattered by high energy
particles, they absorb a significant amount of energy instanta-
neously, which must be modelled with very small time steps. If
the problem was linear and differential, the maximal time step re-
quired to guarantee the convergence and stability of an explicit
scheme would be set by the Courant condition (Courant et al.
1928). In that particular case, our simple scheme for the photon
equation would be stable if 6 < min {&u /A, 2(6w)?%/ DV}, where
dw is the bin size and the minimum is computed over the entire
grid. Similarly, a condition depending on the momentum bins
would be set for the stability of the equation for particles. When
logarithmic grids are used, the time step is set to a small value by
the small bins at the low energy part of the grids. The equation is
far more complicated, and there is no mathematical justification
for using the Courant condition. However, the main idea remains
that when the grids decline to low energy, the time step required
to make an explicit scheme stable, quickly becomes too small to
follow the evolution on the dynamical timescale R/c.

In these cases, implicit schemes would be more efficient,
since they are always stable. Implicit schemes are easy to im-
plement and efficient only for local, linear problems. When the
problem is linear, the solver only has to inverse a matrix. For lo-
cal problems such as differential ones, the matrix is sparse and
rapidly inverted. However, the problem is highly non-local. For
example, the integral approach of Compton scattering describes
events in which photons in some energy bin can be scattered to
some distant bin by a single interaction. As a result, the evolution
in the photon distribution at some energy is governed not only
by neighbouring bins, but by the entire grid. The corresponding
matrix is dense and its inversion becomes more time consuming.
In addition, the problem is highly non-linear, so that there is no
exact implicit solution to such a problem.

Considering these previous remarks, we implemented a
semi-implicit scheme. By keeping the other distributions fixed,
we solved the equation for the distribution N of one species
(photons, electrons, or positrons) in the following way:

N N" = S§"— PnNn+1
ot

+0, [A"N" ] + %a){z [DN (49)
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where the exponents n and n+ 1 indicate the distributions and co-
efficients at two consecutive time steps. The scheme is not fully
implicit but the equations for N;’” R Ngf land Ngf ! can be solved
easily by inverting a simple multi-diagonal matrix. This scheme
only conserves the number of particles/photons and their energy
to truncations errors. As explained earlier, using grids spanning
many orders of magnitude introduces accuracy issues, which be-
come severe when number and energy are only conserved to
truncation errors. For that reason, the code iterates the 3 equa-
tions represented by Eq. (49) at each time step until the conser-
vation laws are satisfied to some specific precision.

Two spatial schemes were implemented to solve Eq. (49):
the upwind Chang-Cooper method (Chang & Cooper 1970) and
a more straightforward method that we developed. The former is
only accurate to first order in space, but was shown to contain the
most superior numerical properties for solving Fokker-Planck
equations with a few choices of constant coefficients (Park &
Petrosian 1996). Compared with higher order schemes, it is
more diffusive, i.e. more stable but less accurate. When radia-
tive processes are involved, accuracy is important, and there-
fore we decided to use a second-order accurate scheme to es-
timate the derivatives®. This scheme is based on the use of two
energy grids for each distribution (namely the centres and the
faces of the bins) and the derivatives are computed as follows:

@) = (firr2 = fic12)/dx; and (%f)i = ((firr = fi)/dXi1y2 =
(fi = fi-1)/dxi—12)/dx;. All quantities at the bin boundaries are
computed by linear interpolation: fir1,2 = (f; + fi+1)/2, except
the (p/vy)ir1/2 factor in Eq. (12) for particles, which is computed
separately as (p;+ pi+1)/(yi+7vi+1) to ensure accurate energy con-
servation. This simple centred scheme conserves the total num-
ber of particles and photons, and the total energy more precisely,
although is less stable. All examples presented were performed
using the latter scheme.

