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ABSTRACT

Context. This is the third in a series of papers that deal with angular momentum transport by internal gravity waves. We concentrate
on the waves excited by core convection in a 3 M�, Pop I main sequence star.
Aims. Here, we want to examine the role of the Coriolis acceleration in the equations of motion that describe the behavior of waves
and to evaluate its impact on angular momentum transport.
Methods. We use the so-called traditional approximation of geophysics, which allows variable separation in radial and horizontal
components. In the presence of rotation, the horizontal structure is described by Hough functions instead of spherical harmonics.
Results. The Coriolis acceleration has two main effects on waves. It transforms pure gravity waves into gravito-inertial waves that
have a larger amplitude closer to the equator, and it introduces new waves whose restoring force is mainly the conservation of vorticity.
Conclusions. Taking the Coriolis acceleration into account changes the subtle balance between prograde and retrograde waves in non-
rotating stars. It also introduces new types of waves that are either purely prograde or retrograde. We show in this paper where the
local deposition of angular momentum by such waves is important.
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1. Introduction

Internal gravity waves (IGWs) have received growing atten-
tion in the past 15 years as a source of angular momentum re-
distribution, after the suggestion by various authors that they
could be responsible for the Sun’s quasi-flat rotation profile
(Schatzman 1993; Zahn et al. 1997; Kumar & Quataert 1997).
Charbonnel & Talon (2005) convincingly show that IGWs can
play a major role in carrying angular momentum from the
rapidly rotating core, left after the Sun’s original contraction,
to the surface convection zone that is continuously spun down
by magnetic braking. In self-consistent evolutionary models that
also takes into account the transport of angular momentum and
chemical species by meridional circulation and shear turbulence,
they also showed that the associated destruction of lithium is
compatible with the destruction measured in the Sun. In the case
of F dwarfs, Talon & Charbonnel (2003) show that the combi-
nation of surface breaking for stars with an effective tempera-
ture Teff <∼ 6900 K and the appearance of IGWs at a temperature
Teff <∼ 6600 K when the surface convection zone is thick enough
can together explain the existence of the so-called lithium dip
discovered by Wallerstein et al. (1965).

Now the question arises as to whether IGWs generated by
a convection core also play a role in the evolution of mas-
sive stars1. Indeed, rotational mixing is now admittedly a major

1 By massive stars we mean objects for which central hydrogen burn-
ing occurs in a convection core, i.e., stars with Mini >∼ 2.2 M� at solar
metallicity.

ingredient in such objects (see e.g. Maeder & Meynet 2000;
Heger et al. 2000), and the existence of another major source
of angular momentum redistribution within the star must be ex-
amined.

However, as a general rule, massive stars are fast rotators.
Here, fast must be understood in comparison with the wave
frequencies that dominate angular momentum redistribution in
stars; that is, σ ≈ 1 µHz (Talon & Charbonnel 2005). Our goal
in this paper is to establish how wave properties are altered by ro-
tation in preparation for full calculations of angular momentum
redistribution in massive stars. Section 2 is devoted to examin-
ing the (horizontal) eigenfunctions in the presence of rotation,
while Sect. 3 presents the results on angular momentum trans-
port itself.

2. Eigenfunctions in rotating stars
2.1. The traditional approximation

In the study of internal waves in the presence of rotation, two
effects should be considered: the star’s distortion caused by the
centrifugal force, and the modification to the momentum equa-
tion by the Coriolis acceleration. In 1D modeling, the stellar
distortion can be accounted for by calculating an average cen-
trifugal force that locally reduces gravity. This effect is quite im-
portant at the stellar surface where the ratio r3Ω2/GMr is at its
maximum, and it modifies the location of the star in the HR di-
agram (see e.g. the ZAMS position of stars of various veloci-
ties in Fig. 5 of Talon et al. 1997). It does however have a mi-
nor impact on stellar evolution, since it modifies the physical
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conditions near the stellar core only slightly (see e.g. Maeder
& Meynet 2000). In this work, we will neglect this term. The
Coriolis acceleration, on the other hand, has a direct effect on
the oscillations and modifies the momentum equations for the
displacement ξ, which become

−σ2ξr − 2iσΩ sin θ ξφ︸����������︷︷����������︸ = −1
ρ

∂

∂r
P′ − ρ

′

ρ
g (1)

