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ABSTRACT

Aims. We discuss the onset of the nonlinear stage of the electromagnetic Weibel instability in a relativistic plasma, and the process of
current coalescence that follows this instability. The Weibel instability has been proposed as a possible source of the magnetic fields
needed to explain the non-thermal synchrotron emission from gamma ray bursts.
Methods. We present two different calculations of the nonlinear saturation of the Weibel instability: one based on a fluid model, and
one using kinetic plasma theory. These approaches yield a similar result for the amplitude of the magnetic field at saturation. We
then consider the further growth of the magnetic field due to the coalescence of current filaments, a process that has been observed in
numerical simulations.
Results. These calculations show that the exponential linear stage of the instability is terminated by trapping of the beam particles in
the wave. The trapping leaves a magnetic field that acts as the seed field for further amplification through coalescence. Further field
amplification is limited to magnetic fields on scales less than the effective plasma skin depth of a background plasma. We show that
coalescence of current filaments thicker than a few times the skin depth proceeds at a exponentially slow rate.
Conclusions. The amplitude of saturation is determined mostly by the plasma frequency of the hot (shocked) background plasma,
which is usually dominated by the electrons. The typical field amplitude at this stage is almost independent of the mass of the beam
particles. Further field amplification through current coalescence, a process that follows the exponential Weibel instability, “stalls”
once the current filaments reach a size that is comparable to the skin depth of the background plasma. This process concentrates
the currents, but the resulting field amplification is small. This implies that the resulting magnetic field energy density never reaches
equipartition with the kinetic energy density of the heavy particle species (ions) in the incoming beams.
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1. Introduction

The Weibel instability is a plasma instability that arises in plas-
mas with an anisotropic velocity distribution. This article dis-
cusses the nonlinear dynamics of the plasma in the late stages of
this instability in the relativistic shock fronts that are produced
by gamma ray burst sources. In this situation, the Weibel insta-
bility is beam-driven, and is sometimes referred to as the fila-
mentation instability.

The prompt and afterglow emission from gamma ray bursts
(GRBs) is often interpreted as synchrotron emission or as jit-
ter radiation (Medvedev 2000) from relativistic electrons in a
magnetic field. In order to explain the intensity of the observed
radiation, the magnetic field in the emission region must have a
strength of 1 to 10% of the equipartition field strength Be, e.g.
Wijers & Galama (1999), which is defined in terms of the inter-
nal (thermal) energy e of the plasma as

Be =
√

8πe. (1)

This holds true for both the emission from internal shocks (see
Rees & Mészáros 1994), which are believed to be responsible for
the prompt emission, and for the emission from external shocks
(e.g. Rees & Mészáros 1992) which are believed to be the source
of the afterglow emission. A full account of the observations

and theory of GRBs can be found in the reviews of Piran (2000,
2004) and of Mészáros (2002, 2006).

The strong magnetic fields associated with GRBs must
somehow be self-generated by the strong (relativistic) shocks in-
voked in those GRB models where most of the energy is in par-
ticles, as opposed to electromagnetic (Pointing flux dominated)
models. In particular for the external shocks of GRBs that pre-
cede the fireball in the interstellar or circumstellar medium it
can be shown that the compression of the pre-shock (interstel-
lar/circumstellar) magnetic fields in a relativistic shock leads to
B� Be in the post-shock plasma.

It has been proposed, see Medvedev & Loeb (1999) and
Gruzinov (2001), that the Weibel instability leads to the gen-
eration of the necessary magnetic fields. The basic picture is
that this instability operates in the shock transition layer, where
the unshocked incoming plasma mixes with the (relativistically)
hot shocked plasma. The mixture is unstable against the gener-
ation of low-frequency electromagnetic waves with |ω| � kc,
where ω is the wave frequency and k = 2π/λ is the wave num-
ber. This instability is due to the anisotropy of the momentum
distribution of the incoming plasma, which looks like a beam
in the reference frame of the shocked plasma. Since Maxwell’s
equations imply that the Fourier amplitudes Ẽ and B̃ of the elec-
tric and magnetic fields associated with the instability satisfy the
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relation |Ẽ| ∼ (|ω|/kc) |B̃| � |B̃|, the resulting turbulent electro-
magnetic field is almost purely magnetic.

Although it is now long known that the Weibel instability can
generate magnetic fields in relativistic shock fronts, estimates of
the attainable magnetic field strength have been mostly restricted
to ad hoc arguments. In this article we present an in-depth look
into the nonlinear dynamics of a Weibel-unstable plasma to ob-
tain a reliable foundation for our estimates of the attainable mag-
netic field strength. In addition, we discuss the mechanisms that
contribute to the stabilization of the Weibel instability and the
subsequent thermalization of the plasma.

Our calculations concentrate on the case of ultra-relativistic
shocks, with a bulk Lorentz factor of the incoming flow γ � 1.
We will assume that we can model the plasma in the shock
front with two symmetric counterstreaming plasmas because the
effect of asymmetries is small (Achterberg & Wiersma 2007).
We also take the beams to be cold, as one would expect in a
shock front encountering the cold interstellar medium. At vari-
ous points, we will take into account the presence of a relativis-
tically hot and stationary background plasma that corresponds
to the already thermalized post-shock plasma. We discuss the
kinetic and fluid processes that take place on time and length
scales in the order of the plasma frequency and plasma skin
depth, respectively.

In the companion paper Achterberg & Wiersma (2007) (from
this point on: AW1) we have considered the linear phase of the
Weibel instability, where the magnetic field grows exponentially
in time. In this paper we consider the case where the unperturbed
plasma is unmagnetized. As shown in AW1, Sect. 8, the effects
of a pre-existing ambient magnetic field on the growth of the
Weibel instability is small for the typical parameters associated
with gamma ray bursts. The main conclusions of AW1 can be
summarized as follows:

The growth rate of the instability due to two equal but coun-
terstreaming beams in the presence of a (hot) background plasma
is mostly determined by two parameters: η andM. The first pa-
rameter is defined as

η =
(
ω̂pb/ω̃bg

)2
, (2)

the square of the ratio of the effective plasma frequency ω̂pb of
the beam particles and the the plasma frequency ω̃bg of thermal
background. In a hydrogen plasma, the background plasma fre-
quency is almost entirely determined by the contribution of the
hot electrons and one has

ω̃2
bg �

4πe2ne

mehe
· (3)

Here he is the enthalphy per unit rest energy of the electron gas,
with he ≈ 1 if the electron gas is cold so that kbTe � mec2, and
he � kbTe/mec2 � 1 for a relativistically hot electron gas. The
beam plasma frequency is

ω̂2
pb =

4πq2
bnb

mbhb
, (4)

in terms of the charge qb and mass mb of the beam particles, their
proper density nb and the enthalpy per unit rest energy hb. When
the beams are cold we have hb � 1.

The parameter M can be thought of as an effective “beam
Mach Number”: it is a measure for the importance of the velocity
dispersion in the beam plasma in the direction perpendicular to
the beam direction, which we will take along the z-axis. If the

magnitude of the momentum of the directed motion of the beam
particles is pz0 and if the typical momentum associated with the
velocity dispersion perpendicular to the beam direction is px0,
one has:

M ∼ pz0/px0. (5)

A full set of definitions can be found in AW1, Sects. 5 and 6,
where both a fully relativistic fluid model and a waterbag model
employing kinetic theory are employed to describe the beams.
If the beams are infinitly cold one hasM → ∞. As we will see
below, the value ofM together with η determines the range of
unstable wave numbers, and η determines the maximum growth
rate.

In the symmetric case, where the beam particles are dis-
tributed over two counterstreaming but otherwise identical
beams, each with proper density nb/2, there is a simple approx-
imation for the growth rate of the instability in the limit of per-
turbations with the wavevector perpendicular to the beam direc-
tion: k · Vb = 0. This approximation is almost universally valid
for ultra-relativistic beams (with pz0 � mbc) ifM � 1, η ≤ 1
and ηM2 � 1, and still gives rather good approximation for
η ∼ M ∼ 1. In terms of a dimensionless growth rate and wave
number, defined as

σ ≡ Im(ω)/ω̃bg , κ ≡ kc/ω̃bg, (6)

one finds:

σ2(κ) ≈ κ2

κ2
s + κ2

(
κ2

max − κ2

M2

)
· (7)

Here κs is the (dimensionless) wave number below which screen-
ing currents in the background plasma slow the growth of the
instability, see AW11, Sect. 6 (Eq. (46)) and Sect. 7 (Eqs. (57)
and (60)). In our application to ultra-relativistic beams one has
κs ∼ 0.1−1.

The wave number κmax is the maximum unstable wave num-
ber that, in the limit ηM2 � 1 that concerns us here, equals

κmax ≡
√
ηM2 − 1 ≈ √ηM. (8)

The maximum growth rate, which follows from dσ/dκ = 0, oc-
curs at a wave number κ∗, which for dispersion relation (7) is
given by

κ∗ =
(
κs

√
κ2

max + κ
2
s − κ2

s

)1/2

≈ √κsκmax. (9)

It equals σ(κ∗) ≡ σ∗, which is:

σ∗ =

√
κ2

s + κ
2
max − κs

M ≈ κmax

M =
√
η. (10)

In these two expressions the last approximate terms on the right-
hand side are valid in the limit ηM2 � 1, when κmax � κs.

This implies that the Weibel instability is most vigorous
at wavelengths shorter than the effective skin depth λsk ∼
c/ω̃bgκs of the hot background plasma. The linear growth rate
is almost independent of wave number, and close to σ∗, on
a broad “plateau” in the wave number range corresponding

1 Note that in this paper we write k (rather than K as in AW1): for
the wave number in the laboratory frame, which coincides with the rest
frame of the thermal plasma.
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to κs < κ < κmax, see Figs. 1 and 2 of AW1. The maximum unsta-
ble wavelength is determined by the “temperature” of the beam
plasma, which determines the value ofM through the velocity
dispersion of beam particles along the wave vector.

In the rest of this article we will discuss the stabilization
of the Weibel instability and the subsequent evolution of the
plasma. In Sect. 2 we start of with an overview of stabilisa-
tion mechanisms that have already been discussed in the liter-
ature. In Sect. 3 we present a fluid model for the nonlinear wave
breaking of a single wave mode of the Weibel instability. In
Sect. 4 we briefly consider a kinetic model for the nonlinear dy-
namics of the Weibel-unstable plasma once a broad-band spec-
trum of unstable modes has been excited. In Sect. 5 we estimate
whether and for how long the electrical currents can keep grow-
ing stronger after the instability itself has stabilized. Section 6
discusses the implications of our results for the plasma in an
ultra-relativistic shock front, considering thermalization of the
electrons and the ions in the plasma separately. For the ions we
estimate the thermalization length scale due to scattering in the
turbulent magnetic fields produced by the Weibel instability. In
Sect. 7 we summarize the conclusions that we draw from our
results.

2. Stabilization mechanisms: an overview

A number of stabilization mechanisms have been proposed for
the beam-driven Weibel instability in an astrophysical context.
In this section we compare two mechanisms employed in recent
literature to estimate the attainable magnetic field strength of the
Weibel instability: magnetization of the beam particles and mag-
netic trapping of particles in the wave fields. We will show that
the latter gives the most stringent limit on the attainable mag-
netic field amplitude for the parameter regime that we are inter-
ested in.

Medvedev & Loeb (1999) have proposed that the deflection
of beam particles in the self-generated magnetic field stabilizes
the instability when the Larmor radius in this field becomes of
the order of the wavelength of the most unstable mode. This es-
sentially means that the beam particles become magnetized. For
simplicity we consider the case of a cold beam.

