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ABSTRACT

Context. The formation of resonant planet pairs in exoplanetary systems involves planetary migration inside the protoplanetary disc.
After a resonant capture, subsequent migration leads to a large increase in planetary eccentricities, if no damping mechanism is
applied. This has led to the conclusion that the migration of resonant planetary systems cannot take place across large radial distances,
but must be terminated rapidly by disc dissipation.
Aims. We investigate if the presence of an inner disc could supply eccentricity damping to the inner planet, and if this effect could
explain observed eccentricities in some planetary systems.
Methods.

orbital configuration, for any given damping effect of the outer disc on the outer planet.

Conclusions. We conclude that an inner disc, even though difficult to model properly in hydrodynamical simulations, should be
taken into account because of its damping effect on the eccentricity of the inner planet. By including this effect, we can explain quite
naturally the observed orbital elements of the pairs of known resonant exoplanets.

Key words. accretion, accretion discs – planets and satellites: formation – celestial mechanics

1. Introduction

The orbital evolution of a system consisting of young protoplan-
ets is governed by disc-planet and mutual gravitational interac-
tions. In the case of differential migration, the semi-major axis
ratio of two planets varies with time and – in the situation of
convergent migration – capture in a resonant configuration can
occur. A large fraction of the observed multi-planet systems,
contain a pair of planets engaged in a resonance. Here, we are
interested in mean motion resonances (MMR), where the ratio
of the (mean) orbital periods of the outer to the inner planet,
equals that of two small integers. Among the 6 systems known
to contain an MMR, 4 have a ratio of 2:1: GJ 876, HD 82 943,
HD 128 311, and HD 73 526. The system first discovered to be in
a 2:1 configuration (GJ 876) is interesting in several aspects. The
planets are both massive (0.56 and 1.94 Jupiter mass), in contrast
to the small mass of the central star, which is only 0.33 M�. The
short orbital periods of the planets (≈30 and ≈60 days) allow the
accurate determination of their orbital elements, which are pro-
vided in Table 1. In GJ 876, the two outer planets are“deep” in
the 2:1 MMR: the apsidal lines of the two osculating, orbital el-
lipses, are always aligned and librate with small amplitudes only
(so-called apsidal resonance or corotation). As a consequence
of the apsidal resonance, the planetary eccentricities show only
small variation with time. A resonant configuration such as that

within GJ 876, can be established only by the action of dissipa-
tive effects, such as disc-planet interaction. The mere existence
of systems engaged in MMRs, is one of the strongest indication
that planetary migration has indeed occurred, during the early
evolution of planetary systems.

The first detailed modelling of GJ 876 was conducted by Lee
& Peale (2002), who performed customised 3-body simulations
of a central host star and two planets, with additional (dissipa-
tive) forces that reproduced the effects of disc-planet interaction.
In such simulations, it is assumed that a pair of planets is embed-
ded in the protoplanetary disc; this disc consists of an outer disc
only, while the inner disc, which is inside the orbit of the inner
planet, has already been lost due to accretion onto the star and
planets, or final evaporation. In such a configuration, only the
outer planet is in contact with an even more distant protoplan-
etary disc, and experiences typically negative Lindblad torques,
and migrates inward. In contrast, the inner planet has no ambi-
ent material and does not feel any disc torque. In terms of the
3-body simulations by Lee & Peale (2002), this implies that ad-
ditional forces reduce the semi-major axis and eccentricity of the
outer planet, while the inner planet feels only the direct gravita-
tional forces of the star and outer planet. Capture into a resonant
configuration can occur when, during the inward migration, the
outer planet crosses the location at which the mean orbital peri-
ods have a ratio of two small integers.
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The eccentricity damping action of the outer disc, onto the
outer planet, is typically parameterised by the migration rate, i.e.

ė
e
= −K

∣∣∣∣∣ ȧa
∣∣∣∣∣ (1)

where a and e are the semi-major axis, and eccentricity of
the planet, respectively, while the constant factor K relates the
damping rates. For low-mass planets in the linear regime, it is
known that the eccentricity damping timescale, � e = −e/ ė, is
about h2 times shorter than the migration timescale � a = −a/ ȧ
(Tanaka & Ward 2004), where h is the aspect ratio of the disc
(generally a few percent). This short timescale was confirmed
using fully-nonlinear, hydrodynamical simulations in two and
three dimensions (Cresswell et al. 2007). Hence, for low-mass
planets one may safely assume that they migrate inward, on
nearly circular orbits, unless disturbed by additional bodies in
the system. For higher planetary masses, the value (and also the
sign) of K, is not precisely known; due to the gap opening, it is
however expected that the damping on the eccentricity will be
reduced, with respect to the linear case. The simulations by Lee
& Peale (2002) indicate that for values of K equal to unity, the
resonant action leads to a strong growth of eccentricity of both
the inner and outer planets, much larger than the observed values
(e1 ≈ 0.03 and e2 ≈ 0.22). Lee & Peale (2002) pointed out that
the final state of the system is determined by K. For a vanish-
ing K, i.e. no eccentricity damping, the planetary eccentricities
continue to grow. To match the observations, Lee & Peale (2002)
had to assume a value of K = 100, a value that appears to be
large, considering the high masses of the planets.

The convergent migration of two massive planets was
demonstrated in a variety of hydrodynamical simulations (Kley
2000; Bryden et al. 2000; Snellgrove et al. 2001; Papaloizou
2003). Using multi-dimensional hydrodynamical simulations of
resonant planetary systems, it was shown that for masses in the
Jupiter regime, the value of K is approximately 1–10 at most
(Kley et al. 2004). In a detailed study of the system GJ 876,
Kley et al. (2005) have shown that, in hydrodynamical simula-
tions where the inner disc was depleted, the final eccentricities of
the planets were always much larger than those observed, unless
one assumes that the outer disc dissipates rapidly, on the viscous
time scale. Hence, this scenario does not allow for the migration
of the resonant planets over a large radial distance.

