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ABSTRACT

This paper presents results from axisymmetric simulations of magneto-rotational stellar core collapse to neutron stars in general rel-
ativity using the passive field approximation for the magnetic field. These simulations are performed using a new general relativistic
numerical code specifically designed to study this astrophysical scenario. The code is an extension of an existing (and thoroughly
tested) hydrodynamics code, which has been applied in the recent past to study relativistic rotational core collapse. It is based on the
conformally-flat approximation of Einstein’s field equations and conservative formulations of the magneto-hydrodynamics equations.
The code has been recently upgraded to incorporate a tabulated, microphysical equation of state and an approximate deleptonization
scheme. This allows us to perform the most realistic simulations of magneto-rotational core collapse to date, which are compared with
simulations employing a simplified (hybrid) equation of state, widely used in the relativistic core collapse community. Furthermore,
state-of-the-art (unmagnetized) initial models from stellar evolution are used. In general, stellar evolution models predict weak mag-
netic fields in the progenitors, which justifies our simplification of performing the computations under the approach that we call the
passive field approximation for the magnetic field. Our results show that for the core collapse models with microphysics the saturation
of the magnetic field cannot be reached within dynamical time scales by winding up the poloidal magnetic field into a toroidal one.
We estimate the effect of other amplification mechanisms including the magneto-rotational instability (MRI) and several types of
dynamos. We conclude that for progenitors with astrophysically expected (i.e. weak) magnetic fields, the MRI is the only mechanism
that could amplify the magnetic field on dynamical time scales. The uncertainties about the strength of the magnetic field at which the
MRI saturates are discussed. All our microphysical models exhibit post-bounce convective overturn in regions surrounding the inner
part of the proto-neutron star. Since this has a potential impact on enhancing the MRI, it deserves further investigation with more
accurate neutrino treatment or alternative microphysical equations of state.

Key words. gravitation – hydrodynamics – magnetohydrodynamics (MHD) – methods: numerical – stars: supernovae: general –
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1. Introduction

Understanding the dynamics of the gravitational collapse of the
core of massive stars leading to supernova explosions still re-
mains one of the primary problems in general relativistic astro-
physics, despite the continuous theoretical efforts during the last
few decades. This problem stands as a distinctive example of a
research field where essential progress has been accomplished
through numerical modelling with increasing levels of complex-
ity in the input physics: hydrodynamics, gravity, magnetic fields,
nuclear physics, equation of state (EOS), neutrino transport, etc.
While studies based upon Newtonian physics are highly devel-
oped nowadays, state-of-the-art simulations still fail, broadly
speaking, to generate successful supernova explosions under
generic conditions (see e.g. Buras et al. 2003; Kifonidis et al.
2006, for details on the degree of sophistication achieved in
present-day supernova modelling; and Woosley & Janka 2005,
and references therein for a review on the mechanism of core
collapse supernovae). The reasons behind those apparent fail-
ures are diverse, all having to do with the limited knowledge of
some of the underlying key issues such as realistic precollapse

stellar models (including rotation, or the strength and distribu-
tion of magnetic fields), the appropriate EOS, as well as numeri-
cal limitations due to the need for Boltzmann neutrino transport,
multi-dimensional hydrodynamics, and relativistic gravity.

Aside from their assistance to understand the supernova
mechanism, numerical simulations of stellar core collapse are
highly motivated nowadays by the prospects of a direct detec-
tion of the gravitational waves emitted in this scenario. In core
collapse events where rotation plays a role, one of the emis-
sion mechanism for gravitational waves is the hydrodynamic
core bounce, which generates a burst signal. The post-bounce
wave signal also exhibits large amplitude oscillations associ-
ated with pulsations in the collapsed core (Zwerger & Müller
1997; Rampp et al. 1998), neutrino-driven convection behind
the supernova shock (Müller et al. 2004) and (possibly) rota-
tional dynamical instabilities (Ott et al. 2005; Ott et al. 2007a,b).
However, a successful future detection of gravitational radiation
from stellar core collapse faces the combined problem of the
smallness of the signal strength and of the complexity of the
burst signal from bounce. On the other hand, the energy released
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in gravitational waves is so small that its backreaction to the col-
lapse dynamics is negligible, which can significantly simplify
the numerical simulation of this scenario. To pave the road for a
successful detection through waveform templates for data anal-
ysis, such simulations are essential.

At birth neutron stars have intense magnetic fields
(∼1012−1013 G) or in extreme cases even larger ones
(∼1014−1015 G), as inferred from studies of anomalous X-ray
pulsars and soft gamma-ray repeaters (Kouveliotou et al. 1998).
For magnetars, the magnetic field can be so strong as to alter the
internal structure of the neutron star (Bocquet et al. 1995). The
emergence of such strong magnetic fields in neutron stars from
the initial field configuration in the pre-collapse stellar cores is
an active and important field of research. Similarly, the rotation
state of the nascent proto-neutron star (PNS) is determined by
the amount and distribution of angular momentum in the core
of the progenitor, which is still rather unconstrained, being only
currently incorporated into stellar evolution codes (Heger et al.
2005). Observations of surface velocities imply that a large frac-
tion of progenitor cores is rapidly rotating. The presence of in-
tense magnetic fields, on the other hand, may also affect rotation
in the core, as it can be spun down in the red giant phase by mag-
netic torques via dynamo action which couples to the outer lay-
ers of the star (Meier et al. 1976; Spruit & Phinney 1998; Spruit
2002; Heger et al. 2005). The latest numerical calculations of
stellar evolution thus predict low pre-collapse core rotation rates,
which are in agreement with observed periods of young neutron
stars in the range of ∼10−15 ms. Nevertheless, a recent estimate
by Woosley & Heger (2006) indicates that ∼1% of all stars with
M ≥ 10 M� could still have rapidly rotating cores, which could
also be relevant for the collapsar-type gamma-ray burst scenario.

The presence of intense magnetic fields in a PNS makes
magneto-rotational core collapse simulations mandatory. The
weakest point of all existing simulations to date is the fact that
both the strength and distribution of the initial magnetic field
in the core are basically unknown. If the magnetic field is ini-
tially weak, there exist several mechanisms which may amplify
it to values which can have an impact on the dynamics, among
them differential rotation (Ω-dynamo1), the magneto-rotational
instability (MRI hereafter), as well as dynamo mechanisms re-
lated to convection or turbulence. The first of these mechanisms
transforms rotational energy into magnetic energy, winding up
any seed poloidal field into a toroidal field. The MRI leads to
a sustained turbulent dynamo which is able to transport angular
momentum outwards, although it remains unclear how large the
actual amplification by this process can be (see below). The lat-
ter mechanisms, which are generically called α-Ω-dynamo and
will be discussed below, include a number of processes which
can also produce an amplification of the magnetic field.

Magneto-rotational core collapse simulations were first per-
formed as early as in the 1970s (LeBlanc & Wilson 1970;
Bisnovatyi-Kogan et al. 1976; Meier et al. 1976; Müller &
Hillebrandt 1979; Ohnishi 1983; Symbalisty 1984), in which
magneto-rotational core collapse was already proposed as a
plausible supernova explosion mechanism. In recent years,
an increasing number of authors have performed axisym-
metric magneto-hydrodynamic (MHD) simulations of stellar
core collapse (within the so-called ideal MHD limit) em-
ploying a Newtonian treatment of MHD and gravity, and ei-
ther a simplified equation of state (Yamada & Sawai 2004;

1 Note that the “Ω-dynamo” is also referred to in the literature as
“wind-up” or “field-wrapping”. We follow in this paper the notation
used by Obergaulinger et al. (2006a,b).

Ardeljan et al. 2005; Sawai et al. 2005) or a microphysical de-
scription of matter (Kotake et al. 2004a,b, 2005; Burrows et al.
2007). The main implications of the presence of strong mag-
netic fields in the collapse are the redistribution of the angular
momentum and the appearance of jet-like explosions. Specific
magneto-rotational effects on the gravitational wave signature
were first studied in detail by Kotake et al. (2004a) and Yamada
& Sawai (2004), who found differences with purely hydrody-
namic models only for very strong initial fields (≥1012 G). The
most exhaustive parameter study of magneto-rotational core col-
lapse to date has been carried out very recently by Obergaulinger
et al. (2006a,b). Their axisymmetric simulations employed
rotating polytropes, Newtonian hydrodynamics and gravity
(approximating general relativistic effects via an effective rela-
tivistic gravitational potential in their latter work), and ad-hoc
initial poloidal magnetic field distributions. These authors found
that for weak initial fields (≤1011 G, which is the astrophysically
most motivated case) there are no differences compared to purely
hydrodynamic simulations, neither in the collapse dynamics nor
in the resulting gravitational wave signal. However, strong ini-
tial fields (≥1012 G) manage to slow down the core efficiently
(leading even to retrograde rotation in the PNS) which causes
qualitatively different dynamics and gravitational wave signals.
For the most strongly magnetized models Obergaulinger et al.
(2006b) found highly bipolar, jet-like outflows.

Nowadays, there exists sophisticated numerical technol-
ogy to perform general relativistic hydrodynamics simulations
(see e.g. Font 2003). In recent years this technology has
been extended to general relativistic magneto-hydrodynamics
(GRMHD) (Koide et al. 1999; De Villiers & Hawley 2003;
Del Zanna et al. 2003; Gammie et al. 2003; Duez et al. 2005;
Antón et al. 2006). General relativistic simulations involve the
challenging computational task of solving Einstein’s field equa-
tions coupled to the fluid (and magneto-fluid) evolution. The first
general relativistic axisymmetric simulations of rotational stellar
core collapse to neutron stars were performed by Dimmelmeier
et al. (2001, 2002a,b). These simulations employed simplified
models to describe the thermodynamics of the process, in the
form of a polytropic EOS modified such that it accounts both
for the stiffening of the matter above nuclear density as well as
thermal heating by the passing shock front (the so-called hy-
brid EOS; see Janka et al. 1993). The inclusion of relativis-
tic effects within the so-called CFC approximation results pri-
marily in a stronger gravitational pull during the contraction of
the core. Thus, higher densities than in Newtonian models are
reached during bounce, and the nascent PNS is more compact.
Relativistic simulations with improved dynamics and gravita-
tional waveforms were reported by Cerdá-Durán et al. (2005),
who used the CFC+ framework, which includes second post-
Newtonian corrections to CFC. Comparisons of the CFC ap-
proach with fully general relativistic simulations (employing
also stable reformulations of the Einstein equations in 3+1 form)
have been reported by Shibata & Sekiguchi (2004), Ott et al.
(2007a), and Ott et al. (2007b) in the context of axisymmet-
ric core collapse simulations. As in the case of CFC+, the dif-
ferences found in both the collapse dynamics and the gravita-
tional waveforms are minute, which highlights the suitability
of CFC for performing accurate simulations of such scenarios
without the need for solving the full system of Einstein’s equa-
tions. Owing to the excellent approximation of full general rela-
tivity offered by CFC in the context of stellar core collapse, ex-
tensions to improve the microphysics through the incorporation
of a tabulated non-zero temperature EOS and a simplified neu-
trino treatment have been recently reported by Ott et al. (2007a)
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and Dimmelmeier et al. (2007a). These simulations allow a di-
rect comparison to the models presented in Dimmelmeier et al.
(2002b), Cerdá-Durán et al. (2005), and Shibata & Sekiguchi
(2004), which use the same parameterization of rotation but a
simple hybrid EOS. This comparison shows that with a micro-
physical treatment the influence of rotation on the collapse dy-
namics and waveforms is significantly reduced. In particular, the
most important result of Dimmelmeier et al. (2007a) is the sup-
pression of core collapse with multiple centrifugal bounces and
its associated type II gravitational waveforms (see Dimmelmeier
et al. 2002b).

On the other hand, to further improve the realism of core
collapse simulations in general relativity, the incorporation of
magnetic fields in numerical codes via solving the MHD equa-
tions is also currently being undertaken (Shibata et al. 2006;
Cerdá-Durán & Font 2007). The work of Shibata et al. (2006)
is focused on the collapse of initially strongly magnetized cores
(∼1012−1013 G). Although these values are probably astrophysi-
cally not relevant (as the stellar evolution models of Heger et al.
2005, predict a poloidal field strength of ∼106 G in the progen-
itor), they enable them to resolve the scales needed for the MRI
to develop, since the MRI length scale grows with the magnetic
field. The results of Shibata et al. (2006) show that the mag-
netic field is mainly amplified by the wind-up of the magnetic
field lines by differential rotation. Consequently, the magnetic
field is accumulated around the inner region of the PNS, and
a MHD outflow forms along the rotation axis removing angu-
lar momentum from the PNS. A different approach is followed
by Cerdá-Durán & Font (2007). Their progenitors are chosen
to be weakly magnetized (≤1010 G) which is in much better
agreement with predictions from stellar evolution. Under these
conditions the so-called “passive” magnetic field approximation
(see Sect. 2.3 below) is appropriate. In addition, the numerical
code used in that work, which utilizes spherical coordinates, is
more suitable for core collapse simulations than codes based on
Cartesian/cylindrical coordinates, as used e.g. by Shibata et al.
(2006).

