Erratum

Stability of planetary orbits in binary systems

Z. E. Musielak^{1,2}, M. Cuntz², E. A. Marshall², and T. D. Stuit³

¹ Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany

² Department of Physics, Science Hall, University of Texas at Arlington, Arlington, TX 76019-0059, USA e-mail: [zmusielak;cuntz]@uta.edu

³ Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA

A&A 434, 355–364 (2005) DOI:10.1051/0004-6361:20040238

Key words. stars: planetary systems - stars: binaries: general - celestial mechanics - errata, addenda

This paper studies the stability of S-type and P-type planetary orbits in binary systems. Stability limits are expressed in units of R_{AG}/R_{AB} , where R_{AG} denotes the distance between the primary star and the planet and R_{AB} denotes the distance between the two stars. The presentation about S-type orbits is correct, but concerning the P-type orbits (where the planet is orbiting both stars), the R_{AG}/R_{AB} ratios given in the paper are consistently too small by a factor of two, although the computations themselves are correct. This affects Sect. 4.2 of the paper, where Table 5 and Fig. 6 need to be modified (for corrections, see below). Moreover, in the Abstract, the Conclusions, and Sect. 4.3, it should read: for P-type orbits, the regions of stability also depend on that distance ratio, in the range of 3.50 and 4.90, again depending on the mass ratio.

Table 5. Stability of P-type orbits in binary systems.

Binary	$M_{\rm B}/M_{\rm A}$	$R_{\rm AG}$	$R_{\rm AG}/R_{\rm AB}$	Orbital
System		[AU]		Stability
2	0.60	22.0	4.40	U
		23.0	4.60	MS
		24.0	4.80	S
4	0.33	11.0	4.40	U
		11.1	4.44	MS
		11.2	4.48	S

Note: Simulations were performed for giant planets with $M_{\rm G} = 1 M_{\rm Jup}$ based on 1000 orbits.

Fig. 6. Range of mass ratios and separation ratios corresponding to stable, marginally stable and unstable outer (P-type) planetary orbits in binary systems. The simulations are based on 1000 orbits.