3.4. Computation time

Tests and applications shown in this work were completed with
medium energy resolution for which n, = 128-256 and n, =
256, i.e. more than 20 bins per decade in particle momentum and
more than 10 bins per decade in photon frequency. Compared
with former codes (Lightman & Zdziarski 1987; Coppi 1992)
that assume low energy particles are purely thermal, our code
typically solves the equations for twice as many bins of parti-
cle momentum. In addition, as presented, it adopts very few ap-
proximations and only when they are valid. The code is there-
fore slower than some previous codes. All results presented
were derived with desktop computers with 1GHz processors and
512 MB RAM. Calculations have duration typically of between
a few seconds and one hour, the most time-consuming step be-
ing the computation of the multiple integrals of the Compton and
pair production/annihilation cross sections over the distributions.

4. Tests and applications

We present a first few applications of the code to check its capa-
bilities and illustrate the problems that can be addressed. Most
examples presented consist of comparisons with previous work,
although we also address a few more issues, such as the thresh-
old for particle acceleration.

® The scheme is accurate to second order only when the grid is linear.
Using a logarithmic grid as we do here actually reduces the accuracy.
Nevertheless, numerical experiments with the code have shown that this
scheme is more accurate than the Chang-Cooper method.
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Fig. 1. Photon spectra for models with external soft photons (/. = .- +
l+ = 1,10, 100, 1000 from lower to higher curve and /, = 2.5/.). Solid
lines: this work; dashed lines: results with the EQPAIR code; and dotted
lines: results of Monte Carlo simulation for spherical geometry (Stern
et al. 1995). The spectra from EQPAIR were normalized to match the
other ones. To simplify the comparison, the escape probability p$* =
1/(1 + 7f) of Coppi (1992) is used in this figure.

Table 1. Models with external soft photons: comparison with previ-
ous results. PY; is 10° times the pair yield defined in Coppi (1992).
7. = Ror f (Ne- + Ne+)dp is the total Thomson optical depth. 65 = 10° x
kgT/m.c* is the temperature of the thermal part of the distribution.
Ix/l; is the ratio of the X-ray luminosity in the 2—10 keV band to the
injection compactness parameter. a,-jo is the spectral index in the same
energy band.

lc Work PY'; Te 93 lx/lc 2-10
Coppi92 1.7 0.047 7.9 — 0.637
1 EQPAIR — 0078 126 0.0582 0.614
This work | 1.70 0.059  8.64 0.0611 0.633
Coppi92 23 0.502 5.7 — 0.863
10 EQPAIR — 0508 827 2.70 0.854
This work | 22.6  0.548  4.50 3.00 0.901
Coppi92 87 3.34 22 — 0.979
10> | EQPAIR — 3.17 2.56 63.9 0.996
This work | 80 3.22 1.96 61.9 1.02
Coppi92 120 12.4 0.62 — 1.42

10 | EQPAIR — 1195 0.567 644 1.39
This work | 112 12.01  0.44 628 1.41

4.1. Model with external soft photons

Significant effort has already been expended on studying steady
state solutions of unmagnetized sources. We only reiterate some
known results in checking the code computational capacities. As
a first case, we reproduced the results of Fig. 1 in Coppi (1992)
with parameters typical of AGN. This case was modelled by
injecting mono-energetic e*-e~ pairs at y = 10° and soft pho-
tons as a black body of temperature kg7 = 1.07 x 107> m.c>.
In this unmagnetized source, the length scale is unimportant.
All effects were included except additional particle acceleration
and e-p Coulomb scattering and e-p bremsstrahlung radiation.
Figure 1 shows spectra obtained with the code and comparisons
with previous work. Examples of output are also presented in
Table 1. The temperature presented in this table was computed
using Eq. (2.8) of Coppi (1992) only for the thermal part of the
particle distribution. The results are fully consistent with those
computed with the latest version of the public EQPAIR code.
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Fig. 2. Photons spectrum (upper panel) and particle distribution (lower
panel) for power-law particle injection (with I, = 1, Yin = 1.4, Ymax =
103, T = 2.4) and for I, = 0.03. The results with the code are shown
in solid line and the results of Coppi (1992) are in dashed lines. Since
the particle distribution at low energy in Coppi (1992) is assumed to be
thermal but not resolved, we extended it down to the grid boundary with
a Maxwell distribution for comparison.