The gyration radius rg of beam particles of mass mb, beam

velocity Vb, bulk (beam) Lorentz factor γb = 1/
√

1 − V2
b/c

2 and
charge qb is of order:

rg =
γbmbcVb

qbB
=

Vb

Ωg
· (11)

HereΩg = qbB/γbmbc is the gyration frequency of the beam par-
ticles in a magnetic field of strength B. The corresponding stabi-
lization criterion according to Medvedev & Loeb (1999) reads:

k∗rg =
k∗Vb

Ωg
∼ 1, (12)

with k∗ the wave number of the fastest growing mode. We will
refer to this as the magnetization criterion.

Alternatively, Yang et al. (1994) have proposed that magnetic
trapping of particles in the waves stabilizes the Weibel insta-
bility. This stabilization mechanism was already considered by
Davidson et al. (1972) for the non-relativistic Weibel instability
in a plasma with a temperature anisotropy. The same stabiliza-
tion mechanism was briefly discussed by Gruzinov (2001) in the
context of magnetic field generation in GRB shocks.

The electromagnetic field of the waves produced by the in-
stability will cause the beam particles to “quiver”. Trapping oc-
curs when the amplitude of the quiver motion in the direction of
the wave vector reaches an amplitude comparable to the wave-
length of the unstable mode. This quiver motion is induced by
the Lorentz force on the beam particles due to the wave mag-
netic field B = B(x , t) ŷ. The equation of motion to first order in
the wave amplitude reads (see also the more complete treatment
below)

d2ξx

dt2
= −qbVbB

γbmbc
, (13)

with ξx the displacement of a beam particle in the x-direction.
For a magnetic field varying as B(x , t) = B0 exp(σ̃t) sin(kx),
with σ̃ = Im(ω) > 0 the growth rate of the instability, one finds
that the typical amplitude of the quiver motion is

|ξx| ≈
∣∣∣∣∣ qbVbB
γbmbcσ̃2

∣∣∣∣∣ · (14)

The stabilization condition reads (e.g. Davidson 1972)

|k ξx| =
∣∣∣∣∣k qbVbB
γbmbcσ̃2

∣∣∣∣∣ ∼ 1, (15)

which we will refer to as the trapping criterion.
As was pointed out in Wiersma & Achterberg (2004), the

trapping criterion (15) is the most stringent criterion of the two
for external GRB shocks, which have η ≤ 1, Vb � c andM �
1. This is easily checked for dispersion relation (7). From (12)
and (15) one finds that the field amplitudes Bm and Btr predicted
respectively by these two criteria are:

Bm ∼ γbmbc k∗Vb

qb
, Btr ∼ γbmbc σ̃2(k†)

qbk†Vb
· (16)

Here k† is the wave number where σ̃2(k)/k reaches its maximum
value. We define a third characteristic dimensionless parameter,

α ≡
√

1 +
κ2

max

κ2
s

, (17)

with the beam-driven Weibel instability occurring for α > 1.
The characteristic dimensionless wave numbers κ∗ = k∗c/ω̃bg,
κ† = k†c/ω̃bg and κmax = kmaxc/ω̃bg can be written in terms
of α as

κmax = κs

√
α2 − 1 , κ∗ = κs

√
α − 1 , κ† = κs S (α), (18)

with S (α) for dispersion relation (7) given by:

S (α) ≡
{
α

2

√
8 + α2 − 1 − α

2

2

}1/2

· (19)

The ratio of the field amplitudes Btr and Bm can be written for
Vb � c as

Btr

Bm
=

σ2
†

κ†κ∗
=

S (α)√
α − 1M2

⎛⎜⎜⎜⎜⎜⎝3α − √8 + α2

√
8 + α2 − α

⎞⎟⎟⎟⎟⎟⎠ , (20)

where σ† = σ̃(k†)/ω̃bg. For α � 1 (ηM2 � 1) one has κmax �
ακs =

√
ηM, κ∗ � √ακs, κ† � κs and σ† � κmax/

√
2M = √

η/2.
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In that case (20) reduces to

Btr

Bm
� η

2
√
ακ2

s
=

η3/4

2κ3/2
s M1/2

· (21)

For GRB external shocks, with η ≤ 1, α � 1, M � 1 and
κs ≤ 1 one has Btr � Bm, and trapping rather than magnetization
stabilizes the beam-driven Weibel instability.

For the Weibel instability operating in the transition
layer of an ultra-relativistic shock one expects η ≈ 1 for
an electron(-positron) beam, and η ≈ 4me/3mp � 7 ×
10−4 for a proton beam in a hot electron background, see
Wiersma & Achterberg (2004) for more details. Since one must
have M > 1 + 1/η for an instability to occur this implies that
trapping will occur long before the beam particles are fully mag-
netized so that the exponential growth of the magnetic field sat-
urates at |B| � Btr.

Figure 1 shows the characteristic wave numbers κ∗ and κ†
and κmax, and the ratio of the field amplitudes at trapping and
magnetization, Btr/Bm = σ2

†/κ†κ∗, all as a function of the param-
eter α forM = 100.

3. Nonlinear effects: fluid model for the beam
response

We now present detailed calculations that justify the order-of-
magnitude estimates of the previous section for two different sit-
uations. In this section we consider the nonlinear effects due to
the Weibel instability using a fluid model. This allows us to in-
vestigate the effect of nonlinear coupling, and in particular of
wave breaking of the Weibel mode when only a single dominant
mode of given wave number k is present. In the next section
we will consider the kinetic theory, which is appropriate for a
broad-band spectrum of unstable modes with bandwidth ∆k ∼ k,
and where phase mixing of the quiver motion in the collection of
waves is the dominant stabilization process. Since wave breaking
generates higher harmonics (see below), the single-mode case
will evolve naturally into the case of a broad-band spectrum.

For stable plasma modes (with a real frequency ω) a fluid
calculation such as presented below would yield the well-known
equations for mode coupling in the fluid approximation, see for
instance Galeev & Sagdeev (1979). This coupling leads to reso-
nant interactions between different waves (normal modes) of the
form k1 ± k2 = k3, ω1 ± ω2 = ω3, where the indices enumer-
ate the different wave modes. However, in the case of the unsta-
ble Weibel modes considered here such resonances do not occur
asω is purely imaginary. The dominant effect is through the non-
linear distortion of the wave profile, not unlike what happens to
large-amplitude electron plasma oscillations in a cold plasma,
see Davidson (1972), Ch. 3. This is a non-resonant process.

In order to keep the mathematics tractable we make a number
of simplifying assumptions:

1. We treat the symmetric case with two oppositely directed
beams of equal strength propagating along the z-axis with
velocity V± = ±Vb ẑ. In that case the linear Weibel mode is
purely electromagnetic. We also assume that all electromag-
netic fields vary as plane waves in the x-direction (k = k x̂),
so that E(x , t), B(x , t) ∝ exp(ikx − iωt). The Fourier ampli-
tudes B̃ and Ẽ⊥ of the electromagnetic field then satisfy

B̃ = B̃(k , ω) ŷ , Ẽ⊥ = Ẽ⊥(k , ω) ẑ = − ω
kc

B̃(k , ω) ẑ. (22)

The last relation follows from Faraday’s law: c(∇ × E) +
∂B/∂t = 0. Here we use the subscript ⊥ to distinguish the
transverse electric field (with k · Ẽ⊥ = 0) from the longitudi-
nal electric field Ẽ‖ = Ẽ‖(k , ω) x̂ that is introduced below.

2. We consider the wavelength range where |ω|/kc � 1. For
the low-frequency electromagnetic Weibel mode this implies
that the magnetic field amplitude is much larger than the am-
plitude of the transverse electric field:

∣∣∣B̃(k , ω)
∣∣∣ = ∣∣∣∣∣kc

ω

∣∣∣∣∣ ∣∣∣Ẽ⊥(k , ω)
∣∣∣� ∣∣∣Ẽ⊥(k , ω)

∣∣∣ .
3. For the moment we will neglect pressure effects in the beam

dynamics, putting the kinetic temperature of the beam parti-
cles equal to zero.

In this case, the equation of motion for the fluid of beam particles
is formally the same as that for a single particle of mass mb and
charge qb:

dp
dt
= qb

(
E +

V × B
c

)
· (23)

Here p(x , t) is the momentum of the fluid, defined as usual in
terms of the fluid velocity V(x , t) as

p = γmbV =
mbV√

1 − V2/c2
· (24)

The time-derivative in Eq. (23) should be interpreted as the con-
vective (Lagrangian) time derivative,

d
dt
≡ ∂

∂t
+ V · ∇. (25)

We consider the symmetric case with two counterstreaming but
otherwise identical beams, directed along the z-axis. Each beam
has an unperturbed laboratory frame density n+ = n− = nb/2.
Here, and in what follows, we use a subscript ± to distinguish
quantities associated with the forward beam (with unperturbed
velocity V = +Vb ẑ) and the backward beam (with unperturbed
velocity V = −Vb ẑ) . The density of these two beams satisfies
the continuity equation,

∂n±
∂t
+ ∇ · (n±V±) = 0. (26)

Note that the proper density of each of the two beams is n0± =
n±/γ±, with γ± = 1/

√
1 − |V±|2/c2. Finally, the charge density

and current density associated with the two beams is

ρ± = qbn± , J± = qbn± V±. (27)

3.1. Dynamics of the beam particles

The equation of motion in the x and z direction reads
respectively:(
∂

∂t
+ Vx

∂

∂x

)
px = qb

(
E‖ − Vz

c
B
)

; (28)

(
∂

∂t
+ Vx

∂

∂x

)
pz = qb

(
E⊥ +

Vx

c
B
)
. (29)

The y-component reads dpy/dt = 0, and we can put py = 0.
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Fig. 1. The lefthand panel shows, as a function
of α and for a beam Mach number M = 100,
the behavior of the maximum unstable wave
number κmax (solid curve), the wave number κ∗
of the maximum linear growth rate (dashed
curve), and the wave number κ† associated with
the largest wave amplitude in the case of sta-
bilization by trapping (dash-dot curve). The
righthand panel shows, again as a function of
α, the ratio of the magnetic field strength pre-
dicted by the trapping argument and the mag-
netization argument, Btr/Bm.

The transverse electromagnetic fields are associated with the
Weibel mode, and can be written in terms of a vector potential
A = A(x , t) ẑ:

E⊥ = −1
c
∂A
∂t

, B = −∂A
∂x
· (30)

The longitudinal electric field can be derived from a scalar
potential Φ(x , t):

E‖ = −∂Φ
∂x
· (31)

In the Weibel instability of two counterstreaming beams of equal
density (n+ = n−) this longitudinal field is absent in the linear
approximation, and can only be excited nonlinearly by the beams
(See AW1, Sect. 2.3, and the discussion below).

If one substitutes these definitions into the z-component
of the equation of motion (Eq. (29)) one finds that it can be
written as(
∂

∂t
+ Vx

∂

∂x

) (
pz +

qb

c
A
)
=

dPz

dt
= 0, (32)

with Pz ≡ pz+
qb

c A the z-component of the canonical momentum.
This can immediately be integrated to

Pz = pz +
qb

c
A = const., (33)

the conservation of the canonical momentum in the z-direction,
which arises as z is an ignorable coordinate. If one turns on the
waves adiabatically, it follows that one must have

(Pz)± = ±mbγbVb, (34)

i.e. the canonical momentum in the z-direction equals the unper-
turbed beam momentum.

We expand all fields as plane waves by defining the Fourier
amplitudes for the vector and scalar potentials:⎛⎜⎜⎜⎜⎜⎜⎝ A(x , t)

Φ(x , t)

⎞⎟⎟⎟⎟⎟⎟⎠ =
∫

dk dω
(2π)2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ã(k , ω)

Φ̃(k , ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ exp(ikx − iωt). (35)

Maxwell’s equations imply that the Fourier components of the
electric and magnetic field are

Ẽ⊥ =
iω
c

Ã , B̃ = −ik Ã , Ẽ‖ = −ik Φ̃ . (36)

In addition, we will assume that the beams are ultra-relativistic,
with γb � 1.