In this paper we continue the program initiated in
Cerdá-Durán & Font (2007) to build a numerical code which
includes all relevant ingredients to study relativistic magneto-
rotational stellar core collapse. To this aim we present here the
first relativistic simulations of magneto-rotational core collapse
which take into account the effects of a microphysical EOS and
a simplified neutrino treatment. Those effects have been incor-
porated in the code following the approach recently presented
by Ott et al. (2007a) and Dimmelmeier et al. (2007a). As in
Cerdá-Durán & Font (2007) we employ the passive magnetic
field approximation in the treatment of the magnetic field.

The paper is organized as follows: Sect. 2 presents a brief
overview of the theoretical framework we use to perform rela-
tivistic simulations of core collapse. Section 3 describes how the
magnetized initial models for core collapse are built and presents
our sample of models. In Sect. 4 we discuss aspects related to in-
corporating microphysics in the core collapse models and their
implementation in the numerical code. A brief outline of our nu-
merical approach is discussed in Sect. 5. The evolution of the
core collapse initial models is discussed in Sect. 6. The main pa-
per closes with a summary in Sect. 7. Relevant tests of the code
are analyzed in Appendix A, while Appendix B provides an es-
timate for the growth rate of the Ω-dynamo.

Throughout the paper we use a spacelike signa-
ture (−,+,+,+) and units in which c = G = 1. Greek
indices run from 0 to 3, Latin indices from 1 to 3, and we adopt
the standard Einstein summation convention.

2. Theoretical framework

We adopt the 3+1 formalism of general relativity (Lichnerowicz
1944) to foliate the spacetime into spacelike hypersurfaces. In
this approach the line element reads

ds2 = −α2 dt2 + γi j(dxi + βi dt)(dx j + β j dt), (1)

where α is the lapse function, βi is the shift vector, and γi j is
the spatial three-metric induced in each hypersurface. Using the
projection operator⊥µν and the unit four-vector nµ normal to each
hypersurface, it is possible to build the quantities

E = nµnνTµν = α
2T 00, (2)

S i = − ⊥µi nνTµν = − 1
α

(T0i − Ti jβ
j), (3)

S i j =⊥µi ⊥νj Tµν = Ti j, (4)

which represent the total energy, the momenta, and the spatial
components of the stress-energy tensor, respectively.

To solve the gravitational field equations we choose the
ADM gauge in which the three-metric can be decomposed as
γi j = φ

4γ̂i j + hTT
i j , where φ is the conformal factor, γ̂i j is the flat

three-metric, and hTT
i j is the transverse and traceless part of the

three-metric. Note that this gauge choice implies the maximal
slicing condition in which the trace K of the extrinsic curvature
tensor Ki j vanishes.

2.1. The CFC approximation

In our work Einstein’s field equations are formulated and solved
using the conformally flat condition (CFC hereafter), introduced
by Isenberg (1978) and first used in a dynamical context by
Wilson et al. (1996). In this approximation, the three-metric in
the ADM gauge is assumed to be conformally flat, γi j = φ

4γ̂i j.
Note that the same aproximation can be realized for other gauge
choices such as the quasi-isotropic gauge or the Dirac gauge,
both supplemented by the maximal slicing condition. Under the
CFC assumption the gravitational field equations can be written
as a system of five nonlinear elliptic equations,

∆̂φ = −2πφ5

(
E +

Ki jKi j

16π

)
, (5)

∆̂(αφ) = 2παφ5

(
E + 2S +

7Ki jKi j

16π

)
, (6)

∆̂βi = 16παφ4S i + 2φ10Ki j∇̂ j

(
α

φ6

)
− 1

3
∇̂i∇̂kβ

k, (7)

where ∆̂ and ∇̂ are the Laplace and nabla operators associated
with the flat three-metric, and S = γi jS i j.

2.2. General relativistic magnetohydrodynamics

The energy-momentum tensor of a magnetized perfect fluid can
be written as the sum of the fluid part and the electromagnetic
field part. In the so-called ideal MHD limit (where the fluid is
a perfect conductor of infinite conductivity), the latter can be
expressed solely in terms of the magnetic field bµ measured by
a comoving observer. In this case the total energy-momentum
tensor is given by

T µν = (ρh + b2) uµuν +

(
P +

b2

2

)
gµν − bµbν, (8)
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where ρ is the rest-mass density, h = 1 + ε + P/ρ the relativis-
tic enthalpy, ε the specific internal energy, P the pressure, and
uµ the four-velocity of the fluid, while b2 = bµbµ. We define
the magnetic pressure Pmag = b2/2 and the specific magnetic
energy εmag = b2/(2ρ), whose effect on the dynamics is sim-
ilar to that played by the pressure and specific internal energy
of the fluid, respectively. In the ideal MHD limit, the electric
field measured by a comoving observer vanishes, and Maxwell’s
equations simplify. Under this assumption the electric field four-
vector Eµ can be expressed in terms of the magnetic field four-
vector Bµ, and only equations for Bi are needed. For an Eulerian
observer, Uµ = nµ, the temporal component of the electric field
vanishes, Eµ = (0,−εi jkv

jBk). In this case Maxwell’s equations
reduce to the divergence-free condition and the induction equa-
tion for the magnetic field,

∇̂iB
∗ i = 0,

∂B∗ i

∂t
= ∇̂ j(v∗ iB∗ j − v∗ jB∗ i), (9)

where B∗ i =
√
γ̄Bi and v∗ i = αvi − βi, with vi being the fluid’s

three-velocity as measured by the Eulerian observer. The ratio of
the determinants of the three-metric and the flat three-metric is
given by γ̄ = γ/γ̂. In the Newtonian limit v∗ i → vi and B∗ i → Bi,
and the Newtonian induction equation and divergence constraint
are recovered.

The evolution of a magnetized fluid is determined by the
conservation law of the energy-momentum, ∇µT µν = 0, and
by the continuity equation, ∇µJµ = 0, for the rest-mass cur-
rent Jµ = ρuµ. Following the procedure laid out in Antón et al.
(2006), in order to cast the GRMHD equations as a hyperbolic
system of conservation laws well adapted to numerical work, the
conserved quantities are chosen in a way similar to the purely
hydrodynamic case presented by Banyuls et al. (1997):

D = ρW, (10)

S i = (ρh + b2)W2vi − αbib
0, (11)

τ = (ρh + b2)W2 −
(
P +

b2

2

)
− α2(b0)2 − D, (12)

where W = αu0 is the Lorentz factor. With this choice the sys-
tem of conservation equations for the fluid and the induction
equation for the magnetic field can be cast as a first-order, flux-
conservative, hyperbolic system,

∂
√
γU

∂t
+
∂
√−gFi

∂xi
=
√−gS, (13)

with the state vector, flux vector, and source vector given by

U = [D, S j, τ, B
k], (14)

Fi =

[
Dv̂i, S jv̂

i + δi
j

(
P +

b2

2

)
− b jBi

W
,

τv̂i +

(
P +

b2

2

)
vi − αb0Bi

W
, v̂iBk − v̂kBi

]
, (15)

S =
[
0,

1
2

T µν
∂gµν

∂x j
, α

(
T µ0
∂ lnα
∂xµ

− T µνΓ0
µν

)
, 0k

]
, (16)

where δi
j is the Kronecker delta and Γµµλ are the Christoffel sym-

bols associated with the four-metric. We note that the above def-
initions contain components of the magnetic field measured by
both a comoving observer and an Eulerian observer. The two are
related by

b0 =
WBivi
α
, bi =

Bi + αb0ui

W
· (17)

The hyperbolic structure of Eq. (13) and the associated spectral
decomposition (into eigenvalues and eigenvectors) of the flux-
vector Jacobians is given in Antón et al. (2006). This informa-
tion is needed for numerically solving the system of equations
using the class of high-resolution shock-capturing schemes that
we have implemented in our code.

2.3. The passive field approximation

In the collapse of weakly magnetized stellar cores, it is a fair ap-
proximation to assume that the magnetic field entering in the
energy-momentum tensor of Eq. (8) is negligible when com-
pared with the fluid part, i.e. Pmag � P, εmag � ε, and that
the components of the anisotropic term of T µν satisfy bµbν �
ρhuµuν + Pgµν. With these simplifications the evolution of the
magnetic field, governed by the induction equation, does not
affect the dynamics of the fluid, which is governed solely by
the hydrodynamics equations. However, the magnetic field evo-
lution does depend on the fluid evolution, due to the presence
of the velocity components in the induction equation. This “test
magnetic field” (or passive field) approximation is employed in
the core collapse simulations reported in this work.

Within this approach the seven eigenvalues of the GRMHD
Riemann problem (entropy, Alfvén, and fast and slow magne-
tosonic waves) reduce to three (Cerdá-Durán & Font 2007),

λi
0 hydro = λ

i
e = λ

i
A± = λ

i
s±, (18)

λi
± hydro = λ

i
f ±, (19)

where λi
0 hydro and λi

± hydro are the eigenvalues of the Jacobian
matrices of the purely hydrodynamics equations, as reported by
Banyuls et al. (1997).

This approximation has several interesting properties. First,
if we perform a simulation for a given initial magnetic field,
we can compute the result for a simulation with the same ini-
tial magnetic field scaled by some factor. To do this it is suffi-
cient to increase or reduce the strength of the magnetic field at
any given time during the simulation by the same factor. The
second property is what we call the “composition rule”. If we
perform two simulations with the same hydrodynamics but dif-
ferent initial magnetic fields, B∗ 0

1 and B∗ 0
2 , any linear combina-

tion B∗(t) = a B∗1(t) + b B∗2(t) of the magnetic field at any time,
with a and b being constants, will be the solution for the evolu-
tion of a model whose initial magnetic field is the same linear
combination, i.e. B∗ 0 = a B∗ 0

1 + b B∗ 0
2 . Hence, we can make

use of these properties to cover a wide range of magnetic field
strengths and structures by performing just a few simulations,
and then constructing additional ones by means of the “compo-
sition rule”. Needless to say, these two properties are valid only
if the magnetic field resulting from the scaling or composition
satisfies itself the passive field approximation at all times.

2.4. Gravitational waves

The Newtonian standard quadrupole formula has been exten-
sively used in numerical simulations of astrophysical systems to
compute the gravitational radiation and waveforms without hav-
ing to consider the full evolution of the spacetime and solving
Einstein’s equations. This formula computes the radiative part
of the spatial metric as

hquad
i j = PTTkl

i j
2
R

Q̈i j, (20)
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where PTTkl
i j is the transverse traceless projector operator (Thorne

1980), R is the distance to the source, Qi j is the mass quadrupole
moment, and a dot denotes a time derivative. In spite of its sim-
plicity, the particular form in which Eq. (20) is expressed leads to
numerical difficulties due to the presence of second time deriva-
tives. A way to circumvent this problem is to eliminate all time
derivatives using the equations of motion. Following Finn (1989)
and Blanchet et al. (1990) one can arrive to an expression for
Q̈kl with no explicit appearance of time derivatives. This is the
so-called stress formula,

Q̈i j ≈ STF

{
2
∫

d3x
√
γ̂D∗

(
γ̂ikγ̂ jl v

kvl + xkγ̂ki ∇̂ jU
)}
, (21)

where STF means the symmetric and traceless part, and D∗ =√
γ̄D. This formula has proved to be numerically much more

accurate than the original formula and we use it in this paper to
extract gravitational waveforms.

In the case of a magnetized fluid in the ideal MHD case, the
gravitational radiation is also affected by the energetic content
of the magnetic field. Kotake et al. (2004b) have derived an ex-
tension of the quadrupole formula for such a case. In a similar
way, it is possible to calculate the corresponding stress formula
(Obergaulinger et al. 2006b), which reads

Q̈i j ≈ STF

{
2
∫

d3x
√
γ̂

[
D∗

(
γ̂ikγ̂ jl v

kvl + xkγ̂ki ∇̂ jU
)

−γ̂ikγ̂ jl bkbl

]}
. (22)

Note that in the limit of weak magnetic fields the original stress
formula is recovered. We use this formula in the magnetized core
collapse simulations to calculate the contribution of the magnetic
field to the waveforms in the passive field approximation.

