Evidence of convective rolls in a sunspot penumbra

V. Zakharov, J. Hirzberger, T. L. Rieuttmüller, S. K. Solanki, and P. Kobel

Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
e-mail: zakharov@mps.mpg.de

Received 27 May 2008 / Accepted 9 July 2008

ABSTRACT

Aims. We study the recently discovered twisting motion of bright penumbral filaments with the aim of constraining their geometry and the associated magnetic field.

Methods. A large sunspot located 40° from disk center was observed at high resolution with the 1-m Swedish Solar Telescope. Inversions of multi-wavelength polarimetric data and speckle reconstructed time series of continuum images were used to determine proper motions, as well as the velocity and magnetic structure in penumbral filaments.

Results. The continuum movie reveals apparent lateral motions of bright and dark structures inside bright filaments oriented parallel to the limb, confirming recent Hinode results. In these filaments we measure upflows of \(\approx 1.1 \) km s\(^{-1} \) on their limbward side and weak downflows on their centerward side. The magnetic field in them is significantly weaker and more horizontal than in the adjacent dark filaments.

Conclusions. The data indicate the presence of vigorous convective rolls in filaments with a nearly horizontal magnetic field. These are separated by filaments harbouring stronger, more vertical fields. Because of reduced gas pressure, we see deeper into the latter. When observed near the limb, the disk-centerward side of the horizontal-field filaments appear bright due to the hot wall effect known from faculae. We estimate that the convective rolls transport most of the energy needed to explain the penumbral radiative flux.

Key words. sunspots – Sun: magnetic fields – Sun: photosphere – techniques: spectroscopic – techniques: polarimetric – techniques: high angular resolution

1. Introduction

The discovery of twisting motions of penumbral filaments seen in time series of filtergrams by Ichimoto et al. (2007) ranks among the most striking recent discoveries in solar physics. In sunspots observed at a heliocentric angle \(\theta \) of 40–50° filaments lying roughly parallel to the limb display a twisting motion directed towards solar disk center. The nature and origin of this apparent motion is still unclear and requires further study. An important step in this direction is to determine how these twisting filaments fit into the complex magnetic structure of the penumbra. This is the main aim of the present letter, along with the confirmation of the Hinode-based results of Ichimoto et al. (2007) with the 1-m Swedish Solar Telescope, which allows higher spatial resolution images to be obtained.

2. Observations and data reduction

Using the 1-m Swedish Solar Telescope (SST), we observed a mature sunspot in active region NOAA 10904 on August 13, 2006 during a period of good to excellent seeing. The center of the field of view (FOV) was located at \(\mu = 0.76 \) (heliocentric angle \(\theta = 40.5° \)). By means of a dichroic beamsplitter, the sunlight was split into red (\(\lambda > 500 \) nm) and blue (\(\lambda < 500 \) nm) beams. In the blue channel, G-band (L\(_0\) = 430.5 nm interference filter, FWHM = 1.3 nm), and blue continuum (L\(_0\) = 436.4 nm, FWHM = 1.1 nm), images were simultaneously collected on Kodak Megaplus 1.6 CCD cameras (1536 \times 1024 pixels, of 9 \(\mu \)m pixel-size). The exposure time was set to 13 ms. These images were binned into packages of 60 frames and processed using speckle image reconstruction techniques (Weigelt 1977; Pehlemann & von der Lühe 1989; de Boer 1996). By applying this procedure, we obtained a two-hour long time sequence of near-diffraction-limited filtergrams at a cadence of 19 s between individual frames.

In the red channel three temporally synchronized Sarnoff CAM1M100 cameras were employed, with exposure times of 4.5 ms. Two of them collected broad-band continuum frames near \(\lambda = 630.25 \) nm. The third camera registered spectro-polarimetric data consisting of scans through the Fe I (\(\lambda = 630.25 \) nm) line at 6 wavelength positions (\(\lambda - \lambda_0 = [-150, -75, 0, 75, 150, 250] \) mA) made with the Solar Optical Universal Polarimeter (SOUP) filter. The last position in general samples the continuum. Two Liquid Crystal Variable Retarders (LCVRs) were used to modulate the light beam. The complete scan across the iron line lasted about 123 s. After calibration procedures, the full Stokes vector at each point of the FOV was retrieved. For this we used a telescope model and demodulation matrices of the optical setup measured with dedicated calibration optics (Selbing 2005).