It is easily checked that the motion induced by the low-
frequency Weibel mode in an ultra-relativistic beam is almost
one-dimensional, with the perturbed velocity directed along the
x-axis. One can use a standard perturbation expansion (e.g.
Melrose 1986, Ch. 2) in terms of the field amplitudes, by writing
the momentum of beam particles as

p = ±γbmb Vb ẑ + p(1) + p(2) + . . . (37)

and solving the equation of motion order-by-order. Here |p(n)| ∝
|Ã|n is the nth order momentum perturbation. A similar expan-
sion can be written down for the velocity: V = ±Vb ẑ + V(1) +

V(2) + · · ·, where one must use V = cp/
√

p2 + m2
bc2 to relate the

terms in the momentum and velocity expansions.
The first-order terms in this expansion can be found written

out explicitly in Melrose (1986), p. 18. In our application of the
theory we will exploit the fact that there are (by assumption)
two small parameters: 1/γb � 1 and |ω/kc| � 1. Using this, one
finds from the general perturbation expansion that the first-order
velocity perturbations in the beam satisfy∣∣∣∣∣∣ Ṽ(1) z(k , ω)

Ṽ(1) x(k , ω)

∣∣∣∣∣∣ = 1

γ2
b

∣∣∣∣∣ ωkVb

∣∣∣∣∣ ≈ 1

γ2
b

∣∣∣∣∣ ωkc

∣∣∣∣∣� 1. (38)
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Here Ṽ(1)(k , ω) is the Fourier component of the linear veloc-
ity perturbation, defined in a manner analogous to Eq. (35). This
implies that one can neglect the wave-induced motion along the
beam direction (along the z-axis) to first order. It can be shown
that a similar conclusion holds for the higher-order velocity per-
turbations Ṽ(2)(k , ω) , Ṽ(3)(k , ω) . . . This allows one to approx-
imate the equation of motion (28) by(
∂

∂t
+ V±

∂

∂x

)
V±(x , t) =

qbE±(x , t)
γbmb

· (39)

Here we have written V±(x , t) for the x-component Vx(x , t) of
the velocity for the forward and backward beam. Note that this
velocity component vanishes for the unperturbed beam, so that
V± = V±(1) + V±(2) + . . . in a perturbation expansion. We also
define

E±(x , t) = E‖ ∓ Vb

c
B ≈ E‖ ∓ B. (40)

The last approximation follows from our assumption γb � 1.
The approximate equation of motion (39) neglects the rel-

atively small nonlinear contributions to the Lorentz force due
to variations in Vz, and also the equally small nonlinear varia-
tions in γ, keeping only the dominant nonlinearity due to pon-
deromotive effects, which is associated with the advective term,
V± (∂V±/∂x), in the equation of motion (39).

In the same limit, the current density carried by the beams
is almost entirely due to the advection current that is associated
with the charge density perturbations in the beams:

Jb ≈ qb (n+ − n−) Vb êz. (41)

The conduction current, which is induced by the perturbations in
the z-component of the beam velocity, is a factor∼|ω/γbkc|2 � 1
smaller and will be neglected in what follows.

3.2. Reduced set of Maxwell’s equations

In the low-frequency limit |ω| � kc one can employ a set of
reduced Maxwell equations to describe the plasma response:
Ampère’s Law neglecting the displacement current, ∇ × B =
(4π/c) J, and Poisson’s equation∇·E = 4πρ for the longitudinal
electric field. Here ρ and J are the charge and current densities.
For the moment we will neglect the effect of the background
plasma, except as an infinitely massive neutralizing agent that
compensates the charge of the beam particles in the unperturbed
state, carrying a charge density ρbg = −qbnb in the laboratory
frame. In this case Maxwell’s equations reduce to

∂E‖
∂x
= 4πqb (n+ + n− − nb)

∂B
∂x
= 4πqb

Vb

c
(n+ − n−) � 4πqb (n+ − n−) . (42)

Using the definition (40) for E± one finds that the reduced set of
Maxwell’s equations is equivalent to

∂E±
∂x
= 8πqb

(
n∓ − 1

2 nb

)
. (43)

The density of the two beams satisfies the continuity equation:

∂n±
∂t
+
∂

∂x
(n±V±) = 0. (44)

Together with relation (43) this implies:

∂2E±
∂x∂t

= −8πqb
∂

∂x
(n∓V∓) . (45)

This last relation can be integrated to

∂E±
∂t
= C±(t) − 8πqbn∓V∓. (46)

Here the C±(t) are arbitrary functions of time, but do not depend
on the position x. For waves periodic in x it is easily checked by
averaging over one wavelength that these two integration con-
stants must vanish: C+ = C− = 0. In that case one can combine
Eqs. (43) and (46) to show that E+ and E− satisfy:

D−E+ = −4πqbnb V− , D+E− = −4πqbnb V+. (47)

Here we use the following notation for the convective derivatives
associated with the two beams:

D± ≡ ∂

∂t
+ V±

∂

∂x
· (48)

In this notation the equations of motion (39) read:

D+V+ =
qbE+
γbmb

, D−V− =
qbE−
γbmb

· (49)

The coupled set of nonlinear Eqs. (47) and (49) describes oscil-
lations in the beam plasma. Note that all the nonlinear effects are
in the lefthand sides of these four coupled equations: the right-
hand sides are all linear! The nonlinearities are associated with
the V±(∂V±/∂x) terms in the convective derivatives D±. Also,
these equations exhibit a remarkable symmetry that we will em-
ploy below.

By operating with D− on the first equation of (49) and
with D+ on the second equation one can reduce the system fur-
ther: one finds two coupled equations for V±:

D−D+V+ = −ω̂2
pb V− , D+D−V− = −ω̂2

pb V+. (50)

Here the constant beam plasma frequency is defined as

ω̂2
pb =

4πq2
bnb

γbmb
· (51)

3.3. Linear response of the beam plasma

If one neglects nonlinear effects one can put D+ = D− = ∂/∂t.
The set of two Eqs. (50) is then equivalent with the single
equation

∂4V±
∂t4

= ω̂4
pb V±, (52)

Assuming V± ∝ exp(iωt) one finds that ω4 = ω̂4
pb, and the solu-

tions are

ω = ±ω̂pb , ω = ±iω̂pb. (53)

The first two solutions are symmetric in the sense that V+ = V−,
as is easily seen by substituting the solution back into the orig-
inal (linearized) set of equations. In the linear case this implies
E+ = E−, so that one must have E‖ � 0 and B = 0. These
are stable electrostatic (longitudinal) plasma waves in the beam
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plasma. The second set of solutions for ω correspond to an ex-
ponentially growing and an exponentially decaying mode. Both
these solutions are anti-symmetric in the sense that V+ = −V−.
The Weibel instability in the short-wavelength limit corresponds
to the growing mode. In this case E+ = −E−, so that one must
have E‖ = 0 and B � 0, and the waves are transverse. In this
limit, where we have assumed that terms of order |ω/kc| and
1/γb can be neglected with respect to unity, these two transverse
modes are purely magnetic.

3.4. The nonlinear response for single modes: the effect
of wave breaking

As argued above, the dominant nonlinearity for |ω| � kc and
γb � 1 is associated with the V± (∂V±/∂x) terms in the con-
vective derivates D±. These terms describe the distortion of the
waves from the initial sinusoidal shape by the process of wave
breaking. One usually defines the displacement of beam parti-
cles in the x-direction by

ξ±(r± , t) = x±(t) − r± with r± ≡ x±(t = 0). (54)

The r± are Lagrangian labels that are carried along by the parti-
cles. The convective derivative and the velocity in the x-direction
can be reinterpreted in terms of these labels as (cf. Roberts 1967,
Ch. 1.7)

D± =
(
∂

∂t

)
r±

, V± = D±ξ± =
(
∂ξ±
∂t

)
r±
· (55)

Using these definitions it follows that the formal solution of the
two equations (47) for E± reads:

E+(r− + ξ− , t) = −4πqbnb ξ−(r− , t),

(56)

E−(r+ + ξ+ , t) = −4πqbnb ξ+(r+ , t).

This shows that (in this limit) the E+-field is determined by the
motion of the particles in the −-beam, and vice versa. This result
is important for the rest of the discussion.

Consider now the motion of particles in one of the two
beams, say the forward (+) beam. The equation of motion can
be written as(
∂2ξ+

∂t2

)
r+

=
qb

γbmb
E+(r+ + ξ+ , t). (57)

In the linear approximation one puts r+ + ξ+ ≈ r+ ≈ r−, neglect-
ing the difference between the orbits followed by the particles in
the forward and backward beam. Consider now the case of the
initial condition r+ = r− ≡ r. In the linear stage of the Weibel
instability one can put

ξ+(r , t) = −ξ−(r , t) = a(t) sin(kr), (58)

which decribes a plane wave in the Lagrangian coordinate r with
wavelength 2π/k. The amplitude a(t) grows initially as a(t) ∝
exp(ω̂pbt). As the beam particles move in x, the wave is distorted
from its initial sinusoidal shape. From (56) and (58) one has:

E+(r + ξ+ , t) ≈ E+(r + ξ− + 2ξ+ , t)

= −4πqbnb ξ−(r + 2ξ+ , t) (59)

≈ 4πqbnb a(t) sin [kr + 2ka(t) sin(kr) ] .

With the help of an expansion in terms of the Bessel functions
of integer order2,

sin(kr + 2ka sin(kr)) =
∞∑

m=−∞
Jm(2ka) sin([m + 1]kr), (60)

one sees that [1] higher spatial harmonics are generated by the
nonlinearity through the m � 0 terms and [2] that there is a
phase shift due to wave breaking, which ultimately slows the
instability.

Some insight into the nonlinear development can be gained
by considering the initially dominant m = 0 term. The motion of
the beam particles is approximately described by:

∂2a
∂t2
≈ ω̂2

pba(t) J0(2ka(t)), (61)

neglecting the higher spatial harmonics (i.e. the terms with m �
0). Using the property

x J0(x) =
d
dx

(x J1(x)) (62)

of the zero-order Bessel function J0(x), it is easily checked that
Eq. (61) corresponds to motion in a potential, with an energy
integral that can be expressed as

1
2

(
dã
dt̃

)2

+ V(ã) = const., (63)

where ã = 2ka and t̃ = ω̂pbt, and the potential is

V(ã) = −ã J1(ã). (64)

The form of the potential (see Fig. 2) is such that, after initial al-
most exponential growth of a(t), a stable nonlinear oscillation re-
sults whenever the amplitude of the initial perturbation is small.
If the instability starts with |ã| � 1 and |dã/dt̃| � 1, the integra-
tion constant in (63) will be close to zero as V(0) = 0. In that
case the two turning points of the motion of ã will be located
close to the first zero’s of J1(ã), which are at

|ãmax| = 2k |amax| ≈ 3.83. (65)

This simplified analysis predicts that the distortion of the wave
profile, together with the relative shift ∆ξ = ξ+ − ξ− ≈ 2ξ+ be-
tween the orbits of the particles in the two beams, stabilizes the
instability, and leads to oscillations with an amplitude

|a| ≈ 3.83
2k
≈ 0.3 λ, (66)

where λ = 2π/k is the wavelength of the original perturbation.
This result shows that wave breaking will limit the ampli-

tude of the displacement ξ± of the beam particles, see Eq. (58).
Because this displacement is directly related to the electromag-
netic fields through Eq. (56), this also yields a limit on the elec-
tromagnetic field strength. However, to get an accurate estimate
of the resulting magnetic field strength we have to take the influ-
ence of the background plasma into account, which we will do
in the next section.