Table 2. Output parameters for /. = 1 and /, = 0.03. Same as Table 1.

PY; Te 03 Ix/l. o
Coppi92 3.54 0.644 306 0.077° 0.726
This work | 3.27 0.624 273 0.0733 0.717

* Note that the luminosity obtained by Coppi (1992) was multiplied by
10 to correct what we think is a typo.

The major deviations appear at the annihilation line for large op-
tical depths and luminosities (. = 100 and 1000).

When 7./(l. + [,) = 1, effects of pair annihilation and
Coulomb scattering become significant. We investigated this
regime by reproducing the results presented in Fig. 2 of Coppi
(1992). This simulation had the same input parameters as previ-
ously, except that particles were injected with a power law dis-
tribution (ymin = 1.4, Ymax = 103, T =24, 1. = 1) and [, = 0.03.
The particle distribution and photon spectrum for such a case are
plotted in Fig. 2. The corresponding output parameters are listed
in Table 2. Again, good agreement is achieved, particularly for
the particle distribution, confirming that, in this peculiar case,
the approximations made by Coppi (1992) were valid. The only
difference occurs at high energy in the photon spectrum.
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Table 3. Input parameters for the runs on the study of the e-p Coulomb
like heating. ‘rg, is the initial electron Thomson optical depth. ®, =
kgT/m.c? is the temperature of the black body used for soft photon
injection.

le L, 1% e,
Model 1 | 420 420 0.05 10
Model 2 | 84 2.1 002 3x107
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Fig. 3. steady state spectra (upper panel) and electron distribution
(lower panel) for e-p Coulomb-like heating. Solid and dashed lines
show the results of this work and Nayakshin & Melia (1998), re-
spectively. Input and output parameters are listed in Tables 3 and 4,
respectively.

4.2. e-p Coulomb like heating

We investigated the effect of coulomb-type heating and com-
pared the results with those of Nayakshin & Melia (1998). We
consider an unmagnetized source heated by a Coulomb-like pro-
cess. We assumed a closed system (no injection nor loss of par-
ticles) with a black-body soft-photon injection and studied its
evolution under the effects of Compton scattering, e-e Coulomb
exchange, pair production/annihilation, and e-p Coulomb-like
heating. The proton temperature characterising the final process
was set to be 20 MeV. Two different cases were considered, the
parameters of which are given in Table 3. Regardless of the ini-
tial particle distribution, it always evolved to the same steady
solution. The thermalisation time however depended upon the
precise initial shape. Distributions in the transient phase were
presented by Nayakshin & Melia (1998) and we derived simi-
lar results. Figure 3 shows the steady distributions and spectra
for both cases, and compares the result with previous work. The
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Table 4. Output parameters. 7.= are the electron and positron Thomson
optical depths. (E.) = f (y — 1)Ne-dp/ f N.-dp is the averaged kinetic
energy of the electron distribution. 7 = 53 x 10° is the heating efficiency
defined by Eq. (30).

Model | Work Te- Te+ (E) m3
1 NM98 0.135 0.085 0.58 2.4
This work | 0.132 0.082 0.65 110
2 NMO98 0.080 0.060 1.46 0.44
This work | 0.086 0.066 1.53 17
1 E ]
E B=1000 G E

vl, * 30./4nRm,c’
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1071l . I | | | Ll
107® 107° 107t 107? 10° 10°
w = hv/mc?