3. Initial data

The structure and strength of the magnetic field in the stellar core
collapse progenitors, needed as initial conditions of our numer-
ical simulations, is still an open question in astrophysics. State-
of-the-art models from stellar evolution including a description
for the influence of the magnetic field (Heger et al. 2005), pre-
dict that the distribution of the magnetic field in the iron core
has probably a dominant toroidal component, with a strength
of about 109−1010 G, and a poloidal component of only about
105−106 G. For such weak fields (Pmag � P), the passive field
approximation adopted here is likely to be sufficient to describe
the initial models considered in this work. A second consider-
ation is whether or not the initial model should be an equilib-
rium model. In general, if one tries to construct a stationary
model without meridional currents and assuming an isentropic
flow, the only possible magnetic field configuration is poloidal
(see Bekenstein & Oron 1979). Stationary models of magnetized
stars have been computed under these assumptions by Bocquet
et al. (1995). In the general (but still isentropic) case in which
meridional circulation is allowed, a toroidal component of the
magnetic field may exist, but the method to calculate station-
ary models is far more complicated (Gourgoulhon & Bonazzola
1993; Ioka & Sasaki 2003, 2004). When one considers ideal
MHD, also purely toroidal magnetic fields exist which maintain
the circularity condition (Oron 2002), and therefore it is pos-
sible to generate stationary models without meridional compo-
nents. Finally, in the case that magnetic pressure does not exceed
the hydrostatic pressure, Oron (2002) has shown that stationary

models with mixed toroidal and poloidal component approxi-
mately accomplish the circularity condition.

Therefore, it makes sense to construct initial models for mag-
netized stellar cores by simply adding an ad-hoc magnetic field
to a purely hydrodynamic equilibrium configuration. If the con-
dition B∗ · ∇̂Ω∗ = 0 is satisfied, where Ω∗ = v∗ϕ/(r sin θ) is the
angular velocity of the fluid, then the initial magnetic field does
not evolve in time either. Note that in this work we use as initial
models both equilibrium and non-equilibrium configurations for
the magnetic field, as specified in Table 2.

3.1. Magnetic field configurations

Since the numerical scheme we use to evolve the MHD equa-
tions only preserves the value of ∇̂ · B∗ but does not impose
the divergence constraint of the magnetic field itself, it is neces-
sary to build initial configurations that also satisfy this condition.
To do this we calculate the initial magnetic field from a vector
potential A∗, such that B∗ = ∇̂ × A∗, which is discretized as
explained in Cerdá-Durán & Font (2007).

For our code tests and core collapse simulations we use three
possible magnetic field configurations as initial conditions (or
any possible combination of them):

– the homogeneous “starred” magnetic field, in which B∗ is
constant and parallel to the symmetry axis;

– the poloidal magnetic field generated by a circular current
loop of radius rmag (Jackson 1962), that can be calculated
from the only non-vanishing component of the vector poten-
tial A∗ϕ as

A∗ϕ =
r2

magB∗0
2

∞∑
n=0

(−1)n(2n − 1)!!
2n(n + 1)!

r2n+1
<

r2n+2
>

P1
2n+1(cos θ), (23)

where r< = min(r, rmag), r> = max(r, rmag), and B∗0 is the
magnetic field at the center; and

– a toroidal magnetic field of the form

B∗ϕ = B∗0
r2

mag

r2
mag −�2

, (24)

whose maximum value is reached at � = rmag, where B∗0 is
the initial central magnetic field and � is the distance to the
axis.

Note that in all three cases, we employ the “starred” magnetic
field, since the divergence constraint is valid for this quantity
when computed with respect to the flat divergence operator. In
this way we can extend any analytic prescription for the mag-
netic field given in flat spacetime in an easy way. Also note
that in the presence of strong gravitational fields the magnetic
field B is deformed with respect to B∗ due to the curvature of
the spacetime, although the divergence constraint is automati-
cally fulfilled. Figure 1 shows examples of the magnetic field
structure for the poloidal configurations of the initial magnetic
field.

The initial magnetic field configuration is denoted in the
names of the models in our sample by adding a label to the
purely hydrodynamic model. For the latter we follow the no-
tation of Dimmelmeier et al. (2002a) and Ott et al. (2007a).
These models are listed in Table 1. The label for the magnetic
field is constructed following the notation of Obergaulinger et al.
(2006b). We add the suffix D3M0 to denote those models with
purely poloidal magnetic field generated by a circular loop and
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Fig. 1. Logarithm of the rest mass density (log ρ, color coded) and magnetic field lines (Bi, white curves) in a homogeneous B∗ i field configuration
(left panel) and a magnetic field generated by a circular current loop (right panel), for a typical rotating iron core (model A1B3 in Table 1) used
for the collapse simulations. The magnetic field lines have been calculated as isocontours of the vector potential. The axis scale is in km and the
density in cgs units.

rmag = 400 km (M0 denotes the passive field approximation) and
we use the suffix T3M0 for models with purely toroidal magnetic
field and rmag = 400 km. We have also built the DT3M0 model,
whose magnetic field distribution is a combination of D3M0 and
T3M0 with equal magnetic field strengths at the center. This
model allows us to check the validity of the “composition rule”
(see Sect. 2.3).

3.2. Hydrodynamic configurations

3.2.1. Polytropes in rotational equilibrium

For the simulation with a simplified description of matter using
the hybrid EOS (see Sect. 4.1), we construct γini = 4/3 poly-
tropes in rotational equilibrium which we obtain by using the rel-
ativistic generalization of Hachisu’s self-consistent field method
by Komatsu et al. (1989)2. Their rotation law for the specific
angular momentum j is given by

j = A2(Ωc −Ω), (25)

where A parametrizes the degree of differential rotation (stronger
differentiality with decreasing A) and Ωc is the value of the an-
gular velocity Ω at the center. In the Newtonian limit, this re-
duces to

Ω =
A2Ωc

A2 +�2
· (26)

The parameters of the selected models, which are chosen to be
identical to some of the models considered by Dimmelmeier
et al. (2002a), are described in Table 1. In addition, as we aim
at comparing our results with the recent numerical simulations
performed by Obergaulinger et al. (2006b) in Newtonian grav-
ity, a subset of our models (those with purely poloidal magnetic
field) have been selected as general relativistic counterparts of
their models. In Table 1 we also give the values for the gravi-
tational mass Mg (which is identical to the ADM mass MADM)
and for the initial rotation rate β = Erot/|Eb|. In the definition of

2 The adiabatic index should not be confused with the determinant
of the spacetime three-metric, although we use the same symbol γ (fol-
lowing usual practice).

Table 1. Purely hydrodynamic initial models used in the magnetized
core collapse simulations.

Model ρc A β Mg γ1

[1010 g cm−3] [103 km] [%] [M�]
A1B3G3 1.00 50.0 0.90 1.46 1.300
A1B3G5 1.00 50.0 0.90 1.46 1.280
A3B3G5 1.00 0.5 0.90 1.46 1.280
A2B4G1 1.00 1.0 1.80 1.50 1.325
A4B5G5 1.00 0.5 4.00 1.61 1.280
s20A1B1 0.88 50.0 0.25 1.58 –
s20A1B5 0.88 50.0 4.00 1.58 –
s20A2B2 0.88 1.0 0.50 1.58 –
s20A2B4 0.88 1.0 1.80 1.58 –
s20A3B3 0.88 0.5 0.90 1.58 –
E20A 0.42 – 0.37 2.00 –

β we use the following expressions for the rotational kinetic en-
ergy Erot, the gravitational binding energy Eb, and the magnetic
energy Emag:

Erot =
1
2

∫
d3x
√
γ αv̂ϕS ϕ, (27)

Eb = Mg − Mp − Erot − Emag, (28)

Emag =
1
2

∫
d3x
√
γWb2, (29)

where Mp is the proper mass.
For these simplified initial models the gravitational collapse

is initiated by slightly decreasing the adiabatic index from its
initial value to γ1 < γini = 4/3, which results in a loss of pres-
sure support. If no pressure reduction were imposed, the purely
hydrodynamic initial models would remain stationary. However,
even in that case the associated initial magnetic field may not re-
main stationary (see also Table 2 below). Only a purely toroidal
initial magnetic field would not evolve in time, while any mag-
netic field configuration of initial models labeled A1 would still
stay approximately stationary, since these models rotate almost
rigidly, and thus the initial magnetic field cannot wind up itself
strongly.
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3.2.2. Presupernova models from stellar evolution
calculations

As initial models for the simulations where we use a microphys-
ical EOS and deleptonization, we employ the solar-metallicity
20 M� (zero-age main sequence) model of Woosley et al. (2002,
labeled as model s20 in Table 1). On this spherically symmetric
model, which is initially not in equilibrium as it has a non-zero
radial velocity profile, we impose the rotation law (25), using
the same rotation nomenclature as for the previously described
polytropes in equilibrium.

In addition, we perform calculations with the “rotating” pre-
supernova model E20A of Heger et al. (2000), which we map
onto our computational grids under the assumption of constant
rotation on cylindrical shells of constant�.

4. Treatment of matter during the evolution

In this work we improve upon preceding relativistic stellar core
collapse simulations by using an advanced description of micro-
physics as presented in Ott et al. (2007a) and Dimmelmeier et al.
(2007a). For comparison to previous results, we also perform
simulations with the simplified hybrid EOS (Janka et al. 1993).
In the following, we describe both approaches for the treatment
of matter.

4.1. Hybrid EOS

For calculations employing polytropes in rotational equilibrium
as initial models, we utilize the hybrid EOS. Here the pressure
consists of a polytropic part, Pp = Kργ, with K = 4.897 × 1014

(in cgs units), plus a thermal part, Pth = ρεth(γth − 1), where
εth = ε − εp and where we set γth = 1.5. The thermal contribu-
tion is chosen to take into account the rise of thermal energy due
to shock heating. As ρ reaches nuclear density at ρnuc = 2.0 ×
1014 g cm−3, γ is raised to γ2 = 2.5 and K adjusted accord-
ingly to maintain monotonicity of P and ε. Due to this stiffening
of the EOS the core undergoes a so-called pressure-supported
bounce. More details of the hybrid EOS can be found e.g. in
Dimmelmeier et al. (2002a).

4.2. Microphysical EOS, deleptonization scheme,
and neutrino pressure

In our more realistic calculations, for which the models s20 and
E20A from stellar evolution are taken as initial models, we em-
ploy the tabulated non-zero temperature nuclear EOS by Shen
et al. (1998) in the variant of Marek et al. (2005) which in-
cludes baryonic, electronic, and photonic pressure components.
This gives the fluid pressure P (and additional thermodynamic
quantities) as a function of ρ, the temperature T , and the elec-
tron fraction Ye. Since the code operates with the specific in-
ternal energy ε instead of the temperature T , we determine the
corresponding value for T iteratively with a Newton-Raphson
scheme.

To determine the evolution of Ye, the state vector, flux vec-
tor, and source vector for the conservation Eqs. (13), as given in
Eqs. (14)–(16) have to be augmented by the components

DYe, DYev̂
i, S Ye , (30)

respectively. The source term S Ye is a consequence of the elec-
tron captures during collapse, which reduces Ye. This delep-
tonization also effectively decreases the size of the homolo-
gously collapsing inner core, and has thus a direct influence on

the collapse dynamics and the gravitational wave signal. Hence,
it is essential to include (at least an approximate scheme for)
deleptonization during collapse.

Since multi-dimensional radiation hydrodynamics calcula-
tions in general relativity are not yet computationally feasible,
in the simulations using the microphysical EOS we make use of
a a recently proposed scheme (Liebendörfer 2005) where delep-
tonization is parametrized based on data from detailed spher-
ically symmetric calculations with Boltzmann neutrino trans-
port. As in Dimmelmeier et al. (2007a) we take the latest
available electron capture rates (Langanke & Martínez-Pinedo
2000), which result in lower values for Ye in the inner core at
bounce compared to recent results (Ott et al. 2007a) where stan-
dard capture rates were used (Rampp & Janka 2000). Following
Liebendörfer (2005), deleptonization is stopped at core bounce
(i.e. as soon as the specific entropy s per baryon exceeds 3kB).
After core bounce Ye is only passively advected, neglecting any
further deleptonization in the nascent PNS.

Neutrino pressure is included only in the regime which is op-
tically thick to neutrinos, which we define for ρ being above the
trapping density ρt = 2 × 1012 g cm−3. Following Liebendörfer
(2005), here we approximate the contribution of the neutrino
pressure Pν as an ideal Fermi gas and include the radiation stress
via additional source terms in the momentum and energy equa-
tions for the fluid.

5. Outline of the numerical approach

The GRMHD numerical code we use in our simulations is based
on the purely hydrodynamic code described in Dimmelmeier
et al. (2002a,b), and on its extension discussed in Cerdá-Durán
et al. (2005). It has been described in detail in a previous paper
(Cerdá-Durán & Font 2007), which allows us to provide here
only succint information. The code performs the coupled time
evolution of the equations governing the dynamics of the space-
time, the fluid, and the magnetic field in general relativity. The
equations are implemented in the code using spherical polar co-
ordinates {t, r, θ, ϕ}, assuming axisymmetry with respect to the
rotation axis and equatorial plane symmetry at θ = π/2.