−σ2ξθ − 2iσΩ cos θ ξφ = − 1
ρr

∂

∂θ
P′ (2)

−σ2ξφ + iσ

(
r

dΩ
dr
+ 2Ω

)
sin θ ξr︸�����������������������︷︷�����������������������︸+2iσΩ cos θ ξθ =

− 1
ρr sin θ

∂

∂φ
P′ (3)

where σ is the wave frequency, and other symbols have their
usual meaning. Here, we have neglected variations in the gravi-
tational potential (Φ′ = 0, Cowling 1941), which is particularly
justified for gravity waves that have mostly horizontal displace-
ments. This equation was given in Talon (1997), and it differs
from the one used by other authors (see below) only by the
derivative in Ω.

To proceed further, we make a simplification in our system
of Eqs. (1)–(3) and neglect the horizontal component of the ro-
tation vector Ωh = Ω sin θ. In the case of Eq. (1), this is justified
by comparing this term with the vertical gradient of the pres-
sure perturbation. In Eq. (3), we invoke the dispersion relation
of gravito-inertial waves (see e.g. Unno et al. 1989)

σ2 =
N2k2

h + (2Ω · k)2

k2
, (4)

which in the case σ2, (2Ω)2 � N2 (the condition for the approx-
imation to be valid), yields

k2
r � k2

h. (5)

This is similar to the result obtained for pure gravity waves.
Since these low-frequency oscillations are quasi-incompressible,
Eq. (5) is equivalent to

ξ2
h � ξ2

r , (6)

whence the neglect of the second term (∝ξr) of Eq. (3). This is
known as the traditional approximation, which is well known in
geophysics (see e.g. Eckart 1960), and it was used for the first
time in an astrophysical context by Berthomieu et al. (1978).

In this case, wave eigenfunctions can be separated into ra-
dial and horizontal components. For the radial displacement, for
example, one gets2

ξr (r, θ, φ, t) = ξr (r)Θ (θ) eimφeiσt. (7)

The longitudinal eigenfunction is no longer given by an associate
Legendre polynomial, as in the non rotating limit, but obeys in-
stead a new differential eigenvalue problem of the form

Lν [Θ (θ)] = −ΛΘ (θ) , (8)

2 Note that here we are using the convention of negative m for pro-
grade modes, contrary to what has been used in previous papers.

Fig. 1. Eigenvalues of Laplace’s tidal equation when rotation is slowly
increased. Illustrated modes correspond to the � = 6 non-rotating case.

where

Lν = d
dx

(
1 − x2

1 − ν2 x2

d
dx

)
(9)

− 1
1 − ν2x2

(
m2

1 − x2
+ mν

1 + ν2x2

1 − ν2x2

)
·

In this equation, we use the rotation parameter

ν ≡ 2Ω
σ

(10)

and define x = cos θ. The azimuthal order takes integer val-
ues m = 0,±1,±2, . . . This equation, known as Laplace’s
tidal equation, was originally derived in the context of ter-
restrial tides. It forms a Sturm-Liouville problem, ensuring
the existence of a base of orthogonal eigenfunctions. These
were described in the geophysical context by Hough (1898),
and the first numerical solution was calculated by Longuet-
Higgins (1968). More recently, they have been examined in the
context of neutron stars (Bildsten et al. 1996) and in studies of
low-frequency oscillations in rotating stars (Lee & Saio 1997;
Daszyńska-Daszkiewicz et al. 2007, and references therein). We
wrote a relaxation code to solve this equation numerically (see
Press et al. 1992). A similar procedure is also described in Lee
& Saio (1997).

The Hough function Θkm (ν, cos θ) is associated with the
eigenvalue Λkm (ν). Following Lee & Saio (1997), the order
k = 0,±1,±2, . . ., which does not explicitly appear in Eq. (9), is
such that Λk+1,m (ν) > Λkm (ν). In the ν = 0 limit, Eq. (8) is iden-
tical to Legendre’s equation with k = �−|m| andΛkm = � (� + 1).
Slowly increasing ν, we first lift the degeneracy inΛ (see Fig. 1).
Increasing rotation confines eigenmodes toward the stellar equa-
tor (see Fig. 2).