In hydrodynamical simulations of discs with embedded plan-
ets, it is often found that the inner disc is depleted rapidly; this
may not however always be the case, and may instead be an
artefact of inappropriate inner boundary conditions. As shown
by Crida & Morbidelli (2007), an inner disc will survive for
much longer than believed previously, even in the presence of
a planet. In this situation, the inner disc should have a dynamical
influence on the inner planet, and induce possibly some addi-
tional damping of the eccentricity. The effect of such eccentric-
ity damping on the inner planet, was described first by Lee &
Peale (2002), for the particular case of GJ 876. They found that
a value of K = 10, for both planets, yields final eccentricities in
the observed range. The first full hydrodynamical study in this
direction – including an inner disc – was completed for the res-
onant system HD 73 526, by Sándor et al. (2007), in their study,
they showed that the inclusion of an inner disc leads to an eccen-
tricity damping of the inner planet, and allows more extended
radial migration with reasonable final eccentricities.

In this paper, we analyse the effect in more detail, and inves-
tigate the dynamical influence of an inner disc on a planet. In
Sect. 2, we perform a sequence of hydrodynamical simulations,
measure the torque and power exerted by the disc on the planet,

and evaluate the change in eccentricity and semi-major axis as
a function of the planetary eccentricity. In Sect. 3, we complete
a full time-evolution of a pair of planets, embedded in a proto-
planetary disc, for realistic parameters, with specific application
to GJ 876. We show that the torque and power generated by the
inner disc, yield an effective damping of e that results in mod-
erate final eccentricities, even for extended radial migration. In
Sect. 4, we apply an eccentricity damping to the inner planet, in
N-body simulations, with artificial non-conservative forces that
reproduce the effect of the disc. We apply this analysis to a few
exoplanetary systems, and try to recover the observed orbital el-
ements with a realistic migration scenario. Section 5 summarises
our results.

2. Effect of a gaseous inner disc on the orbital
elements of a planet on an eccentric orbit

We perform a suite of hydrodynamical simulations to measure
the influence of an inner disc on the orbital elements of a planet,
which has an eccentric orbit. The disc is treated as a two-
dimensional gas that occupies the orbital plane of the planet.
The disc material is present only inside the planetary orbit, so
that the effect of the inner disc can be isolated. The planet has a
mass Mp = 2.14 × 10−3 M∗, and a fixed orbit with semi-major
axis a = 1, and an eccentricity e that is varied between one sim-
ulation and another.

The disc is treated as a non-self-gravitating gas that can nev-
ertheless interact gravitationally with the planet. Using the ex-
pressions for the planetary energy E = −G(M∗ +Mp)Mp/ 2a and

angular momentum H = Mp

√
G(M∗ + Mp)a(1 − e2), one can

derive:

ȧ/ a = −Ė/ E (2)

ė/ e =
e2 − 1

2e2

(
Ė
E
+ 2

Ḣ
H

)
· (3)

In the present simulations we fix the orbit of the planet, but mon-
itor the torque (Ḣ) and power (Ė) acting on the planet, averaged
over one orbit. We check that if the planet is released from its
fixed orbit, its eccentricity and semi-major axis follow the ex-
pected evolution.

We use the FARGO code developed by Masset (2000a,b),
which is a two-dimensional hydro-code in cylindrical coordi-
nates (r, � ), with an isothermal equation of state. Thus, the sound
speed is given by cs = hrΩ, whereΩ is the local angular velocity,
r is the distance to the central star, and h is the aspect ratio, which
is here 0.05. The gas viscosity � is given by an � -prescription
(� = � cshr, Shakura & Sunyaev 1973), with � = 10−2. The grid
covers the region from 0.4 to 1.62 in radius, divided into 112 ele-
mentary rings (logarithmically spaced), themselves divided into
500 sectors. The inner boundary condition is non-reflecting; at
every time step, the density in the zeroth ring is set to be equal
to the density of the first ring, which is rotated to simulate wave
propagation and avoid wave reflection; the density of the zeroth
ring is then shifted to ensure that its azimuthally-averaged den-
sity is similar to its initial value. The outer boundary is open,
which means that outflow of gas out of the grid is permitted.

The coordinate system is centred on the star. It can be non-
rotating, corotating with the planet, or rotating at a constant an-
gular velocity with a period equal to that of the planet

Ω0 =

(
G(M∗ + Mp)

a3

)1/ 2

· (4)
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Fig. 1. Gas density profiles after 400 orbits for a few planet eccentrici-
ties, and common initial profile (plain line).

The choice of a different coordinate rotation-rate, can alter the
gas dynamics in the vicinity of the planet. This may occur even
for the FARGO algorithm, which treats each ring in a coro-
tating frame. We perform comparison simulations in all three
frames and show our results. In the corotating frame, gas in the
Hill sphere rotates about the planet, which moves radially from
apoastron to periastron and vice versa. In the non-rotating frame,
the motion of the planet about the star in the grid appears to
spread the Hill sphere. For large eccentricities, the co-rotating
frame is disadvantageous because it does not rotate at a constant
angular velocity; this implies that additional terms exist in the
equations of motion. We therefore apply the second case, which
is a frame rotating with a constant speed Ω0, within which the
planet describes an epicycle.

The initial density profile corresponds to an approximate gap
opened by the planet, without the outer disc, such that an equi-
librium profile and a stationary regime are quickly reached. The
initial profile is plotted as a solid line in Fig. 1. The initial total
mass of gas in the disc is 1.53 × 10−3M∗ = 71% Mp. For various
planet eccentricities, we display the final density profiles, after
400 orbits, in Fig. 1. The density measurements are those when
the planet is at apoastron, and the density spike at r = 1 + e
corresponds to the Hill sphere of the planet. As the eccentric-
ity increases, the inner disc becomes more depleted. The outer
disc is clearly empty. In each of the five cases considered, the
simulation was completed inside a non-rotating frame.

2.1. Average effect of the inner disc

The power and torque from the disc on the planet become almost
constant after about 200 orbits, and we measure both quantities
after 400 orbits. To measure the force exerted by the gas on the
planet, we exclude material inside the Hill sphere, using a taper-
ing function given by:

f (d) =

[
exp

(
−

d/ rH − p
p/ 10

)
+ 1

]−1

(5)

where d is the distance to the planet, rH is its Hill radius rH =
rp(Mp/ 3M∗)1/ 3 (rp being the distance between the planet and the
star), and p is a dimensionless parameter set to be equal to 0.8.
This function is plotted in Fig. 2 for different values of p. We
stress that the use of such a tapering is important: the gas close to
the planets exerts a strong force, which should not be taken into

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

f (
 d

 )

d / rH

p = 0.6
p = 0.7
p = 0.8
p = 0.9

Fig. 2. Tapering function f (d) defined by Eq. (5) for four values of the
parameter p.