5.1. The hydrodynamics solver

For the evolution of the matter fields we utilize a high-resolution
shock-capturing (HRSC) scheme, which numerically integrates
the subset of equations in system (13) that corresponds to the
purely hydrodynamic variables (D, S i, τ). HRSC methods en-
sure the numerical conservation of physically conserved quanti-
ties and a correct treatment of discontinuities such as shocks (see
e.g. Font 2003, for a review and references therein). We have im-
plemented in the code various cell-reconstruction procedures, ei-
ther second-order or third-order accurate in space, namely min-
mod, MC, and PHM (see Toro 1999, for definitions). The time
update of the state vector U is done using the method of lines in
combination with a second-order accurate Runge-Kutta scheme.
The numerical fluxes at the cell interfaces are obtained using
either the HLL single-state solver of Harten et al. (1983) or the
symmetric scheme of Kurganov & Tadmor (2000, KT hereafter).
Both solvers yield results with an accuracy comparable to com-
plete Riemann solvers (with the full characteristic information),
as shown in simulations involving purely hydrodynamic special
relativistic flows (Lucas-Serrano et al. 2004) and general rela-
tivistic flows in dynamical spacetimes (Shibata & Font 2005).
Tests of both solvers in GRMHD have been reported recently by
Antón et al. (2006).
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5.2. Evolution of the magnetic field

The evolution of the magnetic field needs to be performed in
a way that is different from the rest of the conservation equa-
tions, since the physical meaning of the corresponding conser-
vation equation is different. Although the induction equation can
be written in a flux conservative way, a supplementary condi-
tion for the magnetic field has to be given (the divergence con-
straint), which has to be fulfilled at each time iteration. The
physical meaning of these two equations is the conservation of
the magnetic flux in a close volume, in our case each numeri-
cal cell. Therefore, an appropriate numerical scheme has to be
used which takes full profit of such a conservation law. Among
the numerical schemes that satisfy this property (see Tóth 2000,
for a review), the constrained transport (CT) scheme (Evans &
Hawley 1988) has proved to be adequate to perform accurate
simulations of magnetized flows. Our particular implementation
of this scheme (see Cerdá-Durán & Font 2007, for details) has
been adapted to the spherical polar coordinates used in the code.
The discretized evolution equations for the poloidal components
of the magnetic field read

∂tB
∗ r
i+ 1

2 j
=

[sin θ E∗ϕ]i+ 1
2 j+ 1

2
− [sin θ E∗ϕ]i+ 1

2 j− 1
2

ri+ 1
2 j ∆(cos θ) j

, (31)

∂tB
∗ θ
i j+ 1

2
= 2

[r E∗ϕ]i+ 1
2 j+ 1

2
− [r E∗ϕ]i− 1

2 j+ 1
2

∆r2
i

, (32)

where (in vectorial form) E∗ = u∗ × B∗, and where cell centers
are located at (i j), radial interfaces at (i+ 1

2 j), angular interfaces
at (i j + 1

2 ), and cell corners (cell edges along the ϕ-direction)
at (i + 1

2 j + 1
2 ). We note that the evolution equation for the

toroidal magnetic field is analog to that used for the hydrody-
namics, since in axisymmetry this component does not play any
role in the CT scheme. The previous expressions are used in the
numerical code to update the magnetic field. The only remain-
ing aspect is to give an explicit expression for the value of E∗i .
A practical way to calculate E∗ϕ from the numerical fluxes in the
adjacent interfaces (Balsara & Spicer 1999) is

E∗
ϕ i+ 1

2 j+ 1
2
= −1

4

[
(Fr)θ

i j+ 1
2
+ (Fr)θ

i+1 j+ 1
2

−(Fθ)r
i+ 1

2 j
− (Fθ)r

i+ 1
2 j+1

]
, (33)

where the fluxes (15) are obtained in the usual way by solving
the Riemann problem at the interfaces. The combination of the
CT scheme and this way of computing the electric field is called
the flux-CT scheme. It is used in all numerical simulations re-
ported in this paper. Finally, the time discretization of Eqs. (31)
and (32) is performed in the same way as for the fluid evolution
equations.

5.3. The metric solver

The CFC metric equations are five nonlinear elliptic coupled
Poisson-like equations which can be written in compact form
as ∆̂u(x) = f (x; u(x)), where u = uk = (φ, αφ, β j), and f = f k is
the vector of the respective sources. These five scalar equations
for each component of u couple to each other via the source
terms that in general depend on the various components of u.
We use a fix-point iteration scheme in combination with a linear
Poisson solver to solve these equations. Further details on this
type of metric solver can be found in Cerdá-Durán et al. (2005)
and Dimmelmeier et al. (2002a).

5.4. Setup of the numerical grid

We perform all axisymmetric simulations with a resolution (nr ×
nθ) of 300 × 30 zones, except for models labeled A4B5G5 in
which a resolution of 300 × 40 is used due to the more com-
plex angular structure. In both cases the radial grid is equally
spaced for the first 100 points, with a grid spacing of 100 m. The
remaining radial zones are logarithmically distributed to cover
the outer parts of the star and the exterior artificial low-density
atmosphere. The angular grid is equally spaced and we assume
equatorial symmetry. We have performed resolution tests and we
have found that such a resolution is adequate for our simulations
(see Cerdá-Durán 2006; Cerdá-Durán & Font 2007, for details).
As a consequence of our various code tests (see Appendix A)
all results discussed in Sect. 6 correspond to simulations per-
formed using PHM reconstruction and the HLL solver for the
hydrodynamics.

6. Results

We now present the main results from our numerical simulations
of rotational magnetized core collapse to neutron stars. First, we
note that a quantitative summary of our findings is reported in
Table 2, to which we will refer repeteadly. The dynamics of the
models we have selected is identical to the dynamics of the un-
magnetized ones, since the passive field approximation is used.
Therefore, we will not describe here all the morphological fea-
tures of the hydrodynamics of both models with the hybrid EOS
(simplified models hereafter) and models with the microphysi-
cal EOS and the deleptonization scheme (microphysical models
hereafter), as they have been discussed in detail in Dimmelmeier
et al. (2002a,b), and Ott et al. (2007b) as well as Dimmelmeier
et al. (2007a,b), respectively. (It is worth to emphasize, however,
the excellent agreement found in the hydrodynamical simula-
tions performed with three independent numerical codes.) We
pay more attention instead to the magnetic field evolution. In all
our simulations an initial magnetic field strength of B∗0 = 1010 G
is considered. This value is an upper limit for the T3M0 models,
since the expected initial toroidal magnetic field is of this order
(Heger et al. 2005). However, for the D3M0 models, this field
strength is already at (or above) the upper end of the astrophysi-
cally expected values.

For all models we first present results for identical values
of B∗0, in a way that we can study the different effects and com-
pare them properly. Afterwards we present the results scaled to
lower, astrophysically expected values. We anticipate that our
results can change if some of the several assumptions made in
our simulations (axisymmetry and passive field approximation)
are relaxed. An estimation and discussion of these effects can be
found in Sect. 6.6.

6.1. Evolution of the magnetic energy parameter

The evolution of the energy parameter for the magnetic field
βmag = Emag/|Eb| can be seen in Fig. 2 for model A1B3G5 of
our sample. In order to analyze the amplification of the mag-
netic field, we separate the effects of the different components of
the magnetic field into βϕ for the toroidal component and βpolo =
βmag − βϕ for the poloidal component, which are also plotted in
the figure. As the collapse proceeds the magnetic field grows by
at least two reasons: first, the radial flow compresses the mag-
netic field lines, amplifying the existing poloidal and toroidal
magnetic field components. Second, during the collapse of a ro-
tating star differential rotation is produced and increased, even
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Table 2. Hydrodynamical and magnetic field properties of all models computed in this work. From left to right the columns report the name of
the model, the stationarity properties of the initial magnetic field, the maximum rest-mass density ρmax, the maximum poloidal field |Bpolo|max, the
maximum toroidal field |Bϕ|max, the rotational energy parameter βrot, the magnetic energy parameter βmag, its poloidal contribution βpolo, and the
central angular velocity Ωc. The time scale τΩ of the growth of the magnetic field by the Ω-dynamo and the saturation time tsat for this process are
also shown.

Model stationary ρmax |Bpolo|max |Bϕ|max βrot βmag βpolo Ωc τΩ tsat[
1014 g

cm3

]
[1010 G] [1010 G] [10−2] [10−8] [10−8] [ms−1] [s] [s]

A2B4G1-D3M0 no 0.47 400 1467 15.6 8.3 0.9 0.36 85 10.3
A1B3G3-D3M0 approx. 4.22 1719 2522 2.3 1.2 0.8 3.96 7 0.3
A1B3G3-T3M0 yes 4.22 0 1714 2.3 0.2 0.0 3.96 – –
A1B3G5-D3M0 approx. 4.57 1146 1275 0.9 0.5 0.4 3.91 21 0.7
A1B3G5-T3M0 yes 4.57 0 1542 0.9 0.2 0.0 3.91 – –
A1B3G5-DT3M0 approx. 4.57 1146 1537 0.9 0.6 0.4 3.91 21 0.6
A3B3G5-D3M0 no 3.73 984 1672 2.3 0.6 0.4 3.75 24 1.1
A4B5G5-D3M0 no 1.74 1094 2716 8.5 4.4 1.2 1.18 24 2.1
A4B5G5-T3M0 yes 1.74 0 1626 8.5 0.4 0.0 1.18 – –
s20A1B1-D3M0 approx. 2.69 1221 162 0.6 2.9 2.9 1.34 22 0.5
s20A2B2-D3M0 no 2.75 1849 3574 5.8 7.6 3.2 3.55 7 0.5
s20A2B2-T3M0 yes 2.75 0 1365 5.8 0.9 0.0 3.55 – –
s20A1B5-D3M0 approx. 2.69 1100 1011 7.8 3.2 2.4 3.89 10 0.8
s20A1B5-T3M0 yes 2.69 0 1447 7.8 1.2 0.0 3.89 – –
E20A-D3M0 no 2.29 2343 7503 7.7 23.4 1.8 4.37 6 0.5
E20A-T3M0 yes 2.29 0 2739 7.7 1.9 0.0 4.37 – –
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Fig. 2. Time evolution of the magnetic energy parameters βmag (solid
line), βϕ (dashed line), and βpolo (dashed-dotted line) for models
A1B3G5-D3M0 (top panel) and A1B3G5-T3M0 (bottom panel).

for rigidly rotating initial models (see e.g. Dimmelmeier et al.
2002b). Hence, if a seed poloidal field exists, the Ω-dynamo
mechanism winds up the poloidal field lines into a toroidal com-
ponent. This (linear) amplification process generates a toroidal
magnetic field component, even from purely poloidal initial con-
figurations. The toroidal component of the magnetic field is af-
fected by the two effects, while the poloidal field is only am-
plified by radial compression of the field lines. Thus, even if
the initial magnetic field configuration is purely poloidal, the
toroidal component dominates after some dynamical time. To

study the differences in the evolution of the magnetic field de-
pending on the initial magnetic field we now describe in detail
the features of model A1B3G5 with different initial magnetic
field configurations.

In model A1B3G5-D3M0 the initial magnetic field is en-
tirely poloidal. The top panel of Fig. 2 shows that βϕ (dashed
line) grows much faster than βpolo, particularly after bounce
(t ∼ 30 ms) when the radial compression mechanism stops. We
note that the magnetic field considered is weak enough not to
affect the dynamics, with the final βmag � 1.

If we consider a purely toroidal magnetic field initially,
as model A1B3G5-T3M0, the only amplification mechanism
present in our simulations is the radial compression, since no
poloidal field can be wound up. The bottom panel of Fig. 2
shows the behaviour of βmag for model A1B3G3-T3M0. It is
important to notice that during the collapse βmag hardly grows
(for other models of the T3M0 series it even decreases) since the
radial compression is a very inefficient mechanism to amplify
the magnetic field. As a result, for some models the final PNS
is “less magnetized” than the progenitor core in the sense that
βmag at bounce is smaller than it is before the collapse. We note
that the evolution of this kind of purely toroidal models could
change completely if the axisymmetry condition were removed,
since in three dimensions there are mechanisms that can trans-
form a toroidal magnetic field into a poloidal one. Some of these
mechanisms are discussed in Sect. 6.6 below.

To check whether the “composition rule” (see Sect. 2.3)
is valid we consider next a mixed configuration of poloidal
and toroidal magnetic fields at the beginning of the simulation
(model A1B3G5-DT3M0). The top panel of Fig. 3 shows with a
solid line the time evolution of βmag for model A1B3G5-DT3M0
and with a dot-dashed line the composition of the individual
values for βmag in models A1B3G5-D3M0 and A1B3G5-T3M0
with identical initial field strengths. (The separate evolutions for
the latter are also included in the plot as dashed and dotted
lines, respectively.) The agreement of the two evolution paths
is remarkable, which shows that the “composition rule” works
properly for our simulations. Therefore, we can use it to ob-
tain any desirable composition of magnetic fields with a single
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Fig. 3. Time evolution of the magnetic energy parameter βmag. The
top panel shows βmag for model A1B3G5-DT3M0 (solid line) and
the comparison with the composition (dot-dashed line) of models
A1B3G5-D3M0 (dashed line) and A1B3G5-T3M0 (dotted line). The
bottom panel shows the evolution of βmag for the same hydrodynamic
model (A1B3G5) with an initial value of the toroidal field of B∗ 0

ϕ =

1010 G, and varying values of the initial poloidal field B∗ 0
polo, from 106

to 1010 G.

hydrodynamic evolution of the two models D3M0 and T3M0.
For the particular composition showed in this model, the final
value of βmag depends very weakly on the initial toroidal mag-
netic field component. In other words, the structure of the mag-
netic field of the PNS will depend almost exclusively on the
radial compression of the initial poloidal component of the mag-
netic field.