In the case of more rapid rotation (i.e., σ <∼ 2Ω), mode or-
ganization becomes much less trivial. First, new solutions ap-
pear when ν > 1 and have negative eigenvalues; thus they are
only evanescent. However, as ν increases, so do their eigenval-
ues, which become positive for the retrograde modes (and so the
waves become propagative) when ν = (m − k) (m − k − 1) /m
(cf. Lee & Saio 1997). Second, a large fraction of the modes
that exist in the absence of rotation see their eigenvalue grow
tremendously with rotation (see Fig. 3). Townsend (2003) has
introduced a new classification for modes based on the behavior
of their eigenvalues in rapid rotation:

– Gravito-inertial waves: they are similar to normal gravity
waves, but modified by the Coriolis acceleration. They are
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Fig. 2. Top: spherical harmonic Ym
� with � = 5, m = +2. Bottom: cor-

responding Hough function Θkmeimφ with k = +3, m = +2 and ν ≈ 2.

assigned indexes s = 1, 2, 3, . . ., such that Λs+1,m (ν) >
Λsm (ν).

– Rossby waves: these are purely retrograde waves, which ex-
ist only in the case of rapid rotation. They arise from the
conservation of specific vorticity, combined with the effect
of curvature. They also have indexes s = 1, 2, 3, . . . but or-
dered such that Λs+1,m (ν) < Λsm (ν). The s = 1 modes are
retrograde sectoral waves.

– Yanai waves3: they behave like a mixture of gravity and
Rossby waves. The m ≤ 0 modes exist in the absence of ro-
tation. The m > 0 modes appear when ν = m + 1 with small
eigenvalues, and their horizontal eigenfunctions are then ex-
actly Θ (ν = m + 1) = Pm

m+1. When they appear and have
small eigenvalues, they behave mostly like Rossby waves;
m ≤ 0 waves and m > 0 waves with large eigenvalues behave
rather like gravity waves. We assign to them index s = 0.

– Kelvin waves: like Rossby waves, they arise from the conser-
vation of specific vorticity combined this time with the strat-
ification of the medium. They are purely prograde waves,
whose characteristics change little with rotation. This occurs
because their displacement is very small in the θ direction.
They correspond to the m < 0 sectoral modes. We assign to
them index s = −1.

3 They have been named after their discoverer in the Earth’s atmo-
sphere, Yanai & Maruyama (1966).

Fig. 3. Eigenvalues Λ of Laplace’s tidal equation for rapid rotation
(top) and equivalent eigenvalues λ for the horizontal Laplacian of
Hough functions (bottom). Mode classification: black: gravito-inertial
waves, blue: Yanai waves, brown: Kelvin waves, green: Rossby waves.
Continuous lines correspond to numerical solutions and dashed lines to
asymptotic solutions (see Sect. 2.3).

Without rotation, the correspondence between various indexes
follows

s = � − m + 1 for m > 0 (11)

and

s = � + m − 1 for m ≤ 0 (12)

and is illustrated in Fig. 4.

2.2. Horizontal displacement

Pressure (P′) and density (ρ′) perturbations have a horizontal
structure identical to that of the radial displacement (Eq. (7)).
This is, however, not the case for the two components of the
horizontal displacement, which take the form

ξθ (r, θ, φ, t) =
1

rσ2

P′(r)
ρ
H θ (ν, cos θ) eimφeiσt (13)

ξφ (r, θ, φ, t) =
i

rσ2

P′(r)
ρ
Hφ (ν, cos θ) eimφeiσt (14)

with

H θ
sm (ν, cos θ) =

1(
1 − ν2 x2

) √
1 − x2

×
[
−
(
1 − x2

) d
dx
+ mνx

]
Θsm (ν, cos θ) (15)
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Fig. 4. Correspondence of index s with index � in the absence of rotation. Modes in the dashed box (retrograde Yanai waves) do not exist in the
absence of rotation.

Fig. 5. Hough functions Θsm,Hθ
sm , and Hφ

sm . Normalization is given by dΘ/d cos θ = 1 at cos θ = 0. Left: s = 4, m = 2, and ν = 0 (� = 5). In this
case, Θsm,Hθ

sm, andHφ
sm are given by Pm

� , dPm
� /dθ, and mPm

� / sin θ respectively. Right: s = 4, m = 2, and ν ≈ 2.