-12

-9

-6

-3

 0

 3

 6

 0  0.1  0.2  0.3  0.4  0.5

da
 / 

dt
 / 

µ 
  [

10
-4

 A
U

/o
rb

it]

eccentricity

NR
CF
ΩF

-12

-9

-6

-3

 0

 3

 6

 0  0.1  0.2  0.3  0.4  0.5

de
 / 

dt
 / 

µ 
  [

10
-4

 o
rb

it-1
]

eccentricity

NR
CF
ΩF

-2000

 0

 2000

 4000

 6000

 0  0.1  0.2  0.3  0.4  0.5τ e
  =

  -
 e

 / 
( 

de
 / 

dt
 / 

µ 
) 

  [
or

bi
t]

eccentricity

-10

-5

 0

 5

 10

 15

 0  0.1  0.2  0.3  0.4  0.5

K
  =

 [(
de

/d
t)

/e
] /

 [(
da

/d
t)

/a
]

eccentricity

Fig. 3. Influence of the inner disc on a planet on a fixed orbit, as a func-
tion of the eccentricity. NR (+ symbols): in the non-rotating frame; CF
(× symbols): in the corotating frame; ΩF (open squares): in the frame
rotating monotonically with the same period as the planet.

account because this gas is gravitationally bound to the planet,
and should be considered as a part of the planet mass. With self-
gravity, this gas should feel the same force as and naturally fol-
low the planet; tapering frees the planet from the need to carry
artificially this material. The influence of the shape of the taper-
ing function will be discussed below.

For the three above mentioned options for the rotation rate of
the coordinate system, the results are shown in Fig. 3. The quan-
tities are normalised by µ = Mdisc/ Mp, because the force felt by
the planet is proportional to the gas density. The two top panels
display the influence of the inner disc on the orbital elements e
and a. For e � 0.1, the eccentricity is effectively damped on a
timescale of about two thousands of orbits, as can be seen in the
bottom left panel displaying � e = −e/ (ė/µ ); the dispersion in the
values of � e for 0.1 � e � 0.15 is due to the fact that ė is close
to zero. This confirms the idea presented by Lee & Peale (2002)
and Sándor et al. (2007) that an inner disc has a damping effect
on the planetary eccentricity. For low eccentricities (e � 0.1), the
influence of the disc is small (|ė| < 4 × 10−5 orbit−1), and could
even lead to a small excitation of the eccentricity.

It is well-known that a planet on a circular orbit exerts a neg-
ative torque on the inner disc (Lin & Papaloizou 1979; Goldreich
& Tremaine 1980). It repels the gas, leading to the opening of a
gap. When the density gradient at the gap edge is sufficiently
steep, an equilibrium is achieved (see for instance Crida et al.
2006). The planet then feels a positive torque from the inner
disc. For e = 0, we find that the planet feels a positive torque
(which is equal to the power), as expected; consequently, ȧ > 0.
But as e increases, the power decreases, and for e � 0.3, the
semi-major axis variation expected if one releases the planet is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079291&pdf_id=2
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verify this hypothesis, we compute below numerical simulations
of the GJ 876 system, embedded in a disc, using a hydro-code.

3.2. Code description and numerical parameters

3.2.1. Numerical scheme

To simulate the entire disc, we used a code developed by
Crida et al. (2007), which was derived from FARGO by Masset
(2000a,b). The region in which the planets orbit is modelled by a
two-dimensional (hereafter 2D) polar grid, which is surrounded
by a one-dimensional (hereafter 1D) grid extending over the en-
tire disc; the disc is assumed to be axisymmetrical far from the
planets. As pointed out by Crida et al. (2007), this 1D grid en-
ables us to take account of the global disc evolution, which gov-
erns the type II migration of the giant planets. In addition, the
inner disc evolution is self-consistently computed down to an
arbitrarily small inner radius, which could not be reached by a
2D grid for numerical reasons. Thus, the planets can feel the in-
fluence of a realistic inner disc. Consequently, this code is well
adapted to the problem that we wish to study.

In contrast to previous calculations in which we used a non-
inertial frame centred on the star, the usage of an added 1D-grid
requires that the frame is inertial and centred on the centre of
mass of the system, which is considered to be the star, planet
and disc.

The tapering function used here is f , as given in Eq. (5), with
p = 0.6.

The 2D grid spans the region where the planets orbit, r ∈
[0.055; 0.655], with a resolution of Ns = 500 sectors in azimuth,
and Nr = 300 rings in radius; a ring width is thus 	 r = 0.002 AU,
which applies also for the 1D grid. The outer edge of the 1D grid
is fixed arbitrarily to r = 10 AU, which is sufficiently distant.
The inner edge is discussed below.

3.2.2. Disc parameters

The damping effect of the inner disc is proportional to its mass,
in particular to the gas density and the amplitude of the wake
close to the planet. The deeper the gap opened by the innermost
planet, the smaller is the wake. The wider the gap, the further
the disc lies from the planetary orbit. Consequently, a larger gap
leads to a smaller damping. The shape of the gap is determined
by the gas parameters � and h (Crida et al. 2006). These pa-
rameters therefore play a crucial role in the damping. The gas
viscosity is given by an � -prescription, for which � = 10−2. The
chosen aspect ratio is h = 0.07.

3.2.3. Radius of the inner edge of the disc

Crida & Morbidelli (2007) showed that the inner disc evolution
is strongly dependent on the radius of the inner edge of the disc,
and more precisely on the ratio between this radius and the ra-
dius of the planetary orbit. This radius is, in general, poorly con-
strained, and strongly model-dependent. The mass of the inner
disc could be uncertain: if this radius is close to 0.13 AU, there
would be no inner disc in GJ 876; if it were close to the stellar
radius, a massive inner disc could be present.

Fortunately, in the case of GJ 876, a “hot Neptune” is present
at 0.02 AU. This provides a strong constraint on the location of
the inner boundary. Indeed, the migration of this planet stopped
for some reason at the place where we observe it now.