Next, we consider a “composition” of these models with
different initial magnetic field strength. We keep the initial
toroidal component fixed at a realistic value, B∗0

ϕ = 1010 G,
and change the initial poloidal component in a range that spans
from B∗0

polo = 1010 G down to the astrophysically more realis-

tic value of 106 G. The bottom panel of Fig. 3 shows the time
evolution of βmag for these different configurations. For lower
values of B∗0

polo, theΩ-dynamo mechanism becomes increasingly
slower and the initial toroidal component becomes important for
the magnetic field configuration of the PNS. In the lowest ini-
tial poloidal field case analyzed, the magnetic field of the PNS is
completely toroidal and depends exclusively on the initial mag-
netic field configuration.

The remaining computed models of our sample, including
those with microphysics, behave qualitatively in a very similar
manner, although quantitative differences can be found in the
amplification of the magnetic field during the collapse, and the
amplification rates after bounce due to the Ω-dynamo. Figure 4
shows the evolution of the magnetic energy parameter βmag for
all the simulated models with initial purely poloidal magnetic
field (label D3M0). For all models we find the following rela-
tion between the collapse time and the amplification rate of the
magnetic field after bounce (which, however, does not hold for
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Fig. 4. Time evolution of the magnetic energy parameter βmag for
all simulated models with initial purely poloidal magnetic field (la-
bel D3M0).

model A2B4G1-D3M0, as this is the only model of our sam-
ple for which the collapse is halted not by the stiffening of
the EOS, but rather by centrifugal forces at subnuclear densi-
ties; cf. Dimmelmeier et al. 2002b): models with large collapse
times, such as all microphysical models as well as the simpli-
fied model A1B3G3-D3M0, exhibit a more efficient amplifica-
tion of the magnetic field as compared to the rapid collapse mod-
els (G5 series). To quantify the differences between the models
we estimate the time scale τΩ for the amplification of the mag-
netic field by fitting the post-bounce evolution of βmag to

βmag =

(
t
τΩ

)2

· (34)

The resulting values can be found in Table 2. The time scale
should depend on the central angular velocity Ωc of the PNS,
and on the strength of the poloidal magnetic field that can be
wound up, which can be estimated from βpolo. Hence, the fol-
lowing expression should be valid in the most efficient scenario
(see Appendix B for details):

τΩ =
2

Ωc
√
βpolo
· (35)

To check this relation we plot in the top panel of Fig. 5 the
value of the fit for τΩ versus the value from the previous ana-
lytic expression. Apparently for all models the growth time of
the Ω-dynamo is always larger than that of the most efficient sit-
uation (solid line in the figure), and corresponds to a fraction
(30−90%) of the upper limit (35). This relation shows that in or-
der to obtain higher amplification rates of the magnetic field not
only strong rotation is needed, but also a sufficient compression
of the poloidal magnetic field during the collapse.

Furthermore, we also find a relation between the value of
βpolo and the mass enclosed in the neutrino sphere3, MPNS here-
after (see bottom panel of Fig. 5). Since most of the magnetic
field lines compressed by the collapse are located inside the neu-
trino sphere, it is easy to understand that more massive PNS
have higher magnetic energies. The fit to a power law of the data
shown in Fig. 5 yields

βpolo = (3.2 ± 0.5)

×10−8

(
MPNS

M�

)(1.6±0.2) ( B∗0
1010 G

)2

· (36)

3 In all models, we define the neutrino sphere as the surface inside
the core where the density equals the trapping density ρtrap = 2 ×
1012 g cm−3. In the microphysical models, above this density neutrinos
are assumed to be trapped in the medium (Liebendörfer 2005).
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Fig. 5. Top panel: relation between the fitted values for the growth
time τΩ of the Ω-dynamo and the upper limit given by 2Ω−1

c β
−1/2
polo . The

solid line represents the upper limit, the dashed line corresponds to 50%
of that limit, and the dotted line to 10%. Bottom panel: magnetic en-
ergy parameter βpolo of the poloidal component of the magnetic field at
bounce versus the average mass MPNS of the PNS after bounce, and its
fit to a power law. Error bars are shown for models with mass variations
larger than 5% after bounce. Both microphysical models (filled circles)
and simplified models (open circles) are presented. Newtonian models
(crosses) are also shown, but are not used in the fit.

As discussed in detail by Dimmelmeier et al. (2007a,b), in the
microphysical models the mass of the homologously collaps-
ing inner core at bounce has a value of ∼0.5 M� (for the rota-
tion rates considered here). This is also consistent with the high
mass MPNS ∼ 0.8 M� of the PNS in these models, as shown
in Fig. 5. To obtain masses in this range in models with a sim-
ple matter treatment, the adiabatic index would require a value
γ1 >∼ 1.32, which is close to 4/3. Already for moderate rotation,
this choice would cause the core to undergo multiple centrifu-
gal bounces at densities lower than nuclear density (as exem-
plified here in model A2B4G1), which is a dynamical behavior
that does not occur at all in microphysical models (Dimmelmeier
et al. 2007a,b, see also the related discussion in Sect. 6.5).
Therefore, only the microphysical models feature a collapse to a
PNS that has both high densities and is in addition comparably
heavy. This combination, which cannot be realized with the sim-
plified models, explains the higher growth rates of the magnetic
field due to the Ω-dynamo observed if improved microphysics is
taken into account.

Combining Eqs. (35) and (36) we can establish an up-
per limit to the growth rate of the magnetic field due to the
Ω-dynamo using only hydrodynamic quantities, namely Ωc and
MPNS, and the strength of the magnetic field in the progenitor,
B∗0. This limit is given by

τΩ = (11.18 ± 0.9)

×
(
1 ms−1

Ωc

) (
M�

MPNS

)(0.8±0.1) (1010 G
B∗0

)
s. (37)

This relation can be very useful to estimate how fast the mag-
netic field grows in a collapsed star, under the assumption of a
weak magnetic field and with a similar poloidal configuration in
the progenitor, using data from purely hydrodynamical simula-
tions (with no magnetic fields). As a proof of consistency and in
order to assess the quality of this estimate we have computed τΩ
with this method. We find that in all cases the estimate is a lower
limit for the actual value of τΩ obtained from the numerical sim-
ulations and deviates by at most 30%.

6.2. Convection

One of the most important features that can affect the evolution
of the magnetic field in stellar core collapse to a PNS is the pres-
ence of convection. We present here a detailed analysis of this
effect in our simulations. Since in all of our models the magnetic
field is weak, the discussion can be performed without consid-
ering its influence. We also note that due to the approximations
made in our simulations, specifically the lack of a consistent neu-
trino transport scheme, our findings regarding convection should
not be considered as definite.

The stability conditions for a rotating star are given by the
so-called Solberg-Høiland criteria (Tassoul 1978),

CSH1 = g · B +J · ∇� > 0,
CSH2 = (g × ∇�)(B × J) > 0,

(38)

where g is the gravitational acceleration, and the buoyancy and
rotational terms are respectively given by

B = ∇ρ
ρ
− ∇P

PΓ1
, J = 1

�3
∇(Ω2�4), (39)

with Γ1 = (∂ ln P/∂ ln ρ)s,Ye . Note that in the first condition
of Eq. (38), N2 = g · B is the Brunt-Väisälä frequency and
κ2 = J · ∇� is the epicyclic frequency. In the case of either
no rotation or uniform rotation the Solberg-Høiland criteria re-
duce to the well known Schwarzschild criterion, N2 > 0. If one
of the two conditions is not satisfied, convective instability de-
velops. Following Miralles et al. (2004), the time scale of the
fastest growing mode can be computed as

τSH = Im

⎡⎢⎢⎢⎢⎢⎣
(CSH1

2
− 1

2

√
C2

SH1 − 4CSH2

)−1/2⎤⎥⎥⎥⎥⎥⎦ . (40)

It is very useful to express the buoyancy terms in the condi-
tions (38) in terms of the contributions of the entropy and elec-
tron fraction gradients,

B = ξ ∇s + δ∇Ye, (41)

with ξ = −∂ ln P/∂s|ρ,Ye/Γ1 and δ = −∂ ln P/∂Ye|ρ,s/Γ1. We point
out that the Solberg-Høiland criteria are valid exactly only in
Newtonian gravity, and thus we use them here only as estimates.
In order to assess the influence of general relativistic corrections,
we also evaluate Eq. (38) using covariant derivatives with respect
to the CFC metric, which yields very similar results. Note also
that the Solberg-Høiland criteria are based on a local instability
analysis, while the convection observed in our simulations cov-
ers extended regions.

In Fig. 6 we show the extent of the convectively unstable re-
gions according to the Solberg-Høiland criteria (38) after core
bounce for models of the series s20A1B5, by plotting the time
evolution of angle-averaged values for the convective growth
time scale τSH. From this figure it becomes apparent that two re-
gions are susceptible to developing instabilities: the region just
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Fig. 6. Time evolution of the angular averaged value of the growth time
scale τSH, which indicates convectively unstable regions according to
the Solberg-Høiland criteria. White regions represent convectively sta-
ble regions. The top half of the figure shows angular averages near the
pole (0 < θ < π/6), while the bottom half shows the corresponding
averages near the equator (π/3 < θ < π/2). The shock radius (dashed
lines), neutrino sphere radius (dotted line), and radius of shock forma-
tion (dash-dotted line) are also displayed.

below the neutrino sphere (between about 20 km and 40 km) and
extended regions behind the shock. The innermost 2 km of the
star are also convectively unstable, but we suspect that the small
negative entropy gradient responsible of this unstable region is a
numerical artifact of the inner boundary, related to the so-called
wall heating effect commonly appearing in shock reflection ex-
periments (Donat & Marquina 1996). In our simulations of mod-
els of the series s20A1B5, convective motions indeed occur in
those unstable regions as predicted by the instability criteria, as
well as in the surrounding regions due to overshooting. We also
find that the time scale of the onset of the observed instability is
correctly estimated by Eq. (40).

Below the neutrino sphere (20−40 km), convection sets in
inmediately after bounce, with typical maximum velocities of
about 2 × 104 km s−1. The velocities progressively decrease un-
til the end of the simulation (at about 65 ms after bounce) with
average values around 100 km s−1, although convection does not
disappear completely. Behind the shock (100−200 km), the typ-
ical convective velocities are of the order of 1000 km s−1, with
maximum values in some regions of 104 km s−1. This magnitude
remains until the end of the simulation.

For a more detailed analysis we separately evaluate the dif-
ferent contributions in the Solberg-Høiland criteria (38) with
B in the form of Eq. (41). Since the radial gradient of Ye is

positive (as deleptonization is stronger towards the center dur-
ing the collapse), this has an stabilizing effect against convec-
tion. Similarly, rotation also suppresses convection, since the
epicyclic frequency κ2 is positive everywhere. Convective insta-
bility can thus only appear in regions with a sufficiently large
negative radial entropy gradient. Such a gradient occurs in the
region already swept by the shock front. Shock heating creates
entropy most strongly close to the neutrino sphere at a radius of
about 30 km (see Fig. 6), producing a steep gradient there 1 ms
after core bounce. Behind the shock front, which then propa-
gates to larger radii at lower densities and decelerates, another
region with a negative gradient also appears. All our microphys-
ical models show very similar qualitative behavior with some
variations due to different angular momentum distribution and
the description of matter.

In models with slower rotation (i.e. the s20A1B1 series),
strong convection sets in immediately after the occurence of
the negative entropy gradient close to the neutrino sphere. For
models with very little rotation (which have not been consid-
ered in this work), such convective overturn is strong enough
to be clearly visible in the post-bounce gravitational wave sig-
nal (Dimmelmeier et al. 2007a,b). Within about 20 ms after
core bounce, convection has managed to smooth out the en-
tropy gradient around the neutrino sphere, thus removing the
condition for sustained convection. Accordingly, convection is
strongly damped, the vortices disappear quickly, and the low-
frequency contribution to the gravitational wave signal is no
longer visible. This fast convective transient near the neutrino
sphere has been observed in numerical simulations without any
neutrino treatment (see e.g. Burrows & Fryxell 1992; Müller &
Janka 1997), and also in simulations using a neutrino diffusion
scheme (Swesty & Myra 2005), although in the latter case the
time scale for damping of convection is shorter (∼10 ms) than
in our case. However, in simulations including state-of-the-art
Boltzmann neutrino transport (Müller et al. 2004), a few ms af-
ter core bounce no significant convection remains in this region,
and no traces in the gravitational wave signal can be found. We
attribute this disagreement with our results to the simplified neu-
trino treatment in our models, which cannot properly take into
account the deleptonization of the PNS after core bounce. As
the deleptonization of the PNS is initially strongest when the
shock travels through the neutrino sphere, we expect the most
significant inaccuracies of our formulation there. We therefore
conclude that the convection over ∼20 ms, which we observe in
the neutrino sphere region, is an artifact that should disappear
once a more realistic neutrino description is included.