2 This result follows from the better-known expansion eib sin θ =∑
m Jm(b) exp(imθ), together with sin z = (eiz − e−iz)/2i and Jm(−b) =

(−1)m Jm(b) = J−m(b).
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Fig. 2. The potential V(ã) as function of the dimensionless amplitude
ã = 2ka.

3.5. Influence of the background plasma

So far we have neglected the response of the background plasma,
treating it in effect as an infinitely massive neutralizing back-
ground. We will now relax this assumption. The main effect of
the background is to introduce screening currents and charges
that slow the growth of the Weibel instability. We will describe
the background as an isotropic plasma. Since the Weibel insta-
bility is mainly magnetic, we will only need the transverse re-
sponse of the plasma. The Fourier-transformed reduced Maxwell
equations that include the background response replace the equa-
tion for the Fourier-amplitude of the magnetic field, ik B̃ �
4πqb (ñ+ − ñ−), by

ikε⊥(k , ω)B̃ = 4πqb (ñ+ − ñ−) . (67)

Here ε⊥(k , ω) is the transverse response (dielelectric) function
of the background plasma. We have again assumed a relativistic
beam with Vb � c. In terms of the components αi j of the po-
larization tensor defined in AW1 (AW1, Eqs. (33) and (34)) one
has:

ε⊥(k , ω) = 1 +
α

bg
33(k , ω)

k2c2
· (68)

It gives the effect of screening currents carried by
the background plasma. In the linear approximation,
where E+ ≈ −E− = −B, Eq. (67) together with the equa-
tion of motion and the continuity equation of the beam particles

imply that the electromagnetic fields in the Fourier domain that
are associated with the unstable Weibel mode now satisfy:

Ẽ±(k , ω) ≈ − 4πqbnb

ε⊥(k , ω)
ξ̃∓(k , ω)· (69)

As shown in AW1, the effect of screening currents can be de-
scribed in a good approximation by putting

ε⊥(k , ω) ≈ κ2 + κ2
s

κ2
, (70)

with κ = kc/ω̃bg with ω̃bg the plasma frequency of the back-
ground plasma, and where κs is the dimensionless screening
wave number. The equation for the linear Weibel mode with a
given wavelength λ = 2π/k is then equivalent with

∂2ξ̃±(k , t)
∂t2

=
ω̂2

pb

ε⊥(k)
ξ̃±(k , t). (71)

Again this leads to an exponentially growing amplitude, ξ̃±(t) ∝
exp(σ̃Wt), where

σ̃W(k) =
ω̂pb√
ε⊥(k)

=
κ√

κ2 + κ2
s

ω̂pb. (72)

The factor 1/
√
ε⊥(k) shows that the background response lowers

the growth rate of the linear instability. Expression (72) is ex-
actly the growth rate that follows from Eq. (7) in the case of cold
beams (M→ ∞) as considered here. For κ � κs the effect of the
background plasma is very small.

The presence of screening currents does not influence the
stabilization argument of the previous Section, which is based
entirely on the response of the beam particles. The analysis pre-
sented there (e.g. Eq. (65)) predicts that the Weibel instability
saturates at a level where

k
∣∣∣ξ̃±∣∣∣ � 1.9. (73)

From (69) one has

∣∣∣Ẽ±∣∣∣ ≈ ∣∣∣B̃∣∣∣ ≈ 4πqbnb

ε⊥(k)

∣∣∣ξ̃±∣∣∣ ≈ 8πqbnb

k ε⊥(k)
· (74)

It is easily checked that this estimate is equivalent to the standard
trapping argument.

4. Kinetic theory: stabilization due to quiver motion

We now consider the stabilization of the Weibel instability from
the point-of-view of kinetic theory. We assume a broad-band
spectrum of unstable modes with a bandwidth ∆k ∼ k, in con-
trast to the calculation of the previous Section which assumed a
single (dominant) mode.

Such a broad-band spectrum leads to phase-mixing of the
particle motion (the so-called quiver motion) in the collection of
waves. This ultimately results in a broadening of the momentum
distribution function fb(p) of the beam particles in phase space.
Traditionally this process is described as “fake diffusion” (e.g.
Davidson 1972), where the term “fake” refers to the fact that
this process, unlike true diffusion, is in principle reversible! In
more modern incarnations of the theory of wave-particle inter-
actions one uses oscillation center theory to define the average
distribution function in the presence of waves, see for instance
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Cary & Kaufman (1981). Since the linear Weibel instability has
Re(ω) = 0, there are no resonant nonlinear effects, such as res-
onant wave-wave coupling as already discussed above, or such
typical kinetic nonlinear resonant processes, such as nonlinear
Landau damping. These processes usually dominate the nonlin-
ear dynamics of plasma waves with |Re(ω)| � |Im(ω)|.

This broadening of the momentum distribution effectively
heats the plasma and it is well known that heating of the plasma
will stabilize the Weibel instability. In this section we will first
estimate the broadening of the velocity distribution in terms of
the amplitude of the magnetic field generated by the instability.
Using this estimate we will calculate the effect on the response
of the beam particles and derive the magnetic field strength
at the point where the broadening slows down the instability
appreciably.

4.1. Broadening of the momentum distribution

Once again we consider the case of two counterstreaming and
ultra-relativistic beams that propagate along the z-axis. The dis-
persion relation for the Weibel instability as derived in AW1
reads, in the limit |ω2| � k2c2:

c2k2 + α
bg
33(ω , k) + αb

33(ω , k) = 0, (75)

where the polarization tensor component α33 has a contribu-
tion αbg

33(ω, k) due to the background plasma, and αb
33(ω, k) due to

the beams. The last contribution is (AW1, Appendix, Eq. (C7)):

αb
33(ω , k) =

4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p)

(
1 − v

2
z

c2

)

−4πq2
bnb

∫
d3 p

{
v2

z

ω − kvx

(
k
∂ f0b(p)
∂px

)}
· (76)

Here f0b(p) is the average phase-space density of the beam
particles, normalized to∫

d3 p f0b(p) = 1, (77)

and γ(p) =
√

1 + |p|2/m2
bc2.

The effect of the quiver motion is a broadening of the mean
distribution function. We will denote the spatially averaged dis-
tribution function of the beam particles by f0b, to be distin-
guished from the exact distribution fb, which includes a fluc-
tuating part. In the limit |ω| � kc and for k = kx̂ and B = B ŷ
the Vlasov equation for the exact distribution fb(x , t , p) can be
approximated by

∂ fb
∂t
+ vx

∂ fb
∂x
−

(qb vzB
c

)
∂ fb
∂px
= 0. (78)

Here fb(x , t , px , py , Pz) is taken to be a function of the
x-coordinate and time, of the momentum components px and py
perpendicular to the beam direction (which equal the canonical
momentum components Px and Py because Ax = Ay = 0) and
the (conserved) canonical momentum Pz = pz + qbA/c. Using
standard techniques of weak plasma turbulence (e.g. Davidson
1972, Ch. 8), one can show that the mean distribution function
f0b satisfies a diffusion equation of the form

∂ f0b

∂t
=

∂

∂px

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(qbvz

c

)2
∫

dk dω
(2π)2

σ̃
〈
|B̃(k , ω)|2

〉
(ωr − kvx)2 + σ̃2

∂ f0b

∂px

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (79)

This equation gives the effect of the quiver motion on the mean
distribution function. Here the wave frequency is written in
terms of its real and imaginary part as ω(k) = ωr + iσ̃. For
a broad-band spectrum of normal modes the ensemble average
satisfies〈
|B̃(k , ω)|2

〉
= B̃2(k) 2πδ(ω − ω(k)), (80)

with ω(k) the wave frequency as determined by the solution of
the dispersion relation (75).

We now make the assumption of beams that are initially
cold in the direction perpendicular to the beam direction so that
|kvx| � |ω|. In the linear stage of the Weibel instability the am-
plitude of the magnetic perturbations grows as

∂B̃2(k)
∂t

= 2σ̃(k) B̃2(k), (81)

and ωr = Re(ω) = 0. In this limit, Eq. (79) can be approxi-
mated by

∂ f0b

∂t
=

∫
dk
2π

∂B̃2(k)
∂t

⎛⎜⎜⎜⎜⎜⎝ ∂

∂px

⎧⎪⎪⎨⎪⎪⎩ q2
bv

2
z

2σ̃2c2

∂ f0b

∂px

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎠ · (82)

The linear growth rate σ̃(k) is almost independent of wave num-
ber for 1 < kc/ω̃bg < κmax. In addition we have f0b ∝ δ(Pz +
γbmbVb)+ δ(Pz − γbmbVb) (see Eq. (34)) and pz ≈ Pz, so we can
put vz = ±Vb. We define the typical magnetic field strength B by
the relation

B2 =

∫
dk
2π

B̃2(k). (83)

Together, Eqs. (81)−(83) and the properties of σ̃(k) imply
that f0b satisfies a diffusion equation of the form:

∂ f0b

∂(B2)
=

∂ f0b/∂t
∂(B2)/∂t

=
∂

∂px

⎧⎪⎪⎨⎪⎪⎩ q2
bV2

b

2σ̃2c2

∂ f0b

∂px

⎫⎪⎪⎬⎪⎪⎭ · (84)

If the beams are ultra-relativistic and cold at t = 0, the momen-
tum distribution is given by:

f0b(t = 0) = δ(px) δ(py)

× 1
2

[
δ(Pz + γbmbVb) + δ(Pz − γbmbVb)

]
. (85)

Using γb � 1 the solution to Eq. (84) can then be written as a
quasi-Maxwellian distribution in vx = px/γbmb:

f0b(t) =
1√

2π γbmbvq

e−(v2
x/2v

2
q) δ(py)

× 1
2

[
δ(Pz + γbmbVb) + δ(Pz − γbmbVb)

]
. (86)

Here the quiver velocity vq is defined by:

v2
q ≈

q2
bV2

b B2

2γ2
bm2

bσ̃
2c2
· (87)

This explicitly shows how the mean distribution in vx (with asso-
ciated momentum px ≈ γbmbvx) broadens due to phase mixing
of the quiver motion as the rms magnetic field grows. The above
procedure generalizes a similar result derived by Kadomtsev
(1965), p. 25, for electrostatic waves.

If we relax the assumption that the wave vector k is in the
x-direction, and allow for ky � 0, Bx � 0 while keeping kz = 0, a
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similar broadening occurs in the distribution of the y-component
of momentum. If the situation is cylindrically symmetric around
the beam direction, with

B̃2
x(k) = B̃2

y(k) ≡ B̃2(k), (88)

expression (86) is replaced by

f0b(t) =
1

2π (γbmb vq)2
e−(v2

x+v
2
y)/2v2

q

× 1
2

[
δ(Pz + γbmbVb) + δ(Pz − γbmbVb)

]
. (89)

In conclusion: the effect of the phase mixing of the quiver mo-
tion is to heat the beam plasma, in particular by creating a quasi-
Maxwellian distribution of the components of the particle mo-
mentum in the x − y-plane, the plane perpendicular to the beam
direction.