We determined the magnetic field vector and the line-of-sight (LOS) velocity by inverting the measured Stokes profiles (composed of only 6 wavelength points) using the HeLx inversion code (Lagg et al. 2004). An atmosphere composed of two Milne-Eddington atmospheric components, one magnetic, the other one representing unpolarized stray light, was employed. Extensive tests based on inverting synthetic spectra computed in 3D radiation MHD models have shown that 6 wavelength points
are sufficient for a reliable inversion\(^1\). The inversions provide the magnetic field vector: (field strength \(|B_{\text{inv}}|\), inclination \(\gamma_{\text{inv}}\), azimuth \(\phi_{\text{inv}}\)) and the line-of-sight (LOS) velocity, \(v_{\text{LOS}}\), (which was calibrated to be 0 m/s in the darkest part of the umbra). We applied an algorithm based on minimization of the gradients of the azimuth over the FOV to correct for the 180\(^\circ\) ambiguity in \(\phi_{\text{inv}}\). Additionally, \(B_{\text{inv}}\) was constrained to point away from the sunspot umbra due to its positive polarity (confirmed by MDI magnetograms). If even after this algorithm for a given pixel \(\text{sunspot umbra due to its positive polarity (confirmed by MDI magnetograms). If even after this algorithm for a given pixel}\) \(\text{pixel}\) \(\phi_{\text{inv}}\) of 8 neighbouring pixels, then we considered the results of the inversion of pixel \(i\) to be incorrect. The values in this pixel were then replaced by the median of the surrounding pixels. To analyse the geometry of the magnetic field better, a rotation matrix was applied to \(B_{\text{inv}}\) to get the magnetic field vector \(B = (B, \gamma, \phi)\), in local solar coordinates.

3. Results

Let us first consider the blue continuum time sequence, which has the best spatial resolution of our data. The most remarkable of the rapid intensity variations within penumbral filaments are continuous lateral motions of dark and bright stripes across several bright filaments, giving a visual impression of a twisting motion or a rotation around their axes. To illustrate the temporal evolution of one such filament located in the central penumbra, we plot in Fig. 1 a 228 s sequence of 4 blue continuum images (1.5 x 3.5 arcsec in size), with a cadence of 76 s. The filament makes an angle of \(\Delta = 90^\circ\) from left to right. The solar limb is located to the left, the umbra to the bottom.

![Fig. 1. Temporal evolution of an individual filament in blue continuum images. The size of the FOV is 1.5 x 3.5 arcsec and the cadence is \(\Delta t = 76\) s.](image)

These lateral motions are always directed towards the disk-center side. These lateral motions are always directed towards the disk-center side. These lateral motions are always directed towards the disk-center side. These lateral motions are always directed towards the disk-center side. These lateral motions are always directed towards the disk-center side.

\(^1\) These tests were carried out by Lagg et al. (unpublished) in the course of studying the design requirements of the Visible-light Imager & Magnetograph for ESA’s Solar Orbiter Mission.
filament. On the limb side of the bright filament and in the dark region immediately bordering it, $|B|$ is nearly a factor of 2 lower and B becomes almost horizontal ($70^\circ \lesssim \gamma \lesssim 90^\circ$). Here the azimuth is skewed by $15^\circ \lesssim \phi \lesssim 25^\circ$ towards the limb relative to the axis of the filament.

4. Discussion

In Fig. 4 we present a sketch of the geometry of the penumbral fine structure, which is consistent with the results of the present Letter, as well as those of Ichimoto et al. (2007), Borrero et al. (2008), and Borrero & Solanki (2008) based on Hinode data. The $\tau = 1$ level is relevant for the line wings. In the sketched configuration stronger, more vertical fields (spines) are associated with less dense gas, leading to a lowered $\tau = 1$ level there. Interspersed between them are filaments of nearly horizontal, weaker magnetic field pointing into the page (interspines). Important is that the filaments carrying the Evershed flow have a sizable horizontal field (Borrero & Solanki 2008), since the flowing gas is observed to be magnetized (Solanki et al. 1994; Bellot Rubio et al. 2004). It is within these filaments that the transverse motions are seen, which are similar to overturning convection. A nearly horizontal magnetic field means that convection takes place in the form of convective rolls, as first proposed by Danielson (1961). Due to the raised $\tau = 1$ level in these filaments (consistent with the findings of Rimmele 2008) the bright part of the filament, which is contoured in Fig. 2, is the penumbral counterpart of the hot wall found in faculae and pores (Spruit 1976; Keller et al. 2004; Carlsson et al. 2004; Cameron et al. 2007). This geometry explains why only lateral motions directed towards disk center are seen and why the observed upflow velocity is higher than the downflow velocity, as can be seen by considering the directions of the flow arrows relative to the line-of-sight in Fig. 4. From these hot walls radiation flows into the neighbouring spines. The parallax effect, discussed in Sect. 3, makes it obvious that the most inclined magnetic field, which is located above the center of the filament, was detected at the limbward border of the bright filament. The contrast between spine and interspine is expected to depend on the relative temperature contrast, width of the spine and the difference in evaporation between spines and interspines. The values plotted in Figs. 2 and 3 are weighted averages along the LOS (the relatively few measured wavelength points do not allow a more detailed analysis). Thus, because a number of the slanted rays pass through both the inclined and the horizontal fields, the difference between them appears less clear in Figs. 2 and 3 than it may be in reality. Whether our measurements contradict the findings of Jurčák & Bellot Rubio (2008), who report that bright penumbral filaments show the more vertical fields and weaker flows, cannot be judged, in part because of the different viewing geometry. They have investigated the limbward part of the outer penumbra, whereas our investigation addresses filaments oriented parallel to the limb, in the mid penumbra.