Hφ
sm (ν, cos θ) =

1(
1 − ν2 x2

) √
1 − x2

×
[
−νx

(
1 − x2

) d
dx
+ m

]
Θsm (ν, cos θ) (16)

where again x = cos θ. An example of these functions is shown
in Fig. 5. Note thatΘsm has two more zeros compared to the non-
rotating case. Furthermore, H θ

sm and Hφ
sm are no longer given

by simple expressions and have zeros that do not coincide with
those of Θsm.

2.3. Asymptotic solution

When considering the impact of IGWs on the distribution of
angular momentum within a star, low-frequency waves (with
σ ≈ 1 µHz) play a dominant role (this is discussed at length
in Talon & Charbonnel 2005). In the case of massive stars that

are generally rapid rotators (withΩ ≈ 20 µHz), we are within the
limit ν � 1, where asymptotic solutions to Laplace’s equation
exist (Townsend 2003).

To get these solutions, Townsend defines

Θ̂ (cos θ) = sin θH θ (cos θ) (17)

Θ̃ (cos θ) = − sin θHφ (cos θ) . (18)

Then, eliminating Θ̃, Laplace’s equation is equivalent to two
coupled first-order equations[(

1 − x2
) d

dx
− mνx

]
Θ =

(
ν2x2 − 1

)
Θ̂ (19)

[(
1 − x2

) d
dx
+ mνx

]
Θ̂ =

[
Λ

(
1 − x2

)
− m2

]
Θ. (20)
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Further simplifications to these equations can be made. For
gravito-inertial waves and Yanai waves, Λ � m2, while Rossby
waves have Λ � m2 (see Fig. 3). When ν � 1, these waves
are very confined to the equator, which allows the assumption(
1 − x2

)
≈ 1. For Kelvin waves, one has Λ ≈ m2, leading to

|Θ| � |Θ̂|. Townsend (2003) then finds approximate solutions
to the Hough functions in the form of Hermite polynomials. We
refer the reader to his paper for their derivation. Let us note here
that, except for Rossby waves that are less confined to the equa-
tor, a direct comparison with the numerical solution for the com-
plete version of Laplace’s equation shows that the approxima-
tion is valid for ν >∼ 2. For Rossby waves, this approximation
becomes valid at much higher values on the order of ν >∼ 20 (see
Fig. 3).

In this asymptotic limit, eigenvalues take the form

Λsm (ν) =

[
1
2
ν (2s + 1) +

1
2

√
ν2 (2s + 1)2 − 4

(
mν − m2

)]2

(21)

for gravito-inertial waves (s = 1, 2, . . .),

Λsm (ν) = (ν − m)2 (22)

for Yanai waves (s = 0),

Λsm (ν) = m2 2mν
2mν + 1

(23)

for Kelvin waves (s = −1), and

Λsm (ν) =

[
1
2
ν (2s + 1) − 1

2

√
ν2 (2s + 1)2 − 4

(
mν − m2

)]2

(24)

for Rossby waves (s = 1, 2, . . .). These asymptotic values are
shown in Fig. 3 and are given for ν > 2 for gravito-inertial waves,
Yanai waves, and Kelvin waves and for ν > 20 for Rossby waves.
As ν increases, so does the agreement between the exact and
asymptotic value of Λ.

For gravito-inertial, Yanai and Rossby waves, eigenfunctions
are given by

Θ (ζ) =

(√
Λν

)1/2

Λ − m2

×
[
s

(
m√
Λ
+ 1

)
Hs−1 (ζ) +

1
2

(
m√
Λ
− 1

)
Hs+1 (ζ)

]
e−ζ

2/2 (25)

Θ̂ = Hs (ζ) e−ζ
2/2 (26)

Θ̃ (ζ) = m

(√
Λν

)1/2

Λ − m2

×
⎡⎢⎢⎢⎢⎣s

⎛⎜⎜⎜⎜⎝
√
Λ

m
+ 1

⎞⎟⎟⎟⎟⎠ Hs−1 (ζ) +
1
2

⎛⎜⎜⎜⎜⎝
√
Λ

m
− 1

⎞⎟⎟⎟⎟⎠ Hs+1 (ζ)

⎤⎥⎥⎥⎥⎦ e−ζ
2/2 (27)

with ζ ≡ cos θ
(√
Λν

)1/2
and where Hs is the Hermite polyno-

mial of order s. For the Kelvin waves, we get

Θ (η) = e−η
2/2 (28)

Θ̂ (η) = − 1

(−mν)1/2

m2

2mν + 1
ηe−η

2/2 (29)

Θ̃ (η) = −m

(
η2

2mν + 1
+ 1

)
ηe−η

2/2 (30)

with η ≡ cos θ (−mν)1/2 (Townsend 2003).