Fig. 4. Synchrotron self-compton spectra. Spectra are shown for 3 mag-
netic field strengths (I3 = 3.2 x 1072, 3.2 x 107!, 3.2), from results of
this work (solid lines) and Coppi (1992) (dotted lines). Here, . = 10
and R = 10" cm.

steady states correspond to quasi-thermal distributions. Both the
e-e Coulomb exchange and the e-p Coulomb-like interactions
thermalize the plasma efficiently. In addition, the e-p Coulomb-
like interactions heat the particle distribution.

Our steady spectra are fully consistent with previous results:
the Compton orders have the same amplitude, and the high en-
ergy spectrum breaks at the same energy. Some output parame-
ters are also given in Table 4. Our results confirm qualitatively
the results by Nayakshin & Melia (1998). The steady distribu-
tions have properties similar to those of a Maxwell-Boltzmann
distribution but are narrower. Our results however correspond to
systematically hotter distributions and a larger optical depth in
the most energetic case (model 2).

The heating efficiency coefficient is quite large: n =
10*~10°. This emphasizes the inefficiency of the e-p Coulomb
collisions for example in cases typical of Seyfert galaxies. When
the Thomson optical depth is far smaller than unity, they should
be several orders of magnitude more efficient to reach the re-
quired heating rate. The efficiency coefficients found in this work
are one or two orders of magnitude higher than those derived by
Nayakshin & Melia (1998). Given the good agreement in the
shape and normalisation of the distributions and escaping spec-
tra, we believe that the different efficiencies are the result of a
typo in their paper. We further checked our e-p Coulomb heating
rate against the results of Dermer et al. (1996), and also against
simple analytic approximations, and found excellent agreement.

4.3. Models with synchrotron soft photons

Magnetized models have an additional source of soft photons,
which is the synchrotron emission from high energy parti-
cles. We investigated this case by studying generic cases of
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Table 5. Output parameters for synchrotron self-compton models. The
magnetic field B is given in Gauss. Other parameters definitions are the
same as in Table 1.

B ‘Work PY; Te 93 l)(/lC 2-10
100 Coppi92 21.0 0508 373 824 0578
Thiswork | 189 0513 641 72.6 0.561

300 Coppi92 | 154 0422 269 58.6 0.609
This work | 13.5 0434 447 494 0.604

1000 | Coppi92 383 0.154 214 242 0.749
This work | 329 0234 28.0 204 0.702

* The pair yield and temperature given by Coppi (1992) for B = 300 G
were multiplied by 10 to correct for what we believe to be typos.

magnetised sources with no external source of soft photons and
compared our results with those presented in Fig. 4 of Coppi
(1992). Particles were injected at high energy (y = 103). We
assumed they were trapped by the magnetic field and did not
escape. The equilibrium was therefore balanced by pair anni-
hilation. A few synchrotron self-compton spectra are shown in
Fig. 4 and compared with previous work. Other output parame-
ters are listed in Table 5. Although the general spectrum shape
is recovered, substantial differences are observed in the far UV,
soft X-ray band where the flux appears to have been underes-
timated in previous studies. We also derive a measurement of
temperature for the thermal part of the distribution that is larger.
This most likely results from our more precise treatment of the
cyclotron emission/absorption.

4.4. The synchrotron boiler

Non-thermal distributions of particles can be thermalized by the
emission and absorption of synchrotron photons. The efficiency
of this mechanism however depends on the parameters. To illus-
trate this process, we consider the case presented in Ghisellini
et al. (1998a), where high energy particles strongly emit and ab-
sorb synchrotron photons. We inject a constant mono-energetic
distribution of electrons into an empty source of size R =
10" cm. Electrons escape freely, which leads to a steady state.
In this study, we consider only cyclo-synchrotron radiation and
Compton scattering (pair effects, Coulomb scattering, and e-p
bremsstrahlung are neglected). Figure 5 shows the time evolu-
tion of the particle and photon distributions and a comparison
with previous work.