4.2. Effect on the beam response

The change in the beam momentum distribution also changes the
contribution of the beam to the polarization tensor component
α33(ω , k) that figures in the dispersion relation for the Weibel
instability. Using distribution function (89) in definition (76)
gives the beam contribution to α33 in the limit vq � c so that
px ≈ γbmbvx:

αb
33 = ω̂

2
pb

⎛⎜⎜⎜⎜⎜⎝ 1

γ2
b

+
4v2

q

c2

⎞⎟⎟⎟⎟⎟⎠ − ω̂2
pb

k2V2
b

ω2
Z2 W(Z). (90)

Here Z ≡ ω/kvq and W(Z) is the plasma dispersion function
defined by Ichimaru (1973),

W(Z) ≡ 1√
2π

∫ +∞

−∞
dx

x exp
(
−x2/2

)
x − Z

, (91)

and ω̂2
pb = 4πq2

bnb/γbmb is the effective plasma frequency asso-
ciated with the beams. To obtain result (90) we have used

1 − v
2
z

c2
=

1
γ2
+
v2

x

c2
+
v2
y

c2
· (92)

Initially vq � |ω/k| � c and |Z| � 1, and we can use the expan-
sion (valid for σ̃ = Im(ω) > 0):

W(Z) ≈ − 1
Z2
− 3

Z4
· (93)

For kVb ∼ kc � |ω|, γb � 1 and vq � c we can neglect the
first term in (90), and the dispersion relation (75) can be approx-
imated by:

k2c2 + α
bg
33(iσ̃ , k) − ω̂2

pb

k2V2
b

σ̃2

⎛⎜⎜⎜⎜⎜⎝1 − 3k2v2
q

σ̃2

⎞⎟⎟⎟⎟⎟⎠ = 0. (94)

Here we putω = iσ̃. This approximate dispersion relation shows
that the instability slows down appreciably if kvq ∼ σ̃, or equiv-
alently when

kvq

σ̃
≈ kqbVbB
γbmbcσ̃2

≈ 1. (95)

This is essentially the trapping criterion (15), with the quiver am-
plitude ξq = vq/σ̃ as the typical amplitude. A similar argument
for the stabilization of the Weibel instability has been proposed
previously by Gruzinov (2001). A more precise evaluation of the
dispersion relation using expression (90) for αb

33 needs an evalu-
ation of W(Z) = W(ω/kvq) in the complex plane, and is beyond
the scope of this paper.

5. Further field growth through current channel
coalescence

Once trapping finishes the quasi-exponential growth of the mag-
netic field, further field amplification is still possible. The nu-
merical simulations of Lee & Lampe (1973), and more recently
by Frederiksen et al. (2004) show how the filamentary currents
generated by the Weibel instability merge into larger current
channels. Physically, this coalescence is the result of the attrac-
tive force between parallel currents. Medvedev et al. (2005) have
considered a simple model of this coalescence phase, assum-
ing that the process can be approximated by treating the current
channels as thin, straight current wires with a magnetic field at
a distance r from the wire axis equal to B(r) = 2I/cr. Their cal-
culation neglects the screening currents of a background plasma
which, at least in the exponential stage of the instability, play an
important role in determining the wave number k† at which the
trapping field reaches the maximum value (see Eq. (18)).

In this section we will include the effect of screening cur-
rents. In particular, we investigate how the presence of the
hot background plasma influences the coalescence process. We
will show that the screening currents supported by this back-
ground slow the coalescence process considerably once the typ-
ical transverse size of the current channels becomes compara-
ble with the skin depth, c/ω̃bg, of the hot background. Even
though we (like others before us) will consider the merging of
straight and parallel current filaments, the general conclusions
should remain qualitatively correct for curved filaments as long
as the radius of curvature is considerably larger than both the
skin depth of the background plasma and the transverse size of
the filaments.

5.1. Maximum current for a cylindrical current channel:
the Alfvén current

Following Kato (2005) we define typical currents and the associ-
ated magnetic fields for a straight, cylindrical current filament of
a given radius r0. A filament consisting of charged particles with
lab frame density nb, charge qb per particle and with a bulk ve-
locity Vb can carry a maximum current equal to Ib = πr2

0qbnbVb.
If the current channels result from the Weibel instability, the typ-
ical size of the channels will be r0 ≤ c/ω̃bg. If one neglects
screening currents, the typical magnetic field at the outer edge
of the filament is

Bb =
2Ib

cr0
=

2πqbnbc
ω̃bg

(Vb

c

) (
r0

(c/ω̃bg)

)
· (96)

The Alfvén current follows (up to factors of order unity) from the
requirement that the gyration radius rg = γbmbcVb/qbB of the
beam particles with an energy E = γbmbc2 in the self-generated
magnetic field B becomes equal to the radius r0 of the current
channel. This gives the critical Alfvén current, IA = cBrg/2 =
γbmbc2Vb/2qb. The associated magnetic field is equal to

BA =
2IA

cr0
=

4πqbnbc
ω̃bg

⎛⎜⎜⎜⎜⎜⎝ ω̃
2
bg

ω̂2
pb

⎞⎟⎟⎟⎟⎟⎠ (Vb

c

) (
r0

(c/ω̃bg)

)−1

· (97)

One has Bb(r0) < BA(r0) for r0 <
√

2 (c/ω̂pb). Once the current
reaches the Alfvén current, the Lorentz force due to the self-
generated magnetic field disrupts the current flow.

The trapping condition (15) implies that the magnetic field
amplitude for a wave mode with a wave number k = 2π/λ
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at the end of the phase of exponential growth is Btr(k) =
γbmbcσ̃2/qbkVb. This trapping field serves as an initial condition
for the coalescence phase of magnetic field growth (or decay).
Using the expression for the growth rate σ̃(k) of the Weibel insta-
bility in the ultra-relativistic limit3, Eq. (7), one has for k � kmax,
hb ≈ 1 (cold beam) and Vb ≈ c:

Btr(k) ≈ 4πqbγbnb

k

(
k2

k2 + k2
s

)
· (98)

The maximum field amplitude occurs at a wave number close to
the screening wave number: k ∼ k† ∼ ks = ω̃bgκs/c. For typical
parameters (see below) one has κs ≈ 0.25−1. For the order-of-
magnitude estimates we will use the fluid result: κs = 1. Note
that the field amplitude Btr is independent of the mass of the
beam particles for k � ks.

For relativistic beams with Vb ≈ c, and for a wave number
k ≥ ks � ω̃bg/c, the magnetic field amplitudes (96) to (98) are
related by:

Bb(r0) ∼ Btr(k = 1/r0) , BA(r0) ∼ Btr(k = 1/r0)
η(ω̃bgr0/c)2

· (99)

Here we have used definition (2) for η. The current channels cre-
ated by the Weibel instability typically have r0 ∼ 1/k† ≤ c/ω̃bg.
Relation (99) has immediate consequences for the coalescence
of the current filaments created by the Weibel instability that we
will explore in Sect. 6.

5.2. Simple model for field growth

The algebraic (rather than exponential) growth of the small-scale
field due to merging can be estimated using the toy model for
current merging of Medvedev et al. (2005). This model con-
siders the merging of identical and cylindrical current channels.
After m pair wise mergers of currents with the same initial scale
r0, currentI0 and magnetic field B0 = 2I0/cr0, the resulting cur-
rent filament carries a currentIm, has a radius rm, a cross-section
πr2

m and a magnetic field Bm = 2Im/crm at its outer edge. These
are given by (Medvedev et al. 2005):

Im = 2m I0 , rm = 2m/2 r0 , Bm = 2m/2 B0. (100)

This calculation neglects screening currents, which is a reason-
able approximation for rm � c/ω̃bg, and uses mass conservation
and magnetic flux conservation. Combining the last two relations
of (100) one has

Bm =

(
rm

r0

)
B0. (101)

We first consider the merging of electron current filaments fol-
lowing the exponential stage of the electron-driven Weibel insta-
bility. At this stage the electrons are already (partially) thermal-
ized, and η ≈ 1, see also the discussion in Sect. 6 below. Using
as an initial condition for the merger process the trapping field
generated by the Weibel instability, B0 = Btr(k = 1/r0) ≈ Bb(r0),
this yields for rm ≤ c/ω̃bg:

Bm =
2πqbnbc
ω̃bg

(
ω̃bgrm

c

)
≈ Bb(rm) ≈ Btr(k ∼ 1/rm). (102)

3 Although formally expression (7) for the growth rate σ̃ has been
derived under the assumption σ̃ � kc, it turns out that it gives a good
approximation even if σ̃ ∼ kc.

This simple merging model gives a magnetic field of the merged
current filaments of transverse size rm that is comparable with
the trapping field on the same scale, which is the field origi-
nally created by the exponential Weibel instability on that scale.
When, after multiple mergers, the radius of the resulting fila-
ment becomes comparable with the skin depth, rm ∼ c/ω̃bg,
the Alfvén limit Btr(r = c/ω̃bg) ∼ BA is reached as ω̃bg ∼ ω̂pb
for the electrons. The electron current cannot grow beyond the
(radius-independent) Alfvén limit Ie

A = γbmec3/2e, and the as-
sociated magnetic field (see Eq. (97)) will decay as r−1

m if merg-
ing continues.

We will argue below that further merging to filaments of a
transverse size larger than the skin depth is slowed down consid-
erably by the screening currents generated in the already ther-
malized hot electron plasma. This means that, for all intents and
purposes, the merging almost stops when rm ∼ c/ω̃bg when the
magnetic field has a magnitude Bb ∼ BA ∼ Btr. The decay of the
field due to further merging, Bm ∝ r−1

m for Bm > BA, is present,
but proceeds at a much slower rate than the growth of the field
in the Weibel instability.

The proton-driven Weibel instability develops much slower,
and in a background of already thermalized (hot) electrons, with
a the growth rate σ̃ ≤ ω̂pb = ηω̃bg with η ∼ me/mp � 1. This
means that the Alfvén field associated with proton currents sat-
isfies BA ∼ Btr/η � Btr at r � c/ω̃bg. Merging of proton current
filaments could therefore in principle lead to continuing mag-
netic field growth. However, the screening currents act here also,
slowing down the merging rate. Therefore, as we will show be-
low, the additional field growth driven by protons or other ions
will be limited.

5.3. The effect of screening currents

In shock transition layers one expects a background of hot (al-
ready shocked) plasma. This plasma supports screening currents
that will partially screen the currents carried by the filamentary
beams created by the Weibel instability. This will happen when
the transverse size of the current filaments (and their mutual dis-
tance) exceeds the skin depth c/ω̃bg, which is usually determined
by the electron component in the hot background. As shown
in the Appendix, a simple (quasi-static) model predicts that the
magnetic field B(r) and total (beam + screening) currentItot of a
current filament with cylindrical radius r0 behave for sufficiently
thick filaments as (see Eqs. (A.9) and (A.10)):

Itot � I0

ksr0
, B(r) � B0

e−ks(r−r0)

ks
√

rr0
· (103)

Here ks = ω̃bg/c is the inverse skin depth and we assume ksr � 1
and ksr0 � 1 with r the distance to the filament axis. The current
I0 is the unscreened beam current running through the filament,
and B0 = 2I0/cr0. More general expressions for arbitrary values
of ksr, ksr0 can be found in the Appendix.

The quasi-exponential decay of the magnetic field outside a
filament has an important consequence: it slows down the merg-
ing of current filaments which is driven by the attractive Lorentz
force between filaments with parallel current directions. The at-
tractive force per unit length between two identical filaments of
radius r0 � c/ω̃bg at a distance d � r0 scales roughly as:

dF
d�
� −ItotB(d)

c
�

(
dF
d�

)
0

(
d
r0

)1/2 e−ks(d−r0)

k2
s r2

0

· (104)
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Fig. 3. The coalescence time, plotted as ω̂pb tcoal, as a function of the
distance between the current wires in units of their radius di/r0. It is
assumed that the beam consists of heavy ions with a current equal to Ib,
so that B0 ≈ Bb ≈ Btr, and that Vb ≈ c. Note that for large distances the
coalescence time increases exponentially, in agreement with the asymp-
totic result of Eq. (105).