In more rapidly rotating models, the stabilizing effect of rota-
tion in the Solberg-Høiland criteria prevents the strong transient
we find in the slowly rotating models from developing, and sig-
nificantly weaker convection is present in this region. However,
irrespective of rotation, convection vortices are formed behind
the decelerating shock front. On post-bounce evolution times of
several 10 ms, the weak but persistent convection is unable to
remove the entropy gradient behind the shock, except near the
rotation axis, where the specific angular momentum is smaller,
and convection is stronger.

Rotation also influences the shape of the convective cells.
If the buoyancy terms in the Solberg-Høiland criteria (38) are
much larger than the rotation terms, the convective cells show no
preferred direction. We observe this feature particularly in mod-
els with slower rotation (the s20A1B1 series), and to a lesser
degree also in other convectively unstable models in the first
few ms after bounce. If the buoyancy terms are comparable in
magnitude to the rotation terms, convection develops preferredly



P. Cerdá-Durán et al.: Relativistic passive-magneto-rotational core collapse 181

0 10 20 30 40 50 0 10 20 30 40 500 10 20 30 40 50

30

50

20

40

0

10

10

11

12

13

14

30

50

20

40

0

10

10

11

12

13

14

30

50

20

40

0

10

+ −
lo

g 
( 

 B
   

/ |
B

   
   

 |)
ϕ

po
lo

−2

−1

0

1

2

po
lo

lo
g 

|B
   

   
 |

lo
g

ρ

0 10 20 30 40 50 0 10 20 30 40 50
−2

−1

0

1

2

0 10 20 30 40 50

30

50

20

40

0

10

10

11

12

13

14

30

50

20

40

0

10

10

11

12

13

14

30

50

20

40

0

10

+
ϕ

po
lo

−

po
lo

lo
g 

( 
 B

   
/ |

B
   

   
 |)

lo
g

ρ

lo
g 

|B
   

   
 |

Fig. 7. Configuration of the innermost region of the collapsed star at the end of the evolution for models A1B3G5-D3M0 (top panels; t = 60 ms)
and s20A1B1-D3M0 (bottom panels; t = 142.5 ms). The left panels show the rest mass density as log ρ in units of g cm−3, overplotted by the
meridional velocity field (vr , vθ) (arrows), and isocontours of the specific internal energy ε. The center panels display the logarithm of the poloidal
component of the magnetic field, log |Bpolo|, in units of G and the magnetic field lines in the r–θ plane. The right panels show Bϕ/|Bpolo|. All axes
are in units of km.

parallel to the rotation axis (see e.g. Miralles et al. 2004). This
effect is present in our microphysical models at later phases, as
the entropy gradient has already been partially smoothed out and
the buoyancy terms have become smaller.

In contrast to the microphysical models, which show remark-
able convection in the PNS and behind the shock front, models
with a simplified matter treatment exhibit either no convection at
all, or only close to the neutrino sphere (in the case of models of
the A1B3G5 series). This is a consequence of using the hybrid
EOS in the latter models, which is unable to properly decelerate
the shock after core bounce and turn it into an accretion shock.
Hence in these models the entropy gradient is mostly positive
behind the shock.

6.3. Structure of the magnetic field

The main qualitative differences between the various mod-
els become apparent when we study the detailed structure
of the magnetic field of the resulting PNS. In Fig. 7 we
show two-dimensional snapshots of selected hydrodynamic
and magnetic field variables at the final time of the simu-
lations for two representative models of our sample, namely
model A1B3G5-D3M0 (top panels) and model s20A1B1-D3M0
(bottom panels). For typical simulations with initial poloidal
magnetic fields (D3M0 models) the resulting PNS has two
clearly distinct parts (see left panels of Fig. 7): an inner region
with a size of ∼10 km, where nuclear density is exceeded and
which is almost rigidly rotating, and a surrounding shell extend-
ing to the neutrino sphere at ∼30 km, with subnuclear densities
and which is strongly differentially rotating. These two parts are
also visible in the distribution of the magnetic field (see center
and right panels of Fig. 7). The inner region has a mixed toroidal
and poloidal magnetic field configuration, with both components
having similar strength, which results in a helicoidal structure

aligned with the rotation axis. As this part of the PNS is almost
rigidly rotating and practically in equilibrium, the magnetic field
hardly evolves in time. On the other hand, the outer shell is dif-
ferentially rotating; thus the toroidal magnetic field component
dominates and grows linearly with time due to the Ω-dynamo
mechanism.

If we compare the microphysical with the simplified simu-
lations, we find that some significant morphological differences
arise due to the stronger convection in the microphysical models
just below the neutrino sphere. These motions affect the mag-
netic field, since they twist the poloidal magnetic field lines, gen-
erating a much more complicated structure of the poloidal field
for those models. In particular those strong meridional currents
distort the magnetic field in such a way that in some regions the
poloidal component changes direction with respect to the rota-
tion axis (see e.g. bottom-right panel of Fig. 7). This produces a
negative effect in theΩ-dynamo as in these regions the magnetic
field is wound up in the opposite direction. However, the overall
Ω-dynamo mechanism seems not to be affected in a significant
way by these local effects.

Model A4B5G5-D3M0 has to be discussed separately, since
it has initially significantly stronger differential rotation and
more angular momentum than the other models. As a result this
model undergoes a core bounce due to centrifugal hang-up be-
fore reaching nuclear density. Its structure is toroidal with an
off-center maximum density. Although it exhibits stronger dif-
ferential rotation at the beginning compared to the other mod-
els, and the amplification process during collapse is thus more
efficient, after bounce its angular velocity Ω is smaller (as the
PNS is less compact) and therefore the linear amplification due
to Ω-dynamo is less pronounced. The main differences in the
magnetic field structure of its PNS with respect to the other
models are that, first, the Ω-dynamo is active not only in the
high-density torus, but also in the central lower-density region,
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Fig. 8. Comparison of the time evolution of the magnetic energy Emag for models A1B3G3-D3M0 (left panel), A3B3G5-D3M0 (center panel) and
A2B4G1-D3M0 (right panel). The line styles represent simulations performed in general relativity (solid lines), a purely Newtonian treatment
(dotted lines), and Newtonian hydrodynamics with an effective relativistic TOV potential (dashed lines).

and, second, the strong meridional currents twist the magnetic
field lines around the torus. However, we point out that in the
investigated range of initial rotation configurations all micro-
physical models are significantly less influenced by rotation than
the simplified models (like A4B5G5), and that even for rather
extreme rotation such collapse dynamics, leading to a toroidal
structure, is strongly suppressed if an advanced description of
microphysics is used (which is in accordance with the compre-
hensive parameter study by Dimmelmeier et al. 2007a).

In the models with initially purely toroidal field at the begin-
ning (T3M0 series), a poloidal field cannot emerge in axisymme-
try. Hence, the final magnetic field structure of the PNS consists
of a stationary and entirely toroidal magnetic configuration with
the highest field strengths found in the high density regions. As
the rotational profile does not affect the distribution of the mag-
netic field, the different regions of the PNS are not visible in the
structure of the magnetic field.

6.4. Comparison with Newtonian results

In order to study the general relativistic effects in the evolution
of the magnetic field, we choose a subset of our simulations
with the hybrid EOS to represent the relativistic version of some
of the models of Obergaulinger et al. (2006a,b). Their first pa-
per is devoted to Newtonian simulations of magneto-rotational
core collapse, while in their second paper an effective relativis-
tic gravitational potential was used to mimic general relativis-
tic effects (while still keeping a Newtonian framework for the
hydrodynamics; TOV models in their notation). Since in con-
trast to their work we use the passive field approximation, the
comparison can only be made with the low magnetic field mod-
els presented in that work, namely the “M10” models. In these
models the magnetic field does not affect the collapse dynamics
and our approximation is valid. Although there are no qualitative
differences between Newtonian and general relativistic models
(aside from those coming purely from the hydrodynamics as de-
scribed in Dimmelmeier et al. 2002a,b), some dissimilarities can
be found in the magnetic field strength and amplification rates
after core bounce.

We have studied the evolution of the magnetic energy pa-
rameter βmag for the various models, and plot the results in
Fig. 8. Note that for the same initial magnetic field, the mag-
netic field contribution to the magnetic energy parameter dif-
fers between a purely Newtonian treatment, a Newtonian for-
mulation with the effective relativistic TOV potential, and gen-
eral relativity. As a consequence, the initial value of βmag is not
the same in these three cases. In order to be able to make an

unambiguous comparison, we scale the magnetic fields such that
βmag in the initial model is equal to the value in general rela-
tivity. In general, for a similar hydrodynamic behavior (mod-
els A1B3G3-D3M0 and A3B3G5-D3M0) the magnetic energy
attained during the evolution is smaller in the general relativistic
case than in the Newtonian case (with either regular or effective
relativistic TOV potential).

The winding up of magnetic field lines is the main mecha-
nism responsible for the increase of the magnetic field during the
collapse. Therefore the amplification rate for βmag is determined
by what rotation rate is reached and also by how strongly the
poloidal component of the magnetic field is compressed. In the
general relativistic case both higher densities and also stronger
rotation are achieved (Dimmelmeier et al. 2002b). To investi-
gate the impact of general relativistic gravity on the magnetic
field compression, we consider βpolo as this quantity is the seed
for the Ω-dynamo. In general relativity the PNS has in general
a smaller mass MPNS than in the corresponding Newtonian sim-
ulation of the same model. Following the relation established
in Sect. 6.1 (see the bottom panel of Fig. 5), the smaller PNS
mass in the general relativistic simulation leads to a lower value
of βpolo. Therefore in that case, despite the larger Ωc the much
smaller magnitude of βpolo results in a longer time scale for the
Ω-dynamo via Eq. (35), and hence a smaller growth rate of the
magnetic field.

In the multiple centrifugal bounce model A2B4G1-D3M0,
general relativistic effects lead to a bounce at significantly higher
maximum densities than in Newtonian gravity. Therefore, this is
the only investigated model where MPNS, and consequently βpolo
as well as βmag are larger in the general relativistic simulation.

6.5. Gravitational waves

We calculate the gravitational wave output from all of our
simulations using the Newtonian quadrupole formula given
in Eq. (22), which includes the magnetic terms. Thus, the
quadrupole wave amplitude AE2

20 , which is related to the dimen-
sionless quadrupolar strain amplitude hquad as

hquad =
1
8

√
15
π

sin2 θ
AE2

20

R
, (42)

contains the contribution AE2
20 mag corresponding to the magnetic

field. Here hquad is the only independent component of the radia-
tive part hquad

i j of the spatial metric as given by Eq. (20). In order
to understand how the magnetic field affects the waveforms, we
also separately compute AE2

20 mag. The resulting waveforms for
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some representative models are shown in Fig. 9. As the mag-
netic field is very low at all times, b2 � ρ, the component of the
gravitational wave due to the magnetic field is several orders of
magnitude smaller than AE2

20 .
Therefore, during the core bounce and the immediate post-

bounce phase, the waveforms we obtain are practically iden-
tical to the ones presented for the same model setup in
Dimmelmeier et al. (2002a) (for the simplified models) and
Dimmelmeier et al. (2007a) (for the microphysical models),
which can also be downloaded from a freely accessible wave-
form catalog at www.mpa-garching.mpg.de/rel_hydro/
wave_catalog.shtml. The values for AE2

20 lie in the range be-
tween about 30 cm and 3000 cm, which translates to a hquad of
roughly 3 × 10−22 to 3 × 10−20 (assuming a distance R = 10 kpc
to the source and optimal orientation between the source and the
detector).

We also emphasize that all investigated microphysical mod-
els yield gravitational wave signals known as type I in the litera-
ture, i.e. the waveform exhibits a positive pre-bounce rise and
then a large negative peak, followed by a ring-down. This is
to be expected, as recent studies using the same hydrodynam-
ical model setup (Ott et al. 2007a; Dimmelmeier et al. 2007a)
have shown that the inclusion of microphysics in stellar core col-
lapse simulations suppresses the other signal types, which were
associated to multiple centrifugal bounce (type II signals) or
rapid collapse with a very small mass of the inner core (type III
signals).