2.4. Radial dependency

The formalism used to treat the wave radial dependency is not
modified compared to the case of the non-rotating star. In the
anelastic approximation σ2 � N2, the adiabatic radial displace-
ment ξr(r) obeys

d2ψ

dr2
+

(
N2

σ2
− 1

)
Λ

r2
ψ = 0 (31)

with ψ (r) =
√
ρr2ξr (r), N2 = N2

T + N2
µ =

gδ
Hp

(∇ad − ∇) + gϕ
Hp
∇µ

and where we neglected the righthand side term (cf. Press 1981).
The radial wavenumber is still

k2
r =

(
N2

σ2
− 1

)
Λ

r2
· (32)

However, in contrast to the non-rotating case, the horizontal
wave number4 is no longer given by k2

h = Λ/r
2. When horizontal

gradients are required, an equivalent value has to be taken that
we define here as

λ2
sm (ν) =

〈∣∣∣r2∇2
hΘsm (ν)

∣∣∣2〉
θ〈

|Θsm (ν)|2
〉
θ

(33)

(see Fig. 3 bottom), where 〈. . .〉θ denotes latitudinal averages. In
the absence of rotation, we recover λsm = Λsm. We may define
an “equivalent” horizontal wave number that is now given by
k2

h = λ/r2, and we have k2
r � k2

h as in the non-rotating case
(except when Λ→ 0).

We now apply the WKB method to solve Eq. (31). For
a wave propagating towards the surface, we write ψ (r) =
C (r) e−i

∫
dr′kr and get

ξr(r) ∝ |kr|−1/2 ρ−1/2r−2e−i
∫

dr′kr . (34)

Assuming that wave damping is dominated by heat diffusion and
that this term remains small, the radial displacement becomes
ξr(r)e−τ(r)/2 with

τ(r) =
∫ r

rc

dr′
Λ3/2

r′3
KNN2

T

σ4

√
N2

N2 − σ2
(35)

(Zahn et al. 1997).

3. Angular momentum transport

3.1. Excitation

The treatment of wave excitation is more complex in the case of
the rotating star. Indeed, the traditional approximation, which re-
quiresσ2, (2Ω)2 � N2, is no longer valid in the convection zone;
thus, formalisms that convolve the wave eigenfunctions with en-
tropy perturbations and Reynolds stresses in the convection zone
(such as those by Goldreich et al. 1994; or Balmforth 1992) re-
quire major transformations (Belkacem et al. in prep.) For that
reason, we resort to adapting the García López & Spruit (1991)
formalism to our problem.

In that model, waves are excited at the boundary of the ra-
diative zone by the interface deformation caused by convective

4 In the absence of rotation, Legendre polynomials follow

r2∇2
hΘ = −ΛΘ,

but this is no longer the case when rotation is added (see Eq. (9)).
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eddies. The eddies mean energy density is transfered to waves of
the same frequency and with kh ≤ keddy according to

1
2
ρ
〈
v2 (σ)

〉
h
=

(
kh

keddy

)2 1
2
ρ
〈
v2

eddy (σ)
〉

h
(36)

(García López & Spruit 1991), where 〈. . .〉h denotes horizon-
tal averages. The factor kh/keddy reflects the reduced efficiency
in the production of small kh waves caused by the stochastic na-
ture of turbulent eddies. Assuming a turbulent Kolmogorov spec-
trum, we have Leddy ∝ v3

eddy and Lmax ≤ Lc with Lc the mixing
length. The spectral distribution becomes

k2
eddy (σ) = k2

c

(
σ

σc

)3

(37)

v2
eddy (σ) = v2

c

(
σ

σc

)−1

(38)

with σ ≥ σc, kc = 2π/Lc and where vc and σc are the character-
istic convective velocities and frequencies, respectively. We get