Here (dF/d�)0 = −2 I2
0/c

2d is the Biot-Savart attractive force
between two thin, unshielded current wires with current I0,
see Eq. (A.11) in the Appendix. As a result, the coalescence
time of two identical filaments of radius r0 also scales quasi-
exponentially with the initial distance di between the filament
axes: solving the equation of motion gives in the limit ksdi �
ksr0 � 1 (Appendix, Eq. (A.26) for B0 = Bb and Vb � c):

tcoal � 2π
ω̂pb

(
k2

s dir0

)1/4
exp

[
ks

(
di − 2r0

2

) ]
· (105)

The end of the coalescence is taken to be the moment when the
filaments touch so that d = 2r0. This behavior is illustrated in
Fig. 3, which was obtained through direct numerical integration
of the equation of motion (Eq. (A.13) of the Appendix) for B0 =
Bb, Vb ≈ c.

These calculations imply that the coalescence slows down
appreciably as soon as the distance between current filaments
exceeds the skin depth of the hot background, ksdi > 1. Note
that in the simple model of Medvedev et al. (2005) the distance
between pair-wise merging current wires increases as dm = 2md0
after the mth merger, if the process starts with an initial collec-
tion of wires that are separated by a distance d0. The ratio of the
distance between the wires and their radius scales therefore as
dm/rm ∝ 2m/2. This means that, as soon as screening currents

become important when ksrm ∼ 1, the coalescence rate slows
rapidly in the following steps of the merger process, and the
coalescence of current filaments effectively “stalls” after a few
additional steps.

This simple model assumes that the current filaments re-
main straight during the merging process. It has been argued
by Milosavljević & Nakar (2006) that the filament created by
the Weibel instability are unstable to a kink mode, which grows
rapidly. These authors use the MHD energy principle to show
that a single isolated filament with a transverse size of order
the plasma skin depth is unstable. It is not clear if this con-
clusion remains unchanged in the situation considered here,
where many filaments interact electromagnetically. The analy-
sis of Milosavljević & Nakar (2006) also does not take account
of the effect of the screening currents that one expects around
the filaments, which electromagnetically couples the surround-
ing plasma to the filaments.

6. Implications for ultra-relativistic shocks

We now consider the implications of the results of the previ-
ous sections for the generation of magnetic fields near ultra-
relativistic shocks. In particular we discuss the shock transi-
tion layer, where the kinetic energy of the incoming ions (with
mass mi) and electrons (and possibly positrons, both with mass
me) is thermalized, creating a relativistically hot plasma. Since
we are dealing with a collisionless plasma, the behavior of the
ions and electrons must be considered separately.

6.1. Thermalization through the Weibel instability

We first consider the effect of the electron-driven Weibel insta-
bility. Simulations (e.g. Frederiksen et al. 2004) show that the
electron-driven Weibel instability develops rapidly in a shock
transition. The ion-driven instability also occurs, but has a max-
imum growth rate that is a factor (ω̂pb)e/(ω̂pb)p ≈

√
mp/me ∼ 43

slower than the electron-driven instability. Here we assume a
hydrogen plasma with the ion mass equal to the proton mass:
mi = mp. Incidentally: simulations often use (for computational
reasons) a much smaller ion-electron mass ratio, of the order
mi/me ∼ 16 corresponding to

√
mi/me ∼ 4. Therefore, differ-

ence in the growth rates of the electron- and ion-driven instabili-
ties is not nearly as pronounced in these simulations as in reality.

If the electrons form their own “subshock”, the shock
jump conditions should apply to the electron fluid. For ultra-
relativistic shocks, where the incoming flow in the shock frame
has a Lorentz factor γsh � 1 and the incoming electron gas is
cold in the sense that kbT1 � mec2, the relation for the rela-
tive velocity vrel = (v1 − v2)(1 − v1v2/c2) between the up- and
downstream flow is purely kinematic, cf. Blandford & McKee
(1976). The corresponding Lorentz-factor is γrel � γsh/

√
2 with

γsh = 1/
√

1 − v2
1/c

2, independent of the mass of the particles
that make up the plasma. It is natural to associate γrel with
the beam Lorentz factor γb in the rest of the discussion. For
γsh � 1 proper densities on both sides of the shock are related
by n2/n1 � 4 γrel, and the downstream temperature T2 follows
from e2 � 3P2 = 3n2kbT2 � γreln2mc2, with m the rest mass
of the particles involved. For electrons or positrons this implies
kbT2 ≈ γrelmec2/3. Here we have used a subscript 1 (2) to denote
the pre-shock (post-shock) state. Below we will take these post-
shock values as indicative values for the electron background
after thermalization.
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Initially, the electron-driven Weibel instability will proceed
almost as in the case of no background, the limit η � 1, or equiv-
alently (ω̂pb)2

e � ω̃2
bg. This implies that the instability grows over

a wide range of wavelengths, with a growth rate σ̃ � (ω̂pb)e. As
the beam(s) get further and further behind the shock front, the
quiver motion in the self-generated magnetic field will grow in
amplitude, and the electron-driven instability starts to stabilize.
The typical amplitude of the magnetic field (Eq. (98)) for pertur-
bations with wavelength λ = 2π/k equals, with Vb � c

B ∼ Btr ≈ 4πeγbne

k
· (106)

where ne ≈ n1 is the proper density of the electron beams and
where we have put he = 1 as the electrons are initially cold. The
amplitude of the quiver velocity that corresponds with this field
amplitude is quite large. From the approximate expression (87)
with σ̃ = (ω̂pb)e and Vb � c one finds

( vq

c

)
e
∼ (ω̂pb)e√

2 kc
, (107)

which is of order unity for k ∼ (ω̂pb)e/c, implying that waves
with k < (ω̂pb)e/c stabilize first. The electron-driven Weibel in-
stability should be capable of completely thermalizing the elec-
trons. The perturbations with k > (ω̂pb)e/c will continue to grow
even when the electron plasma is partially thermalized, with a
typical value of the parameter ηe ∼ 1.

The electron beam plasma frequency, and the downstream
electron plasma frequency once the electrons are fully ther-
malized, are similar in magnitude (see also the discussion in
Wiersma & Achterberg 2004). We express them in terms of the
plasma frequencyωpe =

√
4πe2ne/me of the cold upstream elec-

tron gas with density n1 = ne. Using the above shock relations
one finds:

(
ω̂pb

)2

e
� 4πe2ne

me
= ω2

pe ,
(
ω̃bg

)2

e
=

4πe2n2c2

kbT2
� 12 ω2

pe. (108)

In view of our discussion in Sect. 5.1, these estimates imply
that the trapping magnetic field and the Alfvén critical field
for electrons are comparable on a scale comparable to the ef-
fective skin depth: c/

(
ω̃bg

)
e
∼ c/

(
ω̂pb

)
e
. As a result further

magnetic field growth due to coalesence of the current fila-
ments created by the electron-driven Weibel instability on a scale
r0 � c/

(
ω̃bg

)
e

will stall after a few mergers because of the
exponential increase of the coalescence time, as calculated in
Sect. A.2 of the Appendix, see also Eq. (105)). Filaments cre-
ated at r0 ∼ 1/k � c/

(
ω̃bg

)
e

will merge almost unimpeded, but
the scaling laws (101) and (102) imply that the resulting mag-
netic field strength on a scale r > r0 is comparable to the mag-
netic field that was created initially at that scale by the quasi-
exponential phase of the Weibel instability. However, the filling
factor of the current filaments decreases as merging proceeds
further and further.

The ion-driven Weibel instability develops more slowly, and
takes place mostly in the hot background of the already thermal-
ized (shocked) electrons. A complication is the fact that there
will possibly be strong effects in the transition layer due to elec-
trostatic potentials generated by electron-ion charge separation,
and due to a strong overshoot of the compressed magnetic field.
We cannot treat these effects, but point out that -for typical
parameters- magnetic effects on the Weibel instability are esti-
mated to be small, as discussed in AW1, Sect. 8.

The ion-driven instability is weak in the sense that η � 1:
for a hydrogen plasma one has

ηp =

(
ω̂pb

)2

p(
ω̃bg

)2

e

� me

mp
� 1. (109)

The precise numerical constant in front of the electron-proton
mass ratio in relation (109) is difficult to predict without a com-
plete shock model, but will be of order unity. If one assumes
charge neutrality it equals 4/3. The presence of screening cur-
rents in the hot electron background impedes the ion-driven
Weibel instability for wavelengths larger than the effective elec-
tron skin depth. The screening wave number is ks = [(ω̃bg)e/c]κs,
where (see AW1)

κs =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 fluid background model,

(
π

4

)1/3
η1/6

p ≈ 0.26 kinetic background model.
(110)

In that case relation (98) applies, the maximum trapping field in
the ion-driven instability occurs at k ∼ ks, and the typical field
amplitude for k > ks (up to factors of order unity) is again given
by (Eq. (106)), assuming np ≈ ne � n1. This also implies that for
protons

( vq

c

)
p
∼ (ω̂pb)p√

2 ksc
≤

√
ηp

2
� 0.02. (111)

Unlike what happens with the electrons, the Weibel instability is
therefore not capable of immediately thermalizing the incoming
protons on a scale of a few times c/(ω̂pb)p.

A second important difference with the electron-driven case
is that the trapping field is smaller than the critical Alfvén
field BA for the ions on the same scale, a consequence of the
larger ion mass, which makes them more difficult to deflect. One
has BA ∼ Btr/ηp at r0 ∼ c/(ω̃bg)e with ηp � 1. This means that
merging of ion current filaments, and the associated growth of
the magnetic field, is possible in principle. However, the calcula-
tions in the preceding section show that, analogous to what hap-
pens with the linear ion-driven Weibel instability at wavelengths
exceeding the skin depth, further merging is impeded by the
screening currents in the (now thermalized) electron background
plasma. The merging rate slows down strongly once the radius
of the filaments becomes larger than a few times the plasma skin
depth c/(ω̃bg)e � c/(ω̂pb)e. The overal conclusion therefore is
that the ion-driven Weibel instability does not generate magnetic
fields that are much stronger than the ones already created by the
faster electron-driven instability.

6.2. Thermalization of protons

Because the ions will thermalize well after the electrons do, the
overall width of the shock transition is now determined by the
ion thermalization length. To a large extent, the implications
of this have already been investigated by Lyubarsky & Eichler
(2006). Here we refine their calculation.

Ion thermalization takes place due to scattering in the mag-
netic fields that have been generated by the electron-driven
Weibel instability. This process can be described as diffusion
of the unit direction-of-flight vector n̂ = p/p = (nx, ny, nz),
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where p is the proton momentum. The equation of motion for an
ultra-relativistic proton with energy E can be written as

dn̂
ds
=

e
E

(n̂× B) . (112)

Here s is the path length along the orbit of the proton. We ne-
glect the influence of the shock-compressed background mag-
netic field as the amplitude of the Weibel-generated field is much
larger: from relation (106) with ks ∼ (ω̃bg)e/c and (108) one
finds:

Btr

B2
≈ 1

4
√

3

(
ωpe

ωce

)
= 4.6 × 102 √ne1 B−1

1 (µG). (113)

Here ωce = eB1/mec is the upstream value of the electron gy-
rofrequency, where we used B2 = 4γrel Bt1 ≈ 2γrel B1 for the
strength of the shock-compressed magnetic field. This is the lim-
iting case of a perpendicular shock where the background mag-
netic field is along the shock surface, and is compressed most
strongly.