After bounce, the star reaches a quasi-equilibrium state,
and thus, the hydrodynamic component of the waveform de-
creases. At the same time, for models D3M0, the magnetic field
grows linearly with time. Such a behavior in the magnetic field
produces an increasing gravitational wave signal, which grows
quadratically with time due to the dependence on the magnetic
field in Eq. (22). However, at the end of the simulation, the mag-
netic field component of the waveform is still negligible in com-
parison with the hydrodynamic component. It is expected that
at later times, as the amplification of the magnetic field reaches
saturation, the influence of the magnetic field on the waveform
becomes significant, both due to its effect on the dynamics and
also due to the contribution of the magnetic field to the gravi-
tational radiation itself. We note, however, that the effect of the
MRI could additionally lead to noticeable changes in the wave-
forms, provided it were able to efficiently amplify the magnetic
field (see discussion in Sect. 6.6.2).

For models T3M0, on the other hand, the component of the
waveform due to the magnetic field is even smaller than for the
D3M0 models. This is a consequence of the inefficient ampli-
fication of the magnetic field via the radial compression. After
bounce, the magnetic component of the waveforms in mod-
els T3M0 does not grow, and hence it is not expected to dom-
inate the waveform later in the evolution, unless other processes
amplifying the magnetic field were present.

6.6. Amplification of the magnetic field

Different mechanisms that amplify the magnetic field can act
during a core collapse or the subsequent evolution of the newly
formed PNS. This issue is of great importance, since the evo-
lution of the PNS during its first minute of life until a cold
NS forms can change drastically depending on the initial con-
ditions at formation. One of the most important aspects is the
distribution of angular momentum. A highly differentially rotat-
ing PNS can be subject to various types of instabilities, such as
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Fig. 9. Absolute value of the gravitational wave amplitude AE2
20 (solid

line) for models A1B3G5-D3M0/T3M0/DT3M0 (top panel) and
s20A1B5-D3M0/T3M0 (bottom panel). For the low magnetic field
strengths considered, the contribution of the magnetic field to the wave-
form is negligible, and the signals of series D3M0, T3M0, and DT3M0
are practically identical to the purely hydrodynamic waveform. For clar-
ity, the component AE2

20 mag from the magnetic field is also plotted for
models A1B3G5-D3M0 (top panel, dashed line), A1B3G5-T3M0 (top
panel, dotted line), A1B3G5-DT3M0 (top panel, dashed-dotted line),
s20A1B5-D3M0 (bottom panel, dashed line), and s20A1B5-T3M0
(bottom panel, dotted line).

the dynamical low-β instability, the classical bar-mode instabil-
ity (which is unlikely to occur in a PNS on dynamical time scales
as it requires very high values of β), or the secular CFS instabil-
ity. Such instabilities are potential sources of detectable grav-
itational radiation. Therefore, a natural question that arises is
whether the magnetic field is going to grow sufficiently fast to
act on the PNS dynamics by flattening the rotation profiles (and
therefore preventing the instabilities to develop), or whether, in-
stead, the growth process may take a few seconds, allowing the
instabilities to grow and the accompanying gravitational waves
to become detectable. A number of effects can amplify the mag-
netic field shortly after PNS formation. In the following, we dis-
cuss these effects and estimate their importance for our models
of core collapse4.

6.6.1. Ω-dynamo

Within our passive field approximation we can only compute the
amplification rates for the Ω-dynamo, for which the magnetic
field grows linearly with time; therefore βmag grows quadrati-
cally with time (see Appendix B). The time scale τΩ of this am-
plification process and the estimated time tsat at which the field

4 For these estimates we utilize the Newtonian limit, since most of
the work on linear analysis of instabilities has not yet been extended
to general relativity. Furthermore, for an approximate assessment, the
restriction to a Newtonian treatment appears sufficiently accurate.
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saturation begins are given in Table 2. In the fastest case of our
model sample, which occurs for model A1B3G3-D3M0, satu-
ration is reached at about 300 ms, and in most other cases, the
Ω-dynamo saturates at times larger than 0.5 s. Note, however,
that these estimates depend on the initial magnetic field strength,
which is chosen to be B∗0 = 1010 G. For lower values of the mag-
netic field these time scales can be scaled as (see Eq. (B.5))

τΩ ≈ τΩ 10

(
1010 G

B∗0

)
, tsat ≈ tsat 10

(
1010 G

B∗0

)
· (43)

We recall that stellar evolution calculations predict that in a pro-
genitor core the poloidal component of the magnetic field can
initially have a strength of about 106 G (Heger et al. 2005).
For such an initial magnetic field the saturation time scale be-
comes several hours. This makes the Ω-dynamo a very ineffi-
cient mechanism to amplify the magnetic field during core col-
lapse and bounce, unless the progenitors are highly magnetized
(B > 1010 G) for which the saturation could be reached within a
few dynamical time scales. The magnetic field at the saturation
is independent of the initial magnetic field strength and of the
order of ∼1016 G.

6.6.2. Magneto-rotational instability

There are other magnetic field amplification processes that our
simulations cannot account for, but for which it is nevertheless
possible to estimate the growth rates. It has been suggested that
the magneto-rotational instability could amplify the magnetic
field from arbitrary weak fields up to values where equiparti-
tion between the magnetic field energy and the rotational kinetic
energy is reached (Akiyama et al. 2003). However, our analysis
shows that in the context of core collapse such an amplification
is still an open issue. We proceed next to describe the MRI and
the uncertainties related to its effect on the amplification of the
magnetic field in core collapse.

Linear regime: the MRI is a shear instability that generates tur-
bulence and results in an amplification of the magnetic field in
a differentially rotating magnetized plasma (Balbus & Hawley
1991, 1992), redistributing angular momentum in the plasma.
Linear analysis shows that if the magnetic field strength is very
low, as in our case, the stability criteria for the MRI in the
Newtonian limit (Balbus 1995) are

CMRI1 = g · B + R · ∇� > 0,
CMRI2 = (g × ∇�)(B × R) > 0,

(44)

where R = �∇(Ω2). Note that these criteria are very similar
to the Solberg-Høiland criteria (38) for convection, but use an
angular velocity gradient R instead of an angular momentum
gradient J . Since in the core collapse scenario R ≤ 0 is sat-
isfied almost everywhere, it is important to compute the buoy-
ancy terms given by B to estimate the onset of the MRI. For
regions with B > 0 (i.e. with a negative entropy gradient that
is strong enough to compensate the positive electron fraction
gradient term in Eq. (41)), the first criterion is not fulfilled.
Furthermore, for regions with B < 0 (i.e. a positive or suffi-
ciently small negative entropy gradient), the second criterion is
neither satisfied. This means that the presence of a adequately
strong negative entropy gradient (which also leads to convective
instability) enhances the MRI, although a positive entropy gra-
dient does not affect the condition for MRI instability. Note that
this peculiarity is caused by the negative value of R, and does

not happen in the Solberg-Høiland criteria (38) for convection,
as J > 0 in that case. If at least one of the criteria (44) is not
satisfied and a magnetic field is present, then fluid and magnetic
field perturbations grow exponentially in time. Neglecting buoy-
ancy terms, the time scale for the fastest growing unstable mode
can be roughly estimated as5

τMRI = 4π
∣∣∣∣∣ ∂Ω∂ ln�

∣∣∣∣∣
−1

, (45)

which is independent of the magnetic field configuration and
strength. Only those modes with a length scale larger than a
critical wavelength will grow (Balbus & Hawley 1991). This
length scale can roughly be estimated as λMRI ∼ 2πcA/Ω, where
cA =

√
B2/ρ is the Alfvén speed. For the typical values attained

in the nascent PNS, in which the dominant magnetic field is
toroidal, the critical length scale is

λMRI ≈ 62

(
B∗0

1010 G

) (
1 ms−1

Ω

) (
1014 g cm−3

ρ

)1/2

m. (46)

Note that we have scaled the length scale with the typical mag-
netic field strength B∗0 of the progenitor, and not with that of
the PNS itself. For the poloidal component and realistic values
of the initial magnetic field (B∗0 ∼ 106 G) this length scale is
reduced by several orders of magnitude (λMRI polo ∼ 0.6 cm). In
any case, resolving the scales needed to simulate the MRI is a
challenging problem as, in the case of weak magnetic fields, the
wavelength of the fastest growing mode (which is close to the
critical length scale) is typically much smaller than the available
grid resolution.

Non-linear regime: linear analysis provides tools to determine
the onset of the instability and the typical time and length scales.
However, once the perturbations of the magnetic field reach val-
ues comparable to the magnetic field itself, linear analysis is no
longer valid (although in the weak field case the perturbations of
the fluid variables are still small). The amplification of the mag-
netic field due to the MRI is therefore a nonlinear effect, and
can only be studied by means of numerical simulations. The ap-
propriate numerical approach, due to the smallness of the length
scales necessary to be resolved, are local simulations of the MRI
in a shearing box. Numerical simulations of this kind in three
dimensions have been performed by Hawley et al. (1995) in the
context of accretion discs. They show that if the instability con-
dition of linear analysis is fulfilled, then the amplification of the
magnetic field proceeds by the formation of an axisymmetric
channel flow. This is well understood, since the linear MRI solu-
tion is also a solution of the nonlinear axisymmetric MHD equa-
tions (Goodman & Xu 1994). In the ideal MHD limit, the ampli-
fication saturates when nonaxisymmetric perturbations destroy
the channel flow. It is important to emphasize the necessity of
performing three-dimensional simulations in the shearing box
since, in axisymmetry, the channel flow is not destroyed and any
magnetic field is able to grow continuously, reaching saturation
only when the MRI length scale is of the order of the region in
which the MRI is present (Hawley & Balbus 1992).

5 We note that Balbus & Hawley (1991) derived a complicated ex-
pression including bouyancy terms which, however, is only valid in the
equatorial plane. To the best of our knowledge the timescale for the
fastest growing mode in the general case has not been computed so far.
It would require solving the dispersion relation, a task out of the scope
of this paper.
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Fig. 10. Time evolution of the angular averaged value of the growth time scale τMRI of the fastest growing mode of the MRI for mod-
els A1B3G5-D3M0 (left panel) and s20A1B5 (right panel). White regions are stable to the MRI. The top half panels show angular averages
of τMRI near the pole (0 < θ < π/6), while the bottom half panels show these averages near the equator (π/3 < θ < π/2). The shock radius (dashed
lines), neutrino sphere radius (dotted line), and radius of shock formation (dash-dotted line) are also displayed.

For a magnetic field distribution with zero mean at large
scales, the amplification proceeds from arbitrarily weak fields
(Hawley et al. 1996) and saturates irrespective of the initial mag-
netic field at average values of Pmag/P0 ∼ 0.01, where P0 is the
initial gas pressure. If a mean magnetic field is present (as in our
case), the saturated magnetic field depends on the initial mag-
netic field strength. In the most favorable case of a vertical mag-
netic field, the total amplification by the MRI is only about a fac-
tor 20 of the original field, this amplification being even smaller
in the case of a purely toroidal field (Hawley et al. 1995). On the
other hand, Sano et al. (2004) have suggested that for sufficiently
weak magnetic fields the saturation level could be independent
of the initial field and equal to that in the zero-mean case. If this
were confirmed it would mean that, for the weak magnetic field
strength present in our magneto-rotational core collapse models
(Pmag/P0 ∼ 10−8 in the PNS for progenitors with B∗0 = 1010 G),
a magnetic field of ∼1016 G could be reached on time scales
of τMRI. Such a strong magnetic field would have a significant
effect on the dynamics, similar to that observed in numerical
simulations with highly magnetized progenitors (Obergaulinger
et al. 2006b,a; Shibata et al. 2006). In the opposite case, the MRI
would fail to considerably amplify the magnetic field, and for a
purely toroidal field the magnetic field should grow only by a
factor of about 3 according to Hawley et al. (1995).

The inclusion of more complex physics relevant for the core
collapse scenario (like radiation, diffusion, or resistivity) can sig-
nificantly change the amplification process, since in the nonideal
case the reconnection of magnetic field lines seems to be the
dominant effect in the saturation process of the MRI. In general,

these effects act towards lowering the values of the saturation;
for reasons of simplicity we do not consider them in this dis-
cussion (see Hawley 2005, and references therein for a detailed
review on this topic).

Furthermore, it has to be noted that all local simulations of
the MRI have been performed in the context of Keplerian accre-
tion discs, and, hence, some of the underlying physical condi-
tions are not valid in the case of a PNS. For example, the typical
sound speed cs in those simulations is of the order of 10−3. Only
the parametric study performed by Sano et al. (2004) covers a
wider range of values of cs ∼ 10−8−10−2 in units of c. However,
the sound speed in a PNS is higher, cs ∼ 10−1. Rotational veloc-
ities and profiles are also very different in a disc and a PNS.
Therefore, appropriate local simulations of the PNS scenario
should eventually be performed in order to confirm the growth of
the MRI for a weakly magnetized PNS, and to infer the magnetic
field at which the instability saturates.