This planet may have been caught in a planet trap (Masset
et al. 2006), because it is insufficiently massive to open a gap
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Fig. 7. Density profiles at time 0 (dashed line), at the moment where the
planets are released (solid line), and at the end of the simulation (after
250 years, dotted line).

and migrates in the type I regime. The planet trap could be the
inner edge of the disc: at this location, the disc density increases
rapidly from zero; this probably leads to a positive gradient in
the vortensity and a strong corotation torque. In this case, the
radius of the inner edge of the disc should be close to 0.02 AU.

A second possibility is that GJ 876 d has migrated inwards in
the gas disc, until it is within the empty cavity between the star
and the inner edge of the disc. A few reasons can explain why
this planet crossed the planet trap, which was created by the disc
edge. The trap may have been too weak, due to the absence of
a strong enough density gradient. The aspect ratio and viscos-
ity of the disc may have been so low that the planet perturbed
the disc profile and destroyed the trap. We note in addition that
disc turbulence can create random torques, which can help jump
over the trap. Once the planet has crossed the inner edge of the
disc, it feels a negative torque from the disc through the outer
Lindblad resonances (Goldreich & Tremaine 1979, 1980). The
planet continues to migrate inward until there is no more gas at
the location of its 2:1 resonance (the outermost one). In this case,
the inner edge of the disc must be located at the 2:1 resonance
with GJ 876 d, i.e. at 0.033 AU. The planet would then remain,
while the disc was evaporated by the star, from the inside out-
wards.

We focus on this second possibility. We claim that the inner
disc cannot extend inwards further than 0.033 AU, otherwise it
would draw GJ 876 d inward; it should have extended to pre-
cisely this radius, or GJ 876 d would not have migrated inward
to its present position. The open inner edge of the 1D grid will
therefore be located at r = 0.033 in our simulation.

3.3. Results

The innermost planet, GJ 876 d, is not modelled in the simula-
tion. The two largest planets are launched on circular orbits at
r = 0.36 and 0.21 AU respectively. At first, the planets influence
each other and they influence the disc, but they are not affected
by the disc. The planets shape a gap in the density distribution
and the gas disc reaches the equilibrium state for this planetary
configuration. This phase lasts for 75 years, which corresponds
to approximately 200 orbits for the outer planet. In Fig. 7, we
show the initial density profile, the profile after 75 years, and the
final density profile. The mass of gas present in the 2D grid, after
this first phase, is 2.69 × 10−2 stellar mass (∼1.7 × 1028 kg).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079291&pdf_id=7
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The planets are then released and allowed to move under the
influence of the gas. The evolution of their orbital elements is
shown in Fig. 8. As expected, the outer planet migrates inward,
pushed by the outer disc (see the curve labelled a2 in Fig. 8).
However, the inner planet also migrates inward, although less
rapidly. This is because it does not open a clean gap (see Fig. 7)
and it occupies the inner edge of the gap opened by GJ 876 b;
consequently the inner planet feels a strong negative corotation
torque.

The three relevant resonant angles associated with the 2:1
resonance are shown in Fig. 9. After ∼110 years, the outer planet
catches the inner planet in its 1:2 Mean Motion Resonance (� 1,
� 2 and ∆� start librating about 0◦ with a small amplitude), and
the pair of planets continue to migrate in this configuration. The
eccentricities rise, as expected. But after a phase of eccentric-
ity growth, a limit for e1 and e2 is reached at about 150 years.
The planets continue to migrate at the same rate, while their
eccentricities remain constant. The value obtained for the ec-
centricities is close to the value provided by Laughlin et al.
(2005). After ∼270 years, the planets reach their present semi-
major axes, and their eccentricities oscillate within the ranges
0.019 < e2 < 0.032 and 0.21 < e1 < 0.25. The amplitudes of
the libration of the resonant angles, are |� 1|max ≈ 18◦ in con-
trast to a value of about 8◦ at 220 years, |� 2|max ≈ 28◦, and
|∆� |max ≈ 20◦. These amplitudes differ slightly from the val-
ues provided by Laughlin et al. (2005), but agreement for the
semi-major axes and eccentricities is excellent.

3.4. Discussion

3.4.1. Role of the inner disc

We compute the same simulation without any action of the disc
on the inner planet. The semi-major axis evolution of the two
planets is almost unaffected. Migration is dominated by the out-
ermost planet; this planet is pushed inward by the outer disc,
which in turn causes the inner planet to move inward due to
resonance locking. Consequently, the curves of ai(t) overlap the
curves of Fig. 8. In contrast, the behaviour of the eccentricity
of the inner planet e1 changes dramatically. It increases faster
and continuously, as expected from N-body simulations. In fact,
both eccentricities rise to high values that are incompatible with
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Fig. 10. Eccentricity evolution of GJ 876 b (light colour, e2) and
GJ 876 c (dark, e1) in three cases: (i) standard simulation (same as
Fig. 8, curves labelled “ref”); (ii) same as (i) but the inner planet is
not affected by the disc (curves labelled “no inn.”); (iii) same as (i)
but the p parameter of the tapering function f is 0.8 (curves labelled
“p = 0.8”). The horizontal lines correspond to the observed values, as
given by Table 1.

observations (e1 ∼ 0.45, e2 > 0.1). The eccentricity evolution
is displayed in Fig. 10 for the previous case (labelled “ref”),
and in the case where the action of the disc on the inner planet
is switched off (labelled “no inn.”). This convincingly demon-
strates the important role of the inner disc in eccentricity damp-
ing for the inner planet, which in turn affects the eccentricity of
the outer planet.

3.4.2. Role of the tapering function

We should mention that in the standard simulation, if one takes
p = 0.8 instead of 0.6 in the tapering function f (see Eq. (5)
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Fig. 11. Semi-major axis and eccentricity evolution of GJ 876 b and
GJ 876 c, with disc clearing from time t = 250 yr on. The horizontal
lines correspond to the observed values, as given by Table 1.

and Fig. 2), the inner planet reaches a higher value of eccen-
tricity (between 0.275 and 0.3), while the eccentricity of the
outer planet saturates between 0.035 and 0.05. The eccentric-
ity evolution in this case is displayed in Fig. 10 (curves labelled
“p = 0.8”). The eccentricities do not reach extremely high val-
ues, due to disc damping, but this is not in good agreement with
observations (the horizontal lines in Fig. 10), in particular for
the inner planet. This demonstrates that the tapering function can
have an influence on the final eccentricity of the planets in nu-
merical simulations (as could be expected from Fig. 4), and this
should be taken into consideration.