The vector n̂ will diffuse with a diffusion coefficient Di j ≡
〈∆ni∆n j〉/2∆s, where the angular brackets denote an ensemble
average. In view of relation (113) the protons may be considered
unmagnetized: the correlation length of the Weibel turbulence is
much smaller than the proton gyration radius. A standard quasi-
linear calculation, which uses the unperturbed (ballistic) particle
orbits, leads to a diffusion coefficient of the form

Di j =
πe2

E2

∫
d3 k

(2π)3

(
n̂n̂ :

〈
Ã Ã∗

〉
(k)

)
kik j δ(k · n̂) . (114)

The dyadic correlation tensor
〈

ÃÃ∗
〉

in this expression is the
correlation tensor of the Fourier components of the vector po-
tential Ã. The Fourier components of the vector potential and
of the turbulent magnetic field are related in the usual manner:
B̃ = ik × Ã. The correlation tensor follows from the random
phase approximation (e.g. Davidson 1972, p. 135) for the en-
semble average of the turbulent fields:〈

Ã(k) Ã∗(k′)
〉
=

〈
Ã Ã∗

〉
(k)(2π)3 δ3(k + k′) . (115)

Beam protons initially have n̂ ≈ ẑ. In that case the only non-
vanishing components of the diffusion tensor Di j are Dxx =
Dyy = D0, if we assume that the magnetic turbulence is axisym-
metric around the beam direction. The scalar diffusion coeffi-
cient D0 equals

D0 =
πe2

2E2

∫ ∞

0

dk⊥k⊥
(2π)2

〈
Ã Ã∗

〉
zz

(k⊥ , k‖ = 0) k2
⊥ . (116)

Here k⊥ =
√

k2
x + k2

y is the wave vector component perpendic-

ular to the beam direction, and k‖ = kz the component along
the beam direction. The trivial integration over k‖ has been per-
formed, using δ(k · n̂) = δ(k‖).

So far, we have considered the Weibel instability in the limit
k‖ = 0. In that case the quasilinear diffusion approximation for
the direction of flight n̂ does not apply, as the unperturbed orbit
never leaves a single current filament. Fortunately, the assump-
tion k‖ = 0 can be relaxed, as the Weibel instability persists for
k‖ � 0. The theory in this case is rather complicated; see for in-
stance the discussion in Bret et al. (2005). An approximate cal-
culation (not reproduced here) shows that the dispersion relation

for |k‖| � k⊥ leads to a dimensionless growth rate for κ � κmax
(compare Eq. (7)):

σ2 ≈ ηκ2 sin2 θ

κ2
s + κ2

− 3κ2 cos2 θ. (117)

Here sin θ = k⊥/k, cos θ = k‖/k. Formally this approximation is
valid for η � 1, but it remains qualitatively correct for η ≤ 1.
The growth rate will be reduced well below the value for θ =
π/2, sin θ = 1 when tan2 θ � 3 (κ2 + κ2

s )/η ∼ 6/η, where the
last equality is for κ ≈ κs � 1. For the electron-driven instability
one has (at least initially) ηe ≈ 1, and the instability will act
with a growth rate close to the maximum value for wavevectors
inclined at an angle θ > 68 degrees with the beam direction. This
corresponds with | cos θ| ≤ 0.37 ≡ cos θc.

Recently, Tautz & Lerche (2007) have considered the case
with k‖ � 0 in more detail. They show that in the asymmetric
case (∆ � 1

2 ) the character of the Weibel instability changes in
the sense that it is no longer aperiodic: it has Re(ω) � 0. They
assume that the wave are weakly propagating, with |Re(ω)| �
Im(ω) = σ̃, which is a good approximation for ultra-relativistic
beams. We do not consider these effects here, except to point
out that their (and our) analysis excludes the beam-resonant case
where ω = ±k‖Vb + δω with |δω| � |k‖|Vb. This case is treated
by Akhiezer et al. (1975), Ch. 6.4.2.

A simple model for the turbulent power spectrum of the
Weibel-generated magnetic field is〈
|B̃|2

〉
(k) = k2

⊥
〈

Ã Ã∗
〉

zz
(k⊥ , k‖)

= (2π)2 B(k⊥)
L‖ e−k2

‖ L
2
‖ /2

√
2πk⊥

· (118)

Here L‖ is the correlation length of the magnetic turbulence in
the beam direction, corresponding to a bandwidth ∆|k‖| = 1/L‖.
The case k‖ = 0 corresponds with the limit L‖ −→ ∞. With
this definition the rms amplitude of the turbulent magnetic field
follows from:

B2
rms =

∫
dk‖dk⊥k⊥

(2π)2

〈
|B̃|2

〉
(k⊥ , k‖)

=

∫ ∞

0
dk⊥ B(k⊥). (119)

The power spectrum B(k⊥) can be calculated by noting that the
trapping field Btr(k) (see Eq. (98)) at some wave number k⊥ is re-
lated to the magnetic power spectrum B(k⊥) by

(
Btr(k � k⊥)

)2 ≈
k⊥ B(k⊥). This yields for k⊥ � kmax:

B(k⊥) =
B2

0

ks

k⊥/ks(
1 + (k⊥/ks)2

)2
· (120)

Here we define

B0 =
4πeγbne

ks
(121)

with ne the density of the electron beam and ks = κs(ω̃bg)e/c
the screening wave number. It is easy to show that this spectrum
has B2

rms = B2
0/2. This spectrum falls of as B(k⊥) ∝ k−3⊥ for

k⊥ � ks, so the restriction k⊥ < kmax is not very important for
the evaluation of integrals over the power spectrum as long as
ks � kmax.
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Using this magnetic power spectrum in expression (116) for
the scalar diffusion coefficient one finds:

D0 =

√
πe2L‖

2
√

2 E2

∫ ∞

0
dk⊥ B(k⊥) =

√
π

4
√

2

(eB0

E

)2

L‖. (122)

One sees from this expression that L‖ = 1/∆|k‖| plays the role
of a correlation length. It also shows, as argued above, that the
limit k‖ = 0, L‖ = ∞ is formally ill-defined.

If we define a gyroradius rg = E/eB0 one has:

D0 =

√
π

4
√

2

L‖
r2

g
· (123)

Lyubarsky & Eichler (2006) arrive at a similar expression, in
effect putting L‖ ∼ 1/ks and neglecting the numerical constant.
In view of our discussion above of the behavior of the Weibel
instability for θ < π/2 the obvious choice for L‖ is

L‖ ∼ 1
ks cos θc

≈ 2.65
ks
· (124)

Here we use the fact that the largest contribution to the integral
over the power spectrum comes from the region k⊥ � ks. This
gives

D0 = 0.83

⎛⎜⎜⎜⎜⎝rsk

r2
g

⎞⎟⎟⎟⎟⎠ , (125)

with rsk = 1/ks the effective skin depth of the hot electron back-
ground, which according to (108) equals

rsk � c
(ω̃bg)e

=
1

2
√

3

c
ωpe
· (126)

As protons are scattered by the random fields the components of
the direction of flight satisfy (cf. Achterberg et al. 2003)〈
n2

x

〉
=

〈
n2
y

〉
≈ 2D0s ,

〈
n2

z

〉
≈ 1 − 4D0s, (127)

where the brackets indicate an average over the distribution. This
shows that the thermalization length is

�th =
1

6D0
� 0.2

⎛⎜⎜⎜⎜⎜⎝ r2
g(E)

rsk

⎞⎟⎟⎟⎟⎟⎠ , (128)

the distance where according to (127) one has
〈
n2

x

〉
=

〈
n2
y

〉
=〈

n2
z

〉
= 1/3, corresponding to an isotropic distribution of mo-

menta. The more precise theory in Achterberg et al. (2003)
shows that �th is indeed the relevant length scale: the initial corre-
lation of the momentum directions of the beam particles decays
due to scattering as exp(−6D0s) with distance s.

Using (121) with ks � (ω̃bg)e/c � 2
√

3 ωpe/c (as κs � 1
in the electron-driven instability) one has for beam protons with
energy E � γbmpc2:

rg � mpc2ks

4πe2np
=

c (ω̃bg)e

(ω̂pb)2
p
� 2
√

3

(
mp

me

)
c
ωpe
· (129)

Here np is the density of beam protons, which equals ne beacause
of quasi-neutrality in the upstream flow, and we have used rela-
tion (108). This gives the proton thermalization length in terms
of the upstream electron skin depth c/ωpe:

�
p
th = 8.3

(
mp

me

)2 c
ωpe
� 1.5 × 1013n−1/2

e cm. (130)

Apart from the numerical factor ∼8, this is the same result as
derived by Lyubarsky & Eichler (2006).

7. Conclusions

In this paper we have presented two detailed nonlinear cal-
culations of the saturation of the Weibel instability driven by
ultra-relativistic beams. The first uses a relativistic fluid approx-
imation to calculate the response of the beam particles, while
the second uses kinetic plasma theory for the beam plasma.
Although the physics of the two calculations is subtly differ-
ent, pertaining respectively to the case of a single dominant
mode where wave breaking occurs and to fake diffusion in a
broad-band collection of waves due to the quiver motion that
“heats” the beam plasma in the plane perpendicular to the beam
direction, these calculations both confirm that the Weibel insta-
bility due to relativistic beams will end the phase of exponen-
tial growth when particle trapping occurs, i.e. when the ampli-
tude of the quiver motion, driven by the Lorentz force of the
wave-generated magnetic field, becomes comparable with the
wavelength of the unstable modes. A similar conclusion was
reached by Davidson et al. (1972) for the Weibel instability in
a non-relativistic plasma with a temperature anisotropy, by Yang
et al. (1994) for the Weibel instability in a magnetized electron-
positron plasma, and our results also confirm the estimate of
Gruzinov (2001) (see also: Wiersma & Achterberg 2004) for this
particular case. This means that the typical field strength at the
end of the quasi-exponential phase of the instability is indepen-
dent of the mass of the beam particles in a hydrogen plasma.
The fast electron-driven Weibel instability creates a field that is
approximately two orders of magnitude larger than the shock-
compressed magnetic field, see Eq. (113). Its value is set by the
skin depth (inertial length) c/ωpe and density of the upstream
electron plasma, B ∼ πene(c/ωpe), independent of the shock
Lorentz factor. The slower proton-driven instability is impeded
by the presence of the now thermalized post-shock electron gas.
The trapping argument shows that the typical field strength asso-
ciated with this instability is of the same order as the field gener-
ated by the electron-driven instability: once the rapidly growing
electron-driven instability has stabilized and the electron beams
have thermalized, the electron screening currents result in a the
trapping field that is independent of the mass of the beam parti-
cles driving the instability.

We have also considered the subsequent development of the
magnetic fields generated by the Weibel instability. We point out
that the merging of current filaments (as proposed by Medvedev
et al. 2005) and the associated algebraic growth of the mag-
netic field associated with these filaments, is slowed down drasti-
cally by the effects of screening currents once the the transverse
size of the filaments and the filament-filament separation dis-
tance becomes comparable with, or larger than with the electron
skin depth. The coalescence time increases exponentially as the
merged filaments are further and further apart. This limits any
further field amplification (or decay) on scales larger than the
skin depth. On smaller scales, the merging is essentially unim-
peded, but the resulting magnetic field on some scale r has an
amplitude comparable to the trapping field left behind by the
Weibel instability at that scale. Therefore, the magnetic field
strength never grows much beyond the trapping field.

Other models of filament evolution (e.g. Kato 2005) stress
the fact that particle orbits inside filaments become chaotic once
the Alfvén limit is reached. This would lead to thermalization of
the beam kinetic energy. Our calculations indicate that this is in-
deed the case for the electron-driven instability, leading to rapid
thermalization of the electron beams, but will almost certainly
never happen for the much heavier ions. Screening currents in
the already thermalized electron plasma prevent the magnetic
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field from rapidly growing to a strength that corresponds to the
Alfvén limit for ions.