The results qualitatively confirm those of Ghisellini et al.
(1998a). As time evolves, high energy particles are cooled by
synchrotron radiation, which starts to create a radiation field.
Soft synchrotron photons are up-scattered by high energy elec-
trons and form the high energy part of the spectrum. For the
choice of parameters (/.- /I < 1), the effect of synchrotron self-
absorbed radiation on the particle distribution dominates over
Compton scattering so that the additional cooling on particles
by the latter is negligible. The synchrotron cooling timescale for
particles is then t,/(R/c) = (y = 1)/(4lgp?/3) = 1/(y + 1)/Iz and
ranges between 0.5/l for low energy particles and 0.05/p for
high energy particles (y = 20). For Iz = 10, the distribution has
reached a quasi-thermal shape at t ~ 0.01-0.1R/c, i.e. on the
synchrotron timescale (see Fig. 5). The normalization then satu-
rates as the escape of particles balances the injection rate, which
occurs on a typical time scale of 7., ® R/c. The low energy part
of the distribution is well reproduced by a Maxwell distribution
but the high energy part of the distribution declines more rapidly
than a real thermal distribution. In more detail, the results differ
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Fig.5. Evolution of the particle distribution (upper panel) and
the outgoing photon flux (lower panel). Times are t/(R/c) =
1074,1073,1072,107", 1 and 10 from lower to higher curves. Particles
are injected with a Gaussian distribution centred at y = 10, of width
0y = 1, and with a compactness parameter: /.- = 1. The magnetic com-
pactness is I = 10 and the domain size is: R = 10" cm. The dashed
curve is the Maxwell-Boltzmann distribution of same normalization and
same average energy as the equilibrium solution.

however quiet significantly. For the sake of clarity, the results of
Ghisellini et al. (1998a) have not been overplotted, athough their
distributions are systematically colder and broader than the pre-
vious ones, especially in the transient phase. Although the low
energy part still looks thermal, the deviation at high energy is
therefore higher.

To illustrate the effect of the magnetic field intensity and the
particle injection rate, we plot in Fig. 6 the temperature’ of the
steady distribution as a function of the injection compactness
parameter for 3 different magnetic compactness parameters. The
steady temperature is quite insensitive to the magnetic parameter
since the temperature varies by only a factor of less than 3 as I
varies by over more than 2 orders of magnitude. In contrast, it
is quite dependent on the injection compactness parameter. For
a given magnetic field, the low injection rates produce steady
states in which the Thomson optical depth is low. The Compton
cooling is negligible and the final temperature is high. As the
injection parameter increases, the optical depth becomes large,
and the Compton cooling becomes efficient and dominates at
high energy, eventually producing far smaller temperatures. The
injection of particles at an energy far higher than the average

7 The temperature is the effective temperature defined by Eq. (18) in
Ghisellini et al. (1998a).
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Fig. 6. Effective electron temperature estimated following Eq. (18) in
Ghisellini et al. (1998a). The 3 curves are for magnetic compactness
parameters [z = 0.1, 1, 30 from the top curve to the bottom curve and the
domain size is R = 10'3 cm. The stars indicate the results of Ghisellini
et al. (1998a) for I3 = 30.
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Fig. 7. Effect of Coulomb cooling: same as Fig. 6 for /5 = 30, with and
without e-e Coulomb scattering (solid and dashed line respectively).

particle temperature causes the formation of a hard non-thermal
tail and a larger deviation from the Maxwell distribution at high
energies. Compared to the results by Ghisellini et al. (1998a),
we find temperatures that are significantly higher (up to a fac-
tor 3) at large optical depths. This is probably due to a more
precise treatment of the radiation field and Compton scattering.
Ghisellini et al. (1998a) considered only the cooling of particles
by inverse Compton scattering and assumed that it was limited
in the Thomson regime. By using the exact Klein-Nishina cross
section, we find more rapid photon escape and a weaker radia-
tion field, whose cooling efficiency is lower.