3.4.3. Disc dispersal

To agree with the present state, the disc has to be dispersed
when the planets reach their present semi-major axis (at time
t ∼ 270 yr). This is a common problem when modelling the
extra-solar planets.

We applied a procedure also used by Morbidelli et al. (2007)
and Thommes et al. (2007) to investigate the effect of remov-
ing gas from the disc. This procedure models the disappearance
of gas from the planetary system, in a smooth way, as to not
cause a sudden change in the potential. From time t = 250 yr,
the gas density decreases within each grid cell, on an exponen-
tial timescale of 27.5 years. The results are shown in Fig. 11.
As the gas disappears, the planets remain in 2:1 MMR, while
their migration speed decreases exponentially. It is indeed well
known that when the planet is more massive than the disc, the
inertia of the planet is the limiting factor in the type II migra-
tion regime. Since the migration speed and eccentricity damping
are both proportional to gas density, the K factor is unaffected
by this procedure. Consequently, the equilibrium values of the
eccentricity are unaffected, and remain close to 0.03 and 0.22
respectively, while the semi-major axes converge to values of
0.21 and 0.13 AU respectively. At the end of the procedure, the
gas has almost disappeared and the planetary system is similar
to GJ 876.

The disc clearing process is complex and not well con-
strained, in particular in the vicinity of the star. In general, the
gas density first slowly decreases while the disc accretes onto
the central star and spreads outward. When the density is low,
the photo-evaporation by the central star can play a significant

role and erode the disc. The extreme UV photons ionise and
heat the upper layer of the disc, gas leaves the potential well of
the star, and the density decreases. This works more efficiently
at radii greater than approximately 1 AU, because closer to the
star, the gravity becomes too strong. Consequently, the region
where the two giant planets of GJ 876 are orbiting should not be
much affected; in particular, the inner disc should not disappear.
The remnant disc inside ∼1 AU spreads viscously onto the star
and outwards. The migration path of the planets should not be
affected. In addition, the viscous evolution dominates the disc
evolution until the density becomes very low. Photo-evaporation
then happens on a timescale that is far shorter than the disc life-
time. The final phase of gas dispersal occurs when the disc mass
density is too low to have a significant influence on the planets
over such a short timescale.

We believe that the planetary configuration should not be
perturbed significantly during this phase, and that the model of
exponential damping of the density presented above, provides
reliable results. In any case, observations show that these plan-
ets migrated toward their host star, until the gas density became
too low; the planets stopped at 0.13 and 0.21 AU, when the disc
disappeared. Our simulation demonstrates that when the plan-
ets stop migrating, they automatically have the correct eccen-
tricities; our simulation is therefore consistent with the observed
configuration. To our knowledge, this is the first time that an
extra-solar system is reproduced in a fully hydro simulation tak-
ing into account all the protoplanetary disc and allowing for a
significant migration of the planets with correct eccentricities.

4. Modelling an inner disc by N-body calculations

Full hydrodynamical calculations (like the ones done in the pre-
vious section) require typically a large amount of computer time
to study the effect of an inner disc on the evolution of resonant
planetary systems. Fortunately, the effects of the outer and inner
discs can be modelled approximately by gravitational N-body
simulations using appropriately parameterised non-conservative
forces. These forces can be derived using the migration rate ȧ/ a
and the eccentricity damping rate ė/ eof a planet, embedded into
the protoplanetary disc (see Lee & Peale 2002; Beaugé et al.
2006, for two different approaches). In place of the migration
and damping rates we can also use the corresponding e-folding
times defined as � a = −(ȧ/ a)−1 and � e = −(ė/ e)−1.

When studying the formation of a resonant system consist-
ing of an inner and an outer giant planet, the outer planet is usu-
ally forced to migrate inward. When the ratio of the semi-major
axes of the planets approaches a critical limit, a resonant capture
between them can take place (for the conditions of a resonant
capture into the 2:1 MMR see Kley & Sándor 2007). After the
resonant capture, the two planets migrate inward as the outer
planet continues to be affected by the negative tidal torques of
the disc.

Following the hydrodynamical evolution of GJ 876 pre-
sented in the previous section, we provide further results for a
three-body problem with dissipative forces. During migration of
the giant planets, the presence of an inner disc is found to be con-
sistent with the observed state of the resonant systems, in which
two giant planets are engaged in a 2:1 MMR.

Since the eccentricity of the inner planet is excited by the
resonant interaction, its orbit becomes more and more elongated
penetrating into the inner disc. This represents a damping mech-
anism that acts against the eccentricity excitation, and may set
a quasi-equilibrium between the processes keeping the eccen-
tricity of the inner planet at a constant value (within certain
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limits) during the whole migration process. The effect of an inner
disc can be investigated by using a repelling non-conservative
force, acting on the inner planet, parameterised by a positive
migration rate ȧ/ a and a negative ė/ e. A ratio K of the above
parameters can be defined, which is similar to the case of the
inwardly-migrating outer planet. According to the definition of
the e-folding times, � a will have a negative sign.

We note, however, that when both the outward and inward
migration of the outer and inner planets are considered simul-
taneously, the final state of the system cannot be characterised
uniquely using only the K ratios to describe the inward and out-
ward migration. The final values of the semi-major axes and the
eccentricities depend directly on the migration rates (or on the
corresponding e-folding times) ȧ1/ a1, ȧ2/ a2 and the eccentricity
damping rates ė1/ e1, ė2/ e2 (where indices “1” and “2” represent
the inner and outer planet, respectively), and not only on their
ratios K1 and K2. At the end of the section, we characterise the
system final state using migration parameters.

We repeat the three-body calculations for GJ 876 by Lee &
Peale (2002) adding the effects of an inner disc; we then re-
view the simulations for HD 73 526 by Sándor et al. (2007), and
present new results for the modelling of the formation of both
HD 82 943 and HD 128 311, with an inner disc.

4.1. GJ 876 and HD 73 526

GJ 876: We repeated the simulations of Lee & Peale (2002)
of the formation of GJ 876, using three-body calculations with
dissipative forces. As for the study of Lee & Peale (2002),
the outer giant alone is affected by an outer disc, and we set
K2 = � a2 /� e2 = 100. The evolution of the semi-major axes and
eccentricities is shown in the top panel of Fig. 12. We assumed
that � a2 = 2 × 104 and � e2 = 2 × 102 years, which implies that
K2 = 100. We note again that this ratio between the e-folding
times is very high and may be physically unrealistic for massive
planets.