1
2
ρ
〈
v2 (σ)

〉
h
=

1
2
ρv2

c

(
kh

kc

)2 (
σ

σc

)−4

· (39)

To proceed further, we assume that the horizontal dependence of
IGWs at the radiative boundary is given by Hough functions5.
Using the “equivalent” eigenvalue given by Eq. (33), one then
has

1
2
ρ
〈
v2

sm (σ)
〉

h
=
λsm

r2
c k2

c

1
2
ρv2

c

(
σ

σc

)−4

· (40)

An alternative definition of the equivalent eigenvalue λ =〈∣∣∣r2∇2
hΘ

∣∣∣〉
θ
/ 〈|Θ|〉θ leads to very similar results. Following

Mathis (2005), one could also use a projection of the
Hough functions onto spherical harmonics for which horizontal
wavenumbers are well-defined. However, in the case of fast ro-
tation numerical problems are encountered with this last method
because Legendre polynomials are not a good basis for project-
ing Hermite polynomials.

3.2. Energy flux

Angular momentum transport by IGWs is dominated by the low-
frequency waves. Here, we will thus adopt σ2 � N2 and use
k2

r = (N/σ)2Λ/r2. The kinetic energy flux per unit frequency is
given by

FE =
1
2
ρ
〈
v2
〉

h
vg, (41)

where the radial group velocity vg is given by

vg =
dσ
dkr
= −σ

kr
· (42)

In the case of main sequence massive stars, we have kr < 0,
corresponding to waves traveling from the convective core to the

5 This is formally wrong since at this boundary we have N2 −→ 0,
which contradicts the traditional approximation. However, as N2 rises
rapidly away from the boundary, and considering the inescapable
presence of a slight amount of overshooting, the approximation is
acceptable.

Fig. 6. Energy flux in IGWs at the base of radiative envelope in a 3 M�
main sequence star with Xc = 0.5. Black: gravito-inertial waves, blue:
Yanai waves, brown: Kelvin waves, green: Rossby waves. Continuous
lines correspond to numerical solutions and dashed lines, to asymptotic
solutions (see Sect. 2.3).

surface. Using Eq. (40) to get the energy of a given mode, we
obtain

FE (σ, s,m) =
ρλsm

2
√
Λsm

v2
cσ

2
c

rck2
c Nc

(
σ

σc

)−2

, (43)

where Nc, which would formally be 0 at the interface, is taken a
fraction of a pressure scale height into the radiative region.

These fluxes have been computed for a 3 M� main-sequence,
population I star calculated with the Geneva stellar evolution
code and for a rotation velocity of Ω = 20 µHz (Fig. 6). This
value, typical of massive stars, corresponds to ∼40% of the sur-
face critical velocity.

In the case of Rossby and retrograde Yanai waves, one can
see that they appear with a significant energy flux. This is caused
by the divergence of the group velocity when Λsm is close to 0
(see Eq. (42)). This situation is unphysical; however, it will be
compensated for by a term in Λ in the calculation of the angular
momentum flux (Eq. (48)). Thus we do not need to correct this
in the present treatment.

3.3. Angular momentum flux

We must now convert the energy flux into an angular momentum
flux. Following Zahn et al. (1997), we write

FE =
1
2
ρ
〈
v2

r + v
2
θ + v

2
φ

〉
h
vg, (44)

with the real part of the velocity field u = iσξ

vr = A(r) sin

(
σt −

∫ r

rc

dr′kr+mφ

)
Θ (ν, cos θ) e−τ(r)/2

vθ = − rkr

Λ
A(r) cos

(
σt −

∫ r

rc

dr′kr+mφ

)
H θ (ν, cos θ) e−τ(r)/2

vφ =
rkr

Λ
A(r) sin

(
σt −

∫ r

rc

dr′kr+mφ

)
Hφ (ν, cos θ) e−τ(r)/2,

given by the WKB method for vr, and with help of the continu-
ity equation in the Boussinesq approximation for vθ and vφ. The
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Fig. 7. Ratio m′ = − σ
2
FJ
FE

for the gravito-inertial waves when the
Coriolis acceleration is neglected in the calculation of the angular mo-
mentum flux. Continuous lines correspond to numerical solutions and
dashed lines to asymptotic solutions (see Sect. 2.3).

energy flux for a given mode becomes

FE = −A2(r)
4

ρ

(〈
|Θ|2

〉
θ
+

r2k2
r

Λ2

[〈∣∣∣H θ
∣∣∣2〉

θ
+

〈∣∣∣Hφ
∣∣∣2〉

θ

])
σ

kr
e−τ(r).