At large Thomson optical depth (i.e. at high injection rates),
Coulomb exchange is supposed to dominate over synchrotron
self-absorption. To investigate this, we completed the same sim-
ulations including e-e Coulomb scattering. Results are shown
in Fig. 7. It is found that the e-e Coulomb collisions tend to
increase the effective temperature. As explained before, parti-
cles are injected at high energy. They are cooled by both syn-
chrotron emission and Compton scattering, and form a low en-
ergy thermal pool. high energy particles are then scattered by
thermal electrons with e-e Coulomb collisions. The cooling of
the high energy distribution is very efficient but the thermal pool
of cool electrons gain energy by this interaction, giving higher
effective temperatures. This effect is negligible at low injection

629

vl, * 30¢/4mRmc’

wl,

© = hv/mc?

Fig. 8. Particle distributions (upper panel) and spectra (lower panel) for
different acceleration efficiencies. Acceleration is modelled by second
order Fermi process with no threshold. The optical depth is 7. = 1, the
domain size is R = 5 x 107 cm and the magnetic compactness parameter
is lB =1.

rates when the temperature is so high that the injection energy
has a value that is almost in the bulk of the distribution and there
is no well-marked high energy tail. However, at high injection
rates, the temperature decreases and particles are injected at far
higher energies than in the thermal pool. Exchange of energy be-
tween high and low energy particles becomes very efficient and
it is found that this effect is significant (up to a factor of 2 for
le = 100).

A more detailed study of the synchrotron boiler mechanism
and its application to X-ray binaries will be addressed in future
work.

4.5. Particle acceleration

As a second example, we investigate the effect of Fermi, second
order acceleration. We consider a magnetised (/g = 1), isolated
plasma of size R = 5 x 107 cm (typical of X-ray binary coro-
nae), with no injection of seed photons. The soft photons are
emitted by synchrotron radiation of high energy particles. The
acceleration is modelled by the second order Fermi process and
no particle is injected into the plasma. Particles are assumed to
be trapped and the Thomson optical depth is set to be 7. = 1. Pair
production/annihilation and Coulomb collisions are neglected
to focus on the role of particle acceleration. After a transient
phase that depends on the initial conditions, particles and pho-
tons reach a steady state that depends only on the acceleration
properties.
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Table 6. Outputs parameters for Fig. 8. 7. is the acceleration time in

unit R/c and 65 is the averaged temperature estimated as in Sect. 4.1 in

units of 1073 mec?.

10g (lacc) facc 93
—4 48800 164.5
-1 75.1 259.8
1 1.02 369.0
2 0.104  390.5
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Fig. 9. Particle distributions (upper panel) and spectra (lower panel) for
different threshold energies. Acceleration is modelled by second order
Fermi process with /.. = 10. The optical depth is 7. = 1, the domain
size is R = 5 x 107 cm and the magnetic compactness parameter is
[ = 1. Dashed vertical lines show the threshold momenta.

We first investigate the role of the acceleration efficiency
and the threshold energy is assumed to be far lower than the
bulk of particles. Figure 8 presents the steady particle distribu-
tions and spectra for various values of the acceleration efficiency.
In all cases, the distribution is similar to a Maxwell-Boltzmann
distribution. As found in previous calculations, the diffusion in
the momentum space produces a quasi-thermal distribution (e.g.
Katarzynski et al. 2006b) and in this case, the thermalisation
is also helped by the synchrotron boiler mechanism. The spec-
trum is the sum of the low energy synchrotron emission and a
hard tail resulting from the multiple Compton scattering of these
soft photons from the highest energy particles. As the accel-
eration efficiency increases the steady distribution widens and
moves to higher energies. As a consequence, the spectra exhibit
a stronger hard tail. The temperature of the distribution is given
in Table 6. and as expected, it becomes higher as the acceleration
efficiency increases. Since there are more high energy particles,
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the synchrotron self-absorbed emission is stronger, which cools
the softer particles more efficiently and the averaged tempera-
ture saturates. The source luminosity however scales with the
acceleration compactness parameter.