To study the damping effect of the inner disc on the inner
planet, while the giant planets revolve in a common gap, we per-
formed further three-body simulations, with also � a1 = −2 × 104

and � e1 = 2.5 × 103 years; we point out that the minus sign of � a1

stands for the outward migration. To model the damping effect
of the outer disc on the outer planet we used the e-folding times
� a2 = 2 × 104 and � e2 = 2.5 × 103 years. We note that the above
migration parameters correspond to K1 = K2 = 8. The result of
our calculations is shown in the bottom of Fig. 12. These figures
are very similar to those obtained by Lee & Peale (2002), even
though we used different migration parameters.

HD 73 526: In the case of HD 73 526, as already mentioned,
the effect of an inner disc was studied in detail by Sándor et al.
(2007). If only the outer planet is damped, it was shown that
K2 = 15–20 is required, which is a too high value according
to the hydrodynamical simulations. Moreover, if only the outer
planet is damped, the eccentricity of the inner planet contin-
ues to increase, which can result in the limit imposed by ob-
servations being exceeded (einn ≈ 0.3). If, in addition, the inner
planet is damped by an inner disc, the eccentricities will remain
constant, and the outcome of the migration scenario can more
easily reproduce the observations: the formation of HD 73 526
could be modelled successfully by using the e-folding times
� a1 = −5 × 104, � a2 = 104 years and � e1 = 5 × 103, � e2 =
103 (corresponding to K1 = K2 = 10). The behaviour of the
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Fig. 12. Behaviour of the semi-major axes and the eccentricities of the
resonant giant planets in the system GJ 876. The horizontal lines cor-
respond to the observed values of the eccentricities. Top: only the outer
disc is taken into account, and therefore only the orbital evolution of the
outer planet is affected, with the e-folding times � a2 = 2 × 104 years,
� e2 = 2×102 years, so K2 = 100. Bottom: same as above in the presence
of outer and inner discs. In this case, � a1 = −2 × 104, � e1 = 2.5 × 103,
� a2 = 2 × 104, and � e2 = 2.5 × 103 years (giving K1 = K2 = 8).

eccentricities in this case is shown in the top panel of Fig. 8 in
the paper of Sándor et al. (2007).

We conclude that including the effects of an inner disc pro-
vides more physically-realistic model predictions of the forma-
tion of GJ 876 and HD 73 526, which are in good agreement
with radial-velocity observations. In what follows, we show that
inner discs may have been present in the systems HD 82 943 and
HD 128 311, although a strong damping of the eccentricity of
their inner giant planets may not be required.

4.2. HD 82 943 and HD 128 311

HD 82 943: Recently Lee et al. (2006) presented four sets of
orbital solutions based on a best-fit double-Keplerian model for
HD 82 943. Using their orbital elements as initial conditions, di-
rect numerical integrations showed that three solutions exhib-
ited ordered behaviour, while one solution (Fit I in the cited pa-
per) was destabilised after a few thousand years. In one of the
three dynamically-stable orbital solutions (Fit II), the variations
if the eccentricities are negligible, and the resonance variables
oscillate with small amplitudes, which indicates clearly that the
system is deep inside a 2:1 MMR. Since this behaviour can be
reached during an inward convergent migration of the giant plan-
ets, we investigate the formation of this system using the sce-
nario of planetary migration.
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Fig. 13. Behaviour of the semi-major axes and the eccentricities of the
giant planets in the resonant system HD 82 943. The horizontal lines
correspond to the observed values of the eccentricities. Top: only the
motion of the outer planet is affected, with the e-folding times � a2 =
2 × 104 and � e2 = 2.5 × 103 years (K2 = 8). Bottom: an inner disc
is also assumed, with � a1 = −2 × 105, � e1 = 5 × 104 years e-folding
times for the inner planet (K1 = 4), which allows the use of larger
� e2 = 2.5 × 103 years and thus lower ratio K2 = 4 for the outer planet.

We assume that only an outer disc is present and that the
outer planet is affected by its damping. We derive the dynam-
ical state calculated based on Fit II (e1 = 0.422, e2 = 0.14,
a1 = 0.74 AU, a2 = 1.18 AU), by assuming the ratio K2 = 8,
using � a2 = 2 × 104 and � e2 = 2.5 × 103 years. This ratio K2
does not appear to be too high, with values typically between 1
and 10. However, as in the case of HD 73 526, the eccentrici-
ties increase slightly during the entire migration process. This
is not a problem if the migration of the planets is terminated
gradually, about the observed values of their semi-major axes;
this may lead, however, to the constraints placed by the obser-
vations being exceeded: see the top panel of Fig. 13. On the
other hand, by assuming the presence of an inner disc, the ec-
centricities gradually reach their constant values, which do not
appear to change further during the migration process. The latter
behaviour is shown in the bottom panel of Fig. 13. During this
simulation, we assumed for the inner planet that � a1 = −2 × 105

and � e1 = 5×104 years, and for the outer planet that � a2 = 2×104

and � e2 = 5 × 103 years (giving K1 = K2 = 4). This case appears
to be a more appropriate formation scenario for HD 82 943 than
the previous one, because the eccentricities appear to reach con-
stant values.

We conclude that the present dynamical behaviour of the res-
onant system HD 82 943 (based on Fit II of Lee et al. 2006) can
be explained in both ways: by assuming an outer disc alone or
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Fig. 14. Behaviour of the semi-major axes and the eccentricities of the
resonant giant planets in the resonant system HD 128 311. The horizon-
tal lines correspond to the observed values of the eccentricities. Top:
only the motion of the outer planet is damped by an outer disc, with
K2 = � a2 /� e2 = 7. Bottom: an inner disc is also assumed. The e-folding
times for the inner planet are � a1 = 2 × 104, � e1 = 104 years (K1 = 2),
which allows to use much lower ratio K2 = 2 for the outer planet.

by assuming an inner and an outer disc. The latter case, however,
appears to be more reasonable because it maintains a constant
value of eccentricity, when the migration occurs over longer
times.