This equation is equivalent to the one obtained by Mathis (2005).

In the absence of rotation, the angular momentum flux is ex-
pressed as (Zahn et al. 1997)

FJ =
〈
ρr sin θ vrvφ

〉
h
, (45)

which becomes

FJ =
A2(r)

2
ρr

〈
sin θΘHφ

〉
θ

rkr

Λ
e−τ(r) (46)

for a given mode. When this simple formulation is applied to
gravito-inertial waves, one finds that the sign of angular momen-
tum transport varies with ν (see Fig. 7). As the rotation param-
eter ν increases, the value m′ = −σ2 FJ

FE
diminishes linearly and

changes sign for ν = 2m. This would imply that a retrograde
wave (m > 0) would, for fast enough rotation, carry a posi-
tive angular momentum flux (m′ < 0). This can be understood
with the aid of Fig. 8. In the absence of rotation, Θ = Pm

� and
Hφ = mPm

� / sin θ; their product always has the sign of m. This
is no longer the case when the Coriolis acceleration is included.
The integral

〈
sin θΘHφ

〉
θ

may thus change sign.
The solution to this paradox lies in the fact that, in a rotating

system, the angular momentum flux is actually given by

FJ =
〈
ρr sin θ vr

(
vφ + 2Ω cos θξθ

)〉
h

(47)

(Jones 1967; Bretherton 1969). The first term in this equa-
tion corresponds to the angular momentum flux across an
Eulerian surface, and the second term to a flux associ-
ated with a Lagrangian contribution to angular momentum
(Bretherton 1969). In that case, the actual angular momentum
flux thus becomes

FJ =
A2(r)

2
ρr

(〈
sin θΘHφ

〉
θ
− ν

〈
sin θ cos θΘH θ

〉
θ

) rkr

Λ
e−τ(r)

for a given mode. The ratio between the kinetic energy and the
angular momentum flux is thus

FJ

FE
= −2Λ

σ

〈
sin θΘHφ

〉
θ
− ν

〈
sin θ cos θΘH θ

〉
θ〈∣∣∣H θ

∣∣∣2〉
θ
+
〈
|Hφ|2

〉
θ

, (48)

where we use the approximation r2k2
r � Λ2. In the absence of

rotation, we get

FJ

FE
= −2m

σ
· (49)

We define an equivalent azimuthal number m′ such that

m′ ≡ −σ
2
FJ

FE
= Λ

〈
sin θΘHφ

〉
θ
− ν

〈
sin θ cos θΘH θ

〉
θ〈∣∣∣H θ

∣∣∣2〉
θ
+
〈
|Hφ|2

〉
θ

, (50)

which has been evaluated numerically and is shown in Fig. 9.
In the case of gravito-inertial waves, as ν increases, the

value m′ rapidly converges towards m/3, for all orders s. This
implies that the symmetry that exists between prograde and ret-
rogrades waves is conserved in the rotating case6. Yanai waves
behave similarly, but with a slower convergence rate.

In the case of the Kelvin waves, m′ varies only slightly with
rotation and remains close to m. Their angular momentum flux
is always positive. Rossby waves appear with m′ � 0, and its
value rises slowly and tends towards m with the increase in the
rotation rate. Their angular momentum flux is always negative.

3.4. Angular momentum deposition

The angular momentum distribution within the star evolves un-
der the effect of the damping of IGWs. When traveling inwards,
each wave deposits its angular momentum at the location where
it is damped. In stars, the major source of damping is thermal
diffusivity (cf. Sect. 2.4), which is different for each wave. We
define the angular momentum luminosity LJ = 4πr2FJ, which
in the WKB approximation can be expressed as

LJ (r) = 4πr2FJ (rc) e−τ(r). (51)

Then, the local angular momentum evolves according to

d
dt

(
8π
3
ρΩr4

)
= − d

dr

⎛⎜⎜⎜⎜⎜⎜⎝
∫

dσ
∑
s,m

LJ (σ, s,m, r)