Our results: as the MRI involves a backreaction of the mag-
netic field onto the dynamics, we cannot study this effect in
our simulations, as we assume the passive field approximation.
Furthermore, even with “active” magnetic fields, both the reso-
lution needed to resolve the MRI length scale (∼10 m) and the
requirement for three-dimensional simulations are not affordable
with present computers. Therefore, we are limited to analyz-
ing whether our magnetized collapse models are susceptible to
developing such an instability according to linear analysis esti-
mates, leaving aside the issue of saturation, whose uncertainties
need a deeper analysis which is beyond the scope of this work.
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In order to estimate how MRI could change our results if it were
taken into account properly, we determine the regions where the
MRI instability criteria (44) are not satisfied. Inside these re-
gions we calculate the time scale for the fastest growing mode. In
Fig. 10 we show the results for the models A1B3G5-D3M0 (left
panel) and s20A1B5-D3M0 (right panel). We note that since the
onset of the MRI is independent of the magnetic field strength,
provided that a poloidal component exists, any composition of
D3M0 and T3M0 models has the same instability properties as
the D3M0 models.

Our analysis of all computed models shows that during the
infall phase the MRI is either not possible or the typical time
scales involved are much larger (i.e. >10 s) than the duration
of the collapse itself. Therefore the instability can affect nei-
ther the dynamics nor the magnetic field strength in that phase.
Around the time of core bounce, the angular velocity gradient is
larger and the MRI time scale becomes dynamical. Almost the
entire region between the shock formation radius (at ∼10 km)
and the shock itself is MRI unstable with time scales of the
order of ∼1−10 ms. Note that the innermost part of the PNS
rotates rigidly, and therefore the MRI unstable region that ap-
pears in the inner 2 km is possibly a numerical artifact caused by
the probably unphysical negative entropy gradient mentioned in
Sect. 6.2. Some differences appear when comparing microphys-
ical and simplified models.

A general feature of the microphysical models is the post-
bounce appearance of a negative entropy gradient (regions with
N2 < 0, see Sect. 6.2). This property is much less prominent
in the simplified models (except in model A1B3G5). Thus, the
presence of a such gradient in the microphysical models en-
hances the occurence of the MRI behind the shock as compared
to the simplified models (see Fig. 10), since in these regions the
cause for the instability is mainly the presence of a negative en-
tropy gradient. Around the neutrino sphere the presence or ab-
sence of a negative entropy gradient does not affect the onset
of the instability since it is caused by the strong negative angular
velocity gradient. Therefore, only small differences can be found
in the latter region between the simplified and the microphysical
models.

As a result of this analysis, for collapse progenitors with a
magnetic field smaller than 1010 G (hence including astrophysi-
cally more relevant initial values of 106 G), we infer that pertur-
bations of the magnetic field are going to grow exponentially on
dynamical time scales and will reach saturation in the unstable
regions mentioned above. However, the value of the magnetic
field at which saturation appears is still unknown, which is a key
issue in order to establish the effects of the MRI, if any, on the
dynamics. Nevertheless, even if the MRI were unable to con-
siderably amplify the magnetic field, it could still play a major
role at late times during the evolution of the PNS, provided other
amplification mechanisms were capable to increase the magnetic
field to significant larger values (see below). In such a situation
the MRI could have an impact on the dynamics by transporting
angular momentum outwards and driving the PNS towards rigid
rotation.

6.6.3. Dynamo mechanisms

The wind-up process of the magnetic field (Ω-dynamo) dis-
cussed before is a mechanism that works by transforming the
poloidal magnetic field into a toroidal field and extracting energy
from differential rotation. In axisymmetry this process amplifies
the magnetic field linearly with time as long as differential ro-
tation exists. If the axisymmetry condition is relaxed, however,

a number of instabilities of the toroidal field can transform the
toroidal magnetic field back into a poloidal magnetic field. This
feedback then “closes” the dynamo process.

The first group of instabilities are those related to convec-
tive unstable regions, neutron-finger instabilities (due to a neg-
ative composition gradient) and, in general, turbulence. In these
cases the α-effect is the one which closes the dynamo in the
α-Ω-dynamo (Thompson & Duncan 1993). Computations of this
effect (Bonanno et al. 2005) suggest that even for a rapidly ro-
tating PNS with a period around 1 ms (i.e. comparable to the
models presented here), the time scale for the growth of the mag-
netic field is ∼1 s. Therefore, this effect is probably not impor-
tant after core bounce on dynamical time scales. However, for
larger time scales (i.e. several seconds), and if the MRI is not
efficient enough, this mechanism will most likely amplify the
magnetic field, leading to magnetic braking of the PNS within a
few seconds.

There are also types of instabilities that can act in stably
stratified regions, i.e. regions which are convectively stable.
Spruit (1999) has proposed the Tayler instability (Tayler 1973)
as a mechanism to close the dynamo. This dynamo has been con-
firmed in numerical simulations by Braithwaite (2006a,b). The
condition for this kink-type instability to grow in the rotating
case (m = 1 mode) is (Spruit 1999)

∂θ ln B2
ϕ sin θ cos θ > 0, (47)

which is satisfied almost everywhere inside the star in our sim-
ulations. The growth rate of the instability is of the order of the
Alfvén time scale,

τT =
2π
ΩA

(Ω � ΩA), τT =
2πΩ

Ω2
A

(Ω � ΩA), (48)

where ΩA = cA/R and R is the typical size of the region con-
sidered. In case this instability appears, it destroys the toroidal
magnetic field by transforming it into a poloidal field which
feeds back the amplification of the toroidal magnetic field via
the Ω-dynamo. Therefore, the dynamo is only effective if the
Ω-dynamo is able to generate a toroidal magnetic field faster
than the Tayler instability destroys that field, i.e. τT � τΩ.
Saturation is then reached as τT ≈ τΩ. Note that depending on
the system, the saturated magnetic field can be weak enough not
to affect the dynamics.

If we consider the typical toroidal magnetic field at bounce
to be 1013 G (as in the T3M0 models) with a typical density in
the PNS of ρ ∼ 2 × 1014 g cm−3 and a typical size of the inner
region of R ∼ 10 km, then the time scale for the growth of the
Tayler instability is strongly increased by rotation,

τT ≈ 3

(
1010 G

B∗0

)2 ( R
10 km

)2 (
Ωc

1 ms−1

)
h, (49)

which we obtain from the Ω � ΩA limit of Eq. (48).
This means that for a typical progenitor with a toroidal mag-

netic field of B∗0
ϕ ∼ 1010 G, the instability proposed by Spruit

(1999) is going to be very inefficient in amplifying the mag-
netic field. However, on a longer time scale, when other mecha-
nisms could amplify the magnetic field (e.g. the α-Ω-dynamo),
the Tayler instability could also become important.

7. Conclusions

In this paper we have presented numerical simulations of the
collapse of rotating magnetized stellar cores in the CFC ap-
proximation of general relativity, as well as tests assessing our
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numerical approach for solving the ideal general relativistic
magneto-hydrodynamics (GRMHD) equations.

As initial models we have set up (either fully or nearly) sta-
tionary configurations of weakly magnetized stars in general rel-
ativity, with either toroidal or poloidal (or both) magnetic field
components. We have used the “test” passive field approxima-
tion for evolving these initial models, for which the magnetic
pressure in all cases considered is several orders of magnitude
smaller than the fluid pressure.

We have performed tests to check the accuracy and conver-
gence properties for the GRMHD extension of our code. For
magnetic field quantities we have found an order of convergence
above 1 in all of the performed tests. These results are consistent
with the second-order accuracy (in space and time) of our nu-
merical scheme, reduced to first order only at shocks and local
extrema. The errors in all of the cases in which the theoretical
solution is known are below 0.1%, except at shocks, which are
correctly captured within only few numerical cells thanks to the
use of high-resolution shock-capturing schemes.

For the simulations of magnetized core collapse, we have
considered cases with magnetic fields which are initially either
purely poloidal (series D3M0), purely toroidal (series T3M0),
or a combination of both. The D3M0 models are a general rela-
tivistic extension of a subset of the cases evolved in fully coupled
MHD by Obergaulinger et al. (2006a,b), who used a Newtonian
formulation (approximating general relativistic effects to some
extent in the latter work). One of our aims has been to com-
pare the dynamics and gravitational waveforms with their re-
sults. No qualitative differences have been found in the models
studied, while quantitatively the strength of the magnetic field at
bounce and after the collapse are consistently smaller in general
relativity.

We have also compared simulations of models with im-
proved microphysics (employing a tabulated non-zero temper-
ature equation of state (EOS) and an approximate but effective
deleptonization scheme) with the simple (though still widely
used) analytic hybrid EOS. The results show that the microphys-
ical models (i) lead to a more complex structure of the poloidal
magnetic field due to convective motions surrounding the inner
region of the PNS, and (ii) exhibit a wind-up of the magnetic
field (Ω-dynamo) that is more efficient than in the simplified
models for comparable rotation rates, which is due to the larger
compression of the poloidal component during the collapse.

We have found a unified explanation for the magnetic energy
of all models, independent of the description of gravity (general
relativity or Newtonian) or the EOS, which relates the angular
velocity and mass of the PNS with its magnetic energy and the
growth rate of the magnetic field due to the Ω-dynamo. This re-
lation shows that higher rotation rates and masses of the PNS
lead to stronger magnetic fields. We have shown that it is not
possible to mimic the conditions of the microphysical simula-
tions using a simplified EOS. Simplified models with a mass of
the homologously collapsing inner core during contraction and a
mass of the PNS after bounce similar to the respective masses of
the microphysical models (and identical initial rotation profiles)
will undergo multiple centrifugal bounces, a behavior that has
recently shown to be an artifact of the neglect of microphysics
(Dimmelmeier et al. 2007a).

Further differences appear in the appearance of convective
motion in the PNS and behind the shock. This convection is
more active in microphysical models than in simplified ones. In
models with slow rotation, strong convection in the PNS occurs
as a transient and disappears within a few ten ms after bounce.
Evidently, this transient is an artifact as it does not appear in

simulations of similar models with comparable microphysics but
using Boltzmann neutrino transport (Müller et al. 2004) instead
of our simple advection scheme for the electron fraction after
core bounce. In rapidly rotating models convection is not en-
tirely suppressed by rotation but develops and persists on longer
time scales, albeit at a lower intensity.

As we have adopted the passive field approximation and
the investigated magnetic fields are weak in all phases of the
collapse, the waveforms of the gravitational radiation emitted
by all our models are practically identical to the corresponding
ones in a purely hydrodynamical simulation (Ott et al. 2007a;
Dimmelmeier et al. 2007a), with the contribution due to mag-
netic fields being several orders of magnitude smaller than the
total signal amplitude. However, if the MRI could become dom-
inant for the dynamics in the post-bounce phase, in a fully cou-
pled GRMHD simulation we would expect a clear imprint of
such an instability on the signal waveform. As expected, for the
microphysical models we obtain gravitational wave signals ex-
clusively of type I, as all other waveform types (in particular the
type II signals associated with multiple centrifugal bounces) are
suppressed if more realistic microphysics is taken into account.

For an astrophysically expected strength of the magnetic
field (Heger et al. 2005), where the initial toroidal component is
much larger than the poloidal one, we have obtained a topology
of the magnetic field in the PNS that is purely toroidal due to the
radial compression of the initial toroidal component. In this case
the time scale for the Ω-dynamo is very long (several hours).
For progenitors with stronger poloidal magnetic fields, we have
found that a core/shell structure is formed. Inside the core, where
nuclear density is exceeded, a mixed configuration of a poloidal
and a toroidal magnetic field yields a helicoidal configuration of
the field lines. In the surrounding shell (which extends several
10 km) the poloidal magnetic field lines are wound up due to
differential rotation (Ω-dynamo), and shortly after core bounce
the magnetic field is dominated by the toroidal component. The
growth time scale for the toroidal component due to this process
is, in the best case scenario, several 100 ms.

We have also estimated the growth times for several other
instabilities that could appear if the passive field approximation
or the restriction to axisymmetry are removed. Among these
the MRI is apparently the fastest growing instability, although
it remains unclear if it is going to amplify the magnetic field
sufficiently (from the initially weak field values) to affect the
dynamics at all. In addition, we have found that the inclusion
of microphysics could enhance the MRI, since the regions be-
hind the shock exhibit a negative entropy gradient, resulting in a
growth time of ∼10 ms for the MRI. However, the influence of
our simplified neutrino treatment or the effects of an alternative
microphysical EOS must still be investigated in detail.

In the event that the MRI were unable to sufficiently am-
plify the magnetic field in the PNS (which is still an open is-
sue), the main amplification mechanism would probably be the
α-Ω-dynamo, which can amplify the magnetic field to values
where the magnetic energy is in equipartition with the rota-
tional kinetic energy on a time scale of, at least, several sec-
onds. The study of this effect is well beyond