HD 128 311: Finally, we present our results for HD 128 311.
The most recent orbital solution for this system is presented by
Vogt et al. (2005), while possible formation scenarios are out-
lined by Sándor & Kley (2006). In the latter study, the formation
of the resonant system is modelled by an inward convergent mi-
gration of the giant planets, followed by a sudden perturbation;
only the effect of an outer disc was considered. Prior to the sud-
den perturbation, the outer giant planet migrates inward and cap-
tures the inner planet into a 2:1 resonance. It is important to find
the final eccentricity values, produced by the migration process,
because the perturbative events modify only the oscillations of
the eccentricity. These values are e1 ≈ 0.45 and e2 ≈ 0.15, ob-
tained after a migration characterised by K2 = � a2 /� e2 = 5. In
the present study, we require a larger ratio, K2 = 7, because
in contrast to Sándor & Kley (2006), we do not stop migration
when the planets reach their actual positions. The evolution of
the semi-major axes and eccentricities are presented in the top
panel of Fig. 14.

Assuming an inner disc, the same final state following the
migration of HD 128 311 can be obtained. In our numerical
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experiments, we used � a1 = −2 × 104, � e1 = 104 years for the
inner planet, and � a2 = 2 × 104, � e2 = 104 years for the outer
planet, which are equivalent to K1 = K2 = 2. The evolution of
the system is shown in the bottom panel of Fig. 14. Comparing
the top and the bottom panels of Fig. 14, we conclude that the
formation of HD 128 311 can be modelled by assuming the pres-
ence of an inner disc; in this case, however, it is not necessarily
required.

4.3. Final state of a migration with an inner disc: numerical
experiments

In this part we show the results of additional numerical simula-
tions in which we studied how the different parameters of migra-
tion influence the final state of the resonant system. It was quite
evident from the beginning that the characterisation based only
on the ratios K1 and K2 would not yield unique results in the case
when the inner planet is also affected by an inner disc.

Our calculations are based on the observed orbital and phys-
ical parameters of GJ 876, as given by Lee & Peale (2002). For
the inward migration of the outer planet we fixed � a2 = 4 × 104,
� e2 = 5 × 103 years (so, K2 = 8), and we changed � a1 and � e1 in
such a way to obtain the observed state of the system.

As starting values to our numerical simulations we used
� a1 = −3 × 104 years and found that � e1 = 3.7 × 103 years gives
a correct result (K1 ≈ 8 here). Then we increased gradually the
absolute value of � a1 corresponding to a weaker damping on a1.
To obtain the observed behaviour of the system, for larger � a1 ,
we needed a larger � e1 meaning a weaker damping on e1 too. To
explore the mutual dependence of � a1 and � e1 , we performed a se-
ries of numerical experiments. Our results are shown in Fig. 15:
we display on the x-axis the absolute value of � a1 , while on the y-
axis we display the eccentricity damping time � e1 , on a logarith-
mic scale. The crosses indicate the values of � a1 and � e1 required
to derive similar final values of the eccentricities e1 and e2 (0.26
and 0.035 respectively). The value of � e1 increases rapidly for
small |� a1 |; it is not, however, proportional to � a1 : compare the
data with the straight line in Fig. 15; it does level off and tends
to a limiting value of � e1max, which in this case is slightly higher
than 9 × 103 years.

We conclude that for a fixed pair of � a2 and � e2 , there is no
unique K1 that determines the final state of the system. In con-
trast, there exists a � e1max, which determines the final state of the
system if the inner disc does not affect the semi-major axis of
the inner planet. In reality, however, the inner disc, which is ro-
tating more rapidly, can transmit angular momentum to the inner
planet, and energy as well, which increases the semi-major axis
of the inner planet. In this case we require a smaller value of � e1 ,
or equivalently, more effective damping on e1.

We compare the two migration scenarios: (i) only an outer
disc is present and there is no inner disc between the inner planet
and the star; and (ii) both an outer and an inner disc are present
and the planets orbit in a gap between the discs. We summarise
our results. The final state of the system in case (i) can be de-
scribed solely by the ratio K2 = � a2 /� e2 . In case (ii), the ratios
K1 and K2 are insufficient to describe the final state of the sys-
tem, which depends on additional parameters. In the most gen-
eral case, when the inner disc forces the inner planet to migrate
outward, we require three parameters, which can be K1, K2, and
the ratio � a1 /� a2 . In the next subsection, we analyse theoretically
this behaviour.

4.4. Final state of a migration with an inner disc: analytics

For the semi-major axis and eccentricity of a planet to de-
crease exponentially with damping timescales � a = −ȧ/ a and
� e = −ė/ e, its energy E and angular momentum H must vary
with the following rates (through Eqs. (2) and (3) ):

Ė = E/� a (6)

Ḣ =
H
2

(
2e2

1 − e2

1
� e

−
1
� a

)
· (7)

When two planets are considered, the variation of the energy
of the system, i.e. pair of planets, Ė is the sum of the energy
variations applied to both planets, such that

Ė =
E1

� a1

+
E2

� a2

· (8)

If the two planets are in resonance, the ratio between their semi-
major axes is kept constant, and consequently also the ratio be-
tween their energies. We define:


 = E2/ E1 = M2a1/ M1a2. (9)

Then,

E = E1 + E2 = (1 + 
 )E1, (10)

Ė = (1 + 
 )Ė1, (11)

we note that due to some energy exchange between the planets
through the resonance, the variation of the energy of the first
planet is not E1/� a1 , but Ė1 = Ė/ (1+ 
 ), with Ė given by Eq. (8).