⎞⎟⎟⎟⎟⎟⎟⎠ (52)

(Zahn et al. 1997).
In this exploratory step, we examine where damping occurs

for each type of wave. Let us first look at Fig. 10, which gives the
local angular momentum luminosity and the angular momentum
deposition −dLJ/dr of waves with a frequency σ = 3 µHz, for
the 3 M� model of Fig. 6 (the rotation parameter is ν = 13.3).
Since all waves shown here have the same frequency, the loca-
tion of the deposition is determined by the eigenvalue Λ (see
Eq. (35)). The rapid fall in the local amplitude at the convec-
tive boundary (over δr � 1%) is caused by the mean molecular
weight gradient that has been left behind the regressing core, and
damping increases in the outer region with the thermal diffusiv-
ity K.

6 Note however that excitation could be asymmetric.
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Fig. 8. Left: hough functions Θsm and Hφ
sm for s = 4, m = 2 (� = 5), ν = 0, and their product sin θΘHφ, which is used for the angular momentum

flux. Normalization is given by dΘ/d cos θ = 1 at cos θ = 0. Right: equivalent Hough functions for ν � 2. In the rotating case, the product sin θΘHφ

changes signs locally.

Fig. 9. Ratio m′ = − σ
2
FJ
FE

for various modes. Top left: gravito-inertial waves corresponding to � ≤ 6. Top right: Yanai waves of order m =
−5, . . . ,+3. Bottom left: Kelvin waves of order m ≥ −6. Bottom right: Rossby waves of order s = 1, 2, and m ≤ 4. Continuous lines correspond to
numerical solutions and dashed lines to asymptotic solutions (see Sect. 2.3).

4. Discussion

In this paper, we have examined the transport of angular momen-
tum by low-frequency waves excited by core convection. The

traditional approximation was used to evaluate the impact of the
Coriolis acceleration on waves. We find two main effects:

– the horizontal structure, and hence the amount of angular mo-
mentum carried by a wave, is modified;

– new types of waves appear.
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Fig. 10. Local angular momentum luminosity normalized to 1 at the
base of the radiative zone (top) and local deposition of angular mo-
mentum (bottom) for waves with σ = 3 µHz in a 3 M� main se-
quence star (Xc = 0.5). Black: gravito-inertial waves; blue: Yanai waves;
brown: Kelvin waves; green: Rossby waves. Continuous lines corre-
spond to numerical solutions and dashed lines to asymptotic solutions
(see Sect. 2.3).

In the case of gravito-inertial waves, the main effect of the
Coriolis acceleration is to confine the wave towards the equa-
tor. This reduces the total angular momentum carried by a wave
of a given amplitude and frequency (Fig. 9). As rotation in-
creases, a saturation exists in this reduction, which tends to-
wards m′ = −σ2 FJ

FE
= m

3 . Rotation also increases their radial
wave number (see Eq. (32) and Fig. 3), and hence their damp-
ing. These waves are thus deposited very close to the convection
core (see Fig. 10). If the asymmetry in the excitation of pro-
grade and retrograde waves is not too strong, we expect that the
damping of these waves could produce a shear layer oscillation
(SLO) similar to the one present in slowly rotating stars (Talon
& Charbonnel 2005, and references therein).

The Yanai waves, whose main restoring force is also gravity
for high values of the rotation parameter ν = 2Ω/σ, have the
same limit value for m′. Their eigenvaluesΛ are, however, lower

so they are damped farther from the convection core (Fig. 10)
and over a larger portion of the star. These most certainly do
not produce a second SLO but could generate a local shear in
the interior (corresponding to the stationary solution of Kim &
MacGregor 2001).

The other two types of waves, namely Kelvin and Rossby
waves, show a somewhat different behavior. For these waves, the
main restoring force is the conservation of vorticity, combined
with stratification in the first case and in the second, combined
with curvature. These two types of waves have the same limit-
ing value m′ = m, and their eigenvalues Λ are lower than those
of both gravito-inertial and Yanai waves. As a result, they are
damped much closer to the stellar surface (Fig. 10). These waves
could create a strong shear in that region and could thus induce
a large amount of mixing close to the stellar surface. Complete
dynamical simulations remain to be completed to verify these
conjectures.
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