We now investigate the role of the minimal energy above
which the acceleration occurs. The simulations are completed
with the same parameters but the acceleration efficiency is set to
lacc = 10 and we vary the threshold energy. We note that for a
given power supplied to the plasma by accelerating particles, the
higher the threshold energy the fewer the accelerated particles
and the shorter their acceleration time. The results are shown
in Fig. 9 for threshold momenta p. = 0,1,1.3,2,5, and 10.
The corresponding acceleration times are f,.. = 1.02,6.32 X
1071,3.45x 1071,1.77 x 1071,5.63 x 1072, and 1.95 x 1072R/c
respectively. For low threshold energies (p. < 1), the distri-
bution depends weakly on the precise threshold. It produces a
small number of soft photons. Since the particles are not en-
ergetic, the photons undergo multiple Compton scattering and
form the strong high energy part of the spectrum. When only
mid-relativistic or relativistic particles are accelerated, they form
a high energy tail that extends far beyond the thermal pool,
and the situation then differs significantly. Since the total syn-
chrotron emission increases with the energy of the emitting par-
ticles ( f jsdv o p?), the synchrotron bump is much larger. The
hard energy tail of the particle distribution also has a flat slope,
which produces a wider synchrotron bump. Since the particles
have higher energy, the Compton up-scattering of these soft pho-
tons becomes more efficient. In the limit where the synchrotron
soft photons have low energy (wsyneh << 1) and the accelerated
electrons have high energy (y > 1), the photon energy gain
during one single scattering is: Weompt/Wsynch 4y%/3. As a re-
sult, photons undergo only a small number of Compton scat-
terings before they reach the particle energy, forming a double-
humped spectrum as those of blazars in the case p. = 10. At
the same time, Compton scattering cools the thermal particles
further so that the bulk of particles moves to lower energies.
Future work will consider this effect in more details including
the physics of wave-particle interaction. In particular, more con-
sistent models of particle escape and momentum diffusion must
be implemented.

Conclusion

We have presented a code developed to model radiation pro-
cesses in high energy plasmas without any assumption about
the shape of the particle distribution. The code is time depen-
dent. It uses the exact Compton and pair production/annihilation
unpolarized, isotropic cross sections. Cyclo-synchrotron self-
absorbed radiation is taken into account from the sub-relativistic
regime to the ultra-relativistic one, which represent an improve-
ment in comparison with other codes. It also includes an ap-
proximate treatment of e-e and e-p Coulomb exchange and e-p
self-absorbed bremsstrahlung radiation. Explicit prescriptions
for particle acceleration have also been implemented. The code
deals consistently with all processes over wide ranges of energy.
There is no restriction on the photon energy and particles can
have momenta in the range 10~7 < p < 107. It can therefore be
used to model various sources, such as not only X-ray binaries
and AGN, but also y-ray bursts and pulsar wind nebulae.

The major limitation of the code is its simplified geometry.
The code simulates a uniform system, typically a homogeneous
sphere with an isotropic and unpolarized radiation field. It obvi-
ously introduces a bias in simulations of X-ray binaries coronae,
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where the seed photons from the disc have an isotropic distribu-
tion or in jets of AGN, where geometrical effects are important.
However, the geometry of the emitting regions in high energy
sources is poorly constrained and in most cases it does not play
a crucial role. The prescriptions used for particle and photon es-
cape are also able to reproduce the main effects of geometry.
Some examples have been shown of checks of the code ca-
pabilities in comparison with previous codes designed to solve
restricted problems, involving a limited number of ingredients.
In several cases, we have disabled some processes in our code
to ensure more rigourous comparisons. We have found that the
code confirms qualitatively all previous results. After consid-
ering more precisely these processes, the properties of the ex-
act spectra and particle distribution were however found to be
slightly different. As an example, we investigated the acceler-
ation by second order Fermi-like processes. We found that an
energy threshold for acceleration produces a non-thermal popu-
lation of particles when it reaches the mid-relativistic regime.
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