A similar situation holds for the angular momentum. For the
angular momentum H of the system, i.e. pair of planets, (H =
H1 + H2), the total variation rate is given by (from Eq. (7)):

Ḣ =
∑
i=1,2

Hi

2

(
2ei

2

1 − ei
2

1
� ei

−
1
� ai

)
· (12)

When the planets are in resonance and their eccentricities are
constant, i.e. in their final state, the ratio of their angular mo-
mentum is defined to be:

� = H2/ H1 =
M2

M1

√
a2(1 − e2

2)
a1(1 − e1

2)
, (13)
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which is also constant. Then, H = H1 + H2 = (1 + � )H1, and

Ḣ = (1 + � )Ḣ1. (14)

If the eccentricities are constant (ėi = 0), then, using Eqs. (3),
(10), (11), and (8), we derive:

Ḣi = −
Hi

2
Ėi

Ei
= −

Hi

2
Ė
E
= −

Hi

2

(
1/� a1 + 
/� a2

1 + 


)
· (15)

Using Eqs. (12) and (15), Eq. (14) provides a relation between
� a1 , � a2 , � e1 , and � e2 . In the problem that we study, the masses of
the planets are known, as well as their eccentricities and the ratio
between their semi-major axes. The question is: for a given ef-
fect on the outer planet, what should the effect on the inner planet
be to be consistent with the observed eccentricities ? Below, we
solve this equation in the unknown � e1 with the free parame-
ter � a1 , while � a2 , � e2 , 
 and � , are given constants (
 and � be-
ing defined by Eqs. (9) and (13) respectively). Using Eqs. (12)
and (15), Eq. (14) reads:∑
i=1,2

Hi

2

(
2ei

2

1−ei
2

1
� ei

−
1

� ai

)
= −(1 + � )

H1

2

(
1/� a1 + 
/� a2

1 + 


)

2e1
2

1−e1
2

1
� e1

−
1

� a1

+ �
(

2e2
2

1−e2
2

1
� e2

−
1

� a2

)
= −

1+�
1+


(



� a2

+
1

� a1

)

2e1
2

1−e1
2
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As one can see, the damping rate that should be applied to the
inner planet (1/� e1) is the sum of two terms.

The first one (1/� e1max) is required to balance the action on
the outer planet; when no force is applied to the inner planet,
the energy loss rate of the outer planet is not the expected value
of E2/� a2 , but (E2/� a2 ) 


1+
 , because the inner planet has to lose
energy to preserve the resonant motion; the angular momentum
loss rate is therefore overestimated by the expression Eq. (7), and
both values of eccentricity rise. A damping of the eccentricity
needs to be applied, in addition, to the inner planet as well.

The second term (K1,0/� a1 ) is proportional to � a1
−1; the co-

efficient K1,0 is negative if e1
2 > (1 − (a2/ a1)3) + (a2/ a1)3e2

2,
which is always true in the case of a 2:1 MMR for e2 < 0.866.

In the case studied in Sect. 4.3, one has (Lee & Peale 2002):
M2 = 1.808 MJup = 5.65 × 10−3M∗ , M1 = 0.5696 MJup =

1.78 × 10−3M∗ , e1 ≈ 0.265 , e2 ≈ 0.035 , � a2 = 4 × 104 ,
� e2 = 5 × 103 years and the two planets are in 2:1 MMR, with
a2/ a1 = 1.602. Thus, � = 4.1641 and 
 = 1.9812. This gives
� e1max = 9 289 years, and K1,0 = −4.8471. The dashed curve in
Fig. 15 shows � e1 as a function of � a1 from Eq. (16). The fit is
excellent.

This shows that Eq. (16) provides efficiently the parameters
required to reproduce a system using N-body simulations with
dissipative forces, or that one should have in the protoplanetary
disc. In particular, the expression for � e1max shows that if e2 is rel-
atively small, a large value of K2 of the order of e2

−2 is required
for � e1max → ∞. If the inner disc causes the inner planet to mi-
grate outward with � a1 < 0, an additional damping on its eccen-
tricity is required, which can be expressed as � e1add = � a1 / K1,0,

with K1,0 < 0, depending on all parameters of the system. If the
inner disc attracts the planet sufficiently (which can happen as
shown in Sect. 2), no eccentricity damping on the inner planet is
required: in the above case, this occurs for � a1 = +45 025 years.

Using this equation, reasonable parameters, i.e. not too large
K1 and K2, could be derived to explain how all known resonant,
exoplanetary systems, were formed in the disc. Our numerical
simulations have shown that this can be achieved for at least 4
such systems.

5. Conclusion

We address the problem of moderate eccentricity of extra-solar
planets in resonance. The resonant configuration requires a con-
vergent migration of the planets, but continued migration in res-
onance leads to unlimited eccentricity growth if no eccentricity
damping mechanism is at work.

In Sect. 2, we showed that an inner disc has a non-negligible
influence on a giant planet in an eccentric orbit, and modifies its
orbital parameters. The strength of this effect varies with plan-
etary eccentricity. For small eccentricities, e ≤ 0.05, we find a
small but positive ė, while for larger e, ėbecomes more and more
negative. The induced change in semi-major axis remains posi-
tive, as expected for the Lindblad torques induced by an inner
disc on a massive planet. The change in semi-major axis be-
comes negative only for larger eccentricities e ≥ 0.35, leading
to inward migration. The use of a constant K-factor between the
e-folding timescales of the semi-major axis and the eccentricity
is clearly an oversimplification.

The measured influence of the disc on the planet depends on
the adopted tapering function, applied to exclude at least parts of
the gas within the Hill sphere of the planet, and possibly other
numerical effects, such as the smoothing length, the resolution,
or boundary conditions. Determination of the precise, absolute
magnitude of the influence is difficult.

An eccentricity damping should be applied to the inner
planet to obtain realistic results, in particular if its eccentricity
is larger than 0.1. Using a hybrid 2D-1D hydro-code that allows
the simulation of the entire disc from its physical inner boundary
to an arbitrarily large radius, we compute the long-term evolu-
tion of the GJ 876 system, for which the orbital elements are
well known, and the radius of the inner edge of the disc can be
estimated due to the presence of a third planet close to the star.
We find that the inner disc does not disappear after the planets
open a gap, and that it helps to dampen the eccentricity of the
inner planet. With realistic disc parameters (viscosity and aspect
ratio), we can to reproduce the observations.

Since hydro-simulations are time-consuming, we perform
customised N-body simulations with non-conservative forces,
which are added to simulate the effect of the outer and inner disc.
We find that applying a significant damping to both planets, to
reflect the influence of both the inner and outer discs, enables a
few other exoplanetary systems to be reproduced well. In addi-
tion, N-body simulations show that when two planets are con-
sidered, the ratio between the eccentricity and semi-major axis
damping applied to each of them (K1 and K2), are insufficient
to determine the final state of the system. For a given damping
in a and e applied on the outer planet, one can express analyti-
cally the eccentricity damping that should be applied to the inner
planet to match the observed orbital configuration, as a function
of its semi-major axis damping.

Given the satisfying fits of a few systems that we obtain, we
claim that the problem of the low eccentricities of the resonant
exoplanetary systems simply stems from the fact that the inner
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