We have used our estimates for the post-shok magnetic field
created by the electron beams to calculate the effect of the mag-
netic turbulence on the ion beams that, in contrast to what hap-
pens to the electrons, are not directly thermalized by the Weibel
instability. Ion thermalization happens indirectly, not through
phase-mixing of the quiver motion, but by the slow scattering
on the turbulent magnetic fields left by the Weibel instability.
Our calculation of the thermalization length confirms the basic
idea of Lyubarsky & Eichler (2006), albeit with a thermalization
length that is one order of magnitude larger than their value.

We have not adressed in this paper the long-term survival of
these filamentary magnetic fields in the post-shock flow. Recent
numerical simulations for relativistic shocks in an electron-
positron plasma (Chang et al. 2007) with a sufficiently large sim-
ulation box indicate that the magnetic field decays as B ∼ t−1

sufficiently far (hundreds of skin depths) behind the shock. The
B(t) ∝ t−1 behavior was predicted by Gruzinov (2001).

Appendix A: The coalescence of partially screened
current filaments

The hot background plasma that one expects to be present in
shock transition layers will influence the coalescence process
because it supports screening currents, which diminish both the
total current associated with a filament, and the resulting mag-
netic field outside the filament. The latter determines the strength
of the force between adjacent current filaments. In this section
we give an approximate calculation of the influence of screen-
ing currents on the merger rate, and show how this modifies
the results of the simple merger model employed above for
rm > c/ω̃bg.

The magnitude of the screening current in the z-direction
(along the beams) that is carried by the background can be read-
ily calculated from the z-component of the equation of motion
for species s in the hot background. This equation is formally
identical to the corresponding Eq. (29) for the beam particles.
The only difference is that the effective inertia of a hot plasma
is mshs with hs the enthalpy per unit rest energy, cf. Landau &
Lifschitz (1959). One has:

mshs
d (γsVsz)

dt
= qs

(
E +

V × B
c

)
z

· (A.1)

In a cylindrically symmetric situation around a straight filament
where the axis coincides with the z-axis, with B = B(r) φ̂ and
∂/∂φ = 0, one has B(r) = −∂A/∂r, (V × B)z = VrB(r), Ez =
−(1/c)(∂A/∂t) and d/dt = ∂/∂t + Vr (∂/∂r). Here A = A(r) ẑ
is the vector potential, r is the cylindrical radius centered on the
filament axis and φ is the azimuthal angle around the filament.
In that case Eq. (A.1) can be integrated to

mshsγsVsz +
qsA

c
= constant ≡ Psz, (A.2)

which is the equivalent of relation (33) for a species belonging
to the background plasma. For a growing field the integration
constant Psz can be neglected. Solving for Vsz with Psz = 0 one

finds the screening current due to the background:

Jbg =
∑

s

qsnsVsz ẑ

= −
∑

s

q2
s ns

mshsc
A√

1 +

(
qsA

mshsc2

)2
· (A.3)

In what follows we will neglect the nonlinearity in this relation
due to the relativistic mass correction, replacing (A.3) by its non-
relativistic equivalent

Jbg ≈ −
∑

s

q2
s ns

mshsc
A = −

ω̃2
bg

4πc
A. (A.4)

This is allowed if Js � nsqsc, which is formally satisfied if
the beam density satisfies nb � ns, or if the beam-current fil-
aments have a size r0 � c/ω̃bg so that the screening currents
remain small. For the fields created by the Weibel instability this
last condition is (marginally) satisfied. Nevertheless, our results
should remain qualitatively valid even when Js ≈ nsqsc.

We note in passing that relation (A.3) implies that Js < nsqsc,
a limit which is physically obvious. Therefore, in a situation
where the beam density is much larger than the density of the
species in the background plasma so that nb � ns for all species,
screening currents are always much smaller than the maximum
current density that can be carried by the beam, Jb = nbqbc. In
that case screening can be much less effective. In what follows
we will assume that (at most) nb ≈ ns, and that this particular
situation does not occur.

In a quasi-steady state, where the fields only depend on the
distance r from the filament axis and A = A(r) ẑ, Maxwell’s
equation for the vector potential ∇ × (∇ × A) = (4π/c) J (e.g.
Jackson 1975, Ch. 6.4) reads, with approximation (A.4),

1
r
∂

∂r

(
r
∂A
∂r

)
−
ω̃2

bg

c2
A = −4π

c
Jb. (A.5)

Here Jb is the current density due to the beam particles in a cur-
rent filament. The screening current of the background plasma
corresponds to the second term on the lefthand side of the
equation.

Let us calculate the magnetic field due to a single cylindrical
current filament embedded in a background plasma with a uni-
form background density ns and pressure Ps. This last assump-
tion is a reasonable approximation as long as the radial gradients
in pressure and density induced by the radial magnetic pinching
force remain small. This will be the case if B2/8π � Ps. In the
relativistic case this condition is met when the field amplitude
is much less than the equipartition field: B � Be. As a first ap-
proximation, the current density carried by the beam is taken to
be constant over the cross section of the filament of radius r0,
Jb = J0 for r ≤ r0, and vanishes outside the filament: Jb = 0
for r > r0.
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Equation (A.5) is readily solved for constant ω̃bg in terms of
the modified Bessel functions of integer order, In and Kn:

A(r) =
4πJ0

ck2
s
×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − ksr0 K1(ksr0)I0(ksr) for r ≤ r0;

ksr0 I1(ksr0)K0(ksr) for r > r0.
(A.6)

Here ks ≡ ω̃bg/c is the inverse skin depth. The magnetic field as
a function of cylindrical radius r follows from B(r) = −∂A/∂r:

B(r) = 2B0 ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K1(ksr0)I1(ksr) for r ≤ r0;

I1(ksr0)K1(ksr) for r > r0.
(A.7)

Here B0 = 2I0/cr0 = 2πr0J0/c is the field at the outer radius r0
of an unscreened current filament with a total beam current I0 =
πr2

0 J0. The total current contained within a cylindrical radius r0
equals

Itot =
cr0 B(r0)

2
= 2I0 I1(ksr0)K1(ksr0). (A.8)

For a large current filament, with a radius such that ksr0 � 1,
Itot decays with increasing filament radius as

Itot ≈ I0/ksr0, (A.9)

while the magnetic field for r > r0 falls off rapidly:

B(r) ≈ B0
e−ks(r−r0)

ks
√

rr0
· (A.10)

A.1. Equation of motion for two attracting screened filaments

Now consider two identical, straight and parallel current fila-
ments of radius r0, with their axes parallel to the z-axis at a dis-
tance d > 2r0. This is the situation at the end of the Weibel
instability with kz = 0 that we have described in the previous
sections, where the instability has led to a filamentary distribu-
tion of currents. This is the situation seen in various numerical
simulations.

As an admittedly crude model let us assume that we can de-
scribe the interaction between the two current filaments as the in-
teraction between two current wires, with a total current equal to
the partially screened current Itot of Eq. (A.8), and with a mag-
netic field outside the filament given by Eq. (A.7). The attractive
interaction force per unit length between the current wires equals
dF/d� = −ItotB(d)/c, which is

dF
d�
= − 8I2

0

c2r0
I2
1(ksr0)K1(ksr0)K1(ksd). (A.11)

For ksr0 � 1 and ksd � 1 we can use the expansion of the
modified Bessel functions for a small argument: I1(ξ) ≈ ξ/2 and
K1(ξ) ≈ 1/ξ. In that case (A.11) reduces to the well-known result
dF/d� = −2I2

0/c
2d.

The mass per unit length of a current filament is approxi-
mately equal to

µ ≡ dm
d�
≈ πr2

0 (nemehe + γbmbnb) . (A.12)

Here we have used that the effective mass of the hot electron
background equals meff ≈ mehe, and that the effective mass of

the beam particles for motions perpendicular to the beam di-
rection is γbmb. This assumes that the beam currents and the
hot electron background, which provides the screening current,
move together inside the filament.

The equation of motion for a filament is

µ
d2d
dt2
= − 8I2

0

c2r0
I2
1 (ksr0)K1(ksr0)K1(ksd). (A.13)

The modified Bessel function K0 satisfies dK0(ξ)/dξ = −K1(ξ).
This means that the force on the righthand side of Eq. (A.13) can
be written as −∂Vint/∂d, where the interaction potential Vint(d) is
given by:

Vint(d) = − 8I2
0

ksc2r0
I2
1(ksr0)K1(ksr0)K0(ksd). (A.14)

A.2. The coalescence time scale

If the filaments start from rest at an initial distance di, the equa-
tion of motion has an energy integral:

µ

2

(
dd
dt

)2

+ Vint(d) = Vint(di). (A.15)

The coalescence time now follows as

tcoal(di) =
∫ di

2r0

dr√
2
µ

[Vint(di) − Vint(r) ]

· (A.16)

Here we end the coalescence phase when the filaments touch so
that d = 2r0. Defining dimensionless variables,

� ≡ ksd , �0 ≡ ksr0, (A.17)

one finds

tcoal(�i) = T0

∫ �i

2�0

d�√
K0(�) − K0(�i)

, (A.18)

with a characteristic time T0 given by

T0 ≡
⎛⎜⎜⎜⎜⎝16I2

0ks

µc2 r0

⎞⎟⎟⎟⎟⎠−1/2 (
I2
1(�0)K1(�0)

)1/2

=
1

2ω̂pb

(
c

Vb

) (
1 +

nemehe

nbmbγb

)1/2 (
B0

Bb

)−1

ψ(�0). (A.19)

Here we define

ψ(�0) ≡ 1/
√
�0 I2

1(�0)K1(�0), (A.20)

normalize the beam current with the maximum current Ib =
πr2

0qbnbc and useI0/Ib = B0/Bb. Note that for current filaments
left by the Weibel instability the trapping argument predicts that
B0 ≈ Bb and that Vb � c for the relativistic beams we are consid-
ering. In that case (for typical values of the parameters) one has
T0 � 1/ω̂pb for r0 ∼ c/ω̃bg, and the time scale of the merging
process and the growth time of the preceding Weibel instability,
tW ∼ 1/σ̃ � 1/ω̂pb, are of the same order.
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In what follows we will neglect the factor√
1 + nemehe/nbγbmb, which is always of order unity in

our applications. Assuming �0 � 1 and �i � 1 we can use the
asymptotic expansion of the modified Bessel functions for large
arguments, In(�) ≈ e�/

√
2π� and Kn(�) ≈ √π/2� e−�. In

that case

ψ(�0) ≈ (8π�0)1/4 e−�0/2, (A.21)

and the integral appearing in (A.18) can be approximated by

(
2
π

)1/4 ∫ �i

2�0

d��1/4 e�/2√
1 − (�/�i)1/2 e�−�i

≡ K . (A.22)

In its present form the integral cannot be evaluated analytically.
However, for 2�0 � 1 an excellent approximation can be de-
rived. To that end we define a new variable,

ζ ≡
(
�

�i

)1/4

e(�−�i)/2. (A.23)

With a little algebra it is easy to show that the integral (A.22)
can be rewritten as

K = 2

(
2�i

π

)1/4

e�i/2
∫ 1

ζ0

dζ√
1 − ζ2

[
1 + 1/2�(ζ)

] · (A.24)

For �� 1 we can safely neglect 1/2� in the factor (1+ 1/2�),
and the integral becomes

K ≈ 2

(
2�i

π

)1/4

e�i/2
(
π

2
− sin−1(ζ0)

)
. (A.25)

Together with (A.18), (A.19) and (A.21) this gives the coales-
cence time for ζ0 = (2�0/�i)1/4 exp[(2�0 −�i)/2 ] � 1:

tcoal ≈ 2π
ω̂pb

(
B0

Bb

)−1 (
c

Vb

)
(�0�i)

1/4 e(�i−2�0)/2. (A.26)

For�i−�0 ≥ �0 � 1 the coalescence time grows exponentially
with increasing distance between the two filaments.
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