The energy transport by the convective rolls can be expressed as $F_{\rho u} = \rho \cdot u \cdot v$, (neglecting the enthalpy) where $\rho = 2 \times 10^{-7} \text{g cm}^{-3}$ is the mass density, $u = 3 \times 10^{12} \text{erg g}^{-1}$ is the heat deposited by 1 g of gas as it cools from 12 000 K to 5000 K (Schlichenmaier et al. 1999), and $v = 1 \text{km s}^{-1}$ is the upflow velocity observed in the convective rolls. Entering these numbers, we obtain $F_{\rho u} \approx 6 \times 10^{10} \text{erg cm}^{-2} \text{s}^{-1}$. This is larger than the radiative flux emitted by the penumbra, $F_{\text{pen}} \approx 4.7 \times 10^{10} \text{erg cm}^{-2} \text{s}^{-1} = 0.75 \cdot F_{\odot}$. However, we must keep in mind that upflows fill at the most half of the surface area of the penumbra; e.g., the spines must be heated radiatively. It is reasonable to assume them to emit the same flux as the umbra in the absence of any lateral heat influx from the interspines, $F_{\text{umb}} = 0.2 \cdot F_{\odot}$. For a penumbra half covered by upflows and half by gas at umbra temperatures, we obtain the following relationship that must be fulfilled: $\frac{1}{2} \cdot (\rho \cdot u \cdot v + F_{\text{umb}}) = F_{\text{pen}}$. This gives a requirement on $\rho \cdot u \cdot v + F_{\text{umb}} \approx 8 \times 10^{10} \text{erg cm}^{-2} \text{s}^{-1}$, which is only a factor of 1.3 larger than the estimate obtained from the convective rolls. An underestimation of the partly unresolved velocities of the roll convection can easily account for this factor. The observed roll convection transports far more energy flux than interchange convection or the Evershed flow along flux tubes, as estimated by Schlichenmaier & Solanki (2003). We therefore propose that the observed convective rolls are the main form of energy transport in the immediate subsurface layers of the penumbra, carrying most of the energy required to maintain the radiative output of the penumbra.

The configuration of field and flows presented here combines aspects of both (i) the uncombed penumbra model of Solanki & Montavon (1993) and (ii) Schlichenmaier et al. (1998a,b) and the gappy penumbra model of Spruit & Schärmer (2006); Schärmer & Spruit (2006), cf. Schärmer et al. (2008). The geometry of magnetoconvection in the umbral dots models by...
From top to bottom: a) horizontal cuts of blue continuum intensity, b) LOS velocity (solid) and red continuum intensity (dashed), c) strength, d) zenith angle, and e) azimuth of the magnetic field inside the filament. The solar limb is located to the left. The continua profiles have been shifted to the left by 0.1 arcsec. In panel a) intensity curves recorded later are offset downwards (cadence $= 38$ s). Diamonds mark the location of a bright structure drifting across the filament. Panels b)–e) display the results of data recorded between 09:16:50 – 09:18:30. The vertical dashed-triple-dotted line corresponds to the location, averaged over the 09:16:50 – 09:18:30 time interval, of red continuum intensity maximum of the bright filament.

Schüssler & Vögler (2006), cf. Riethmüller et al. (2008), displays qualitative similarities to our model. Observations by Rimmele (2008) of sunspot close to disk center reveal that the velocity pattern of dark-cored filaments at lower layers is similar to what he sees in the light bridges, i.e. the dark lanes are correlated with upflows and with downflows to the sides. This also agrees with our results.

Acknowledgements. The Swedish 1-m Solar Telescope is operated on the island of La Palma by the Institute for Solar Physics of the Royal Swedish Academy of Sciences in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. We thank H. Uthas, R. Kever, and M. van Noort for their kind support with the SST.

References

Weigelt, G. P. 1977, OptCo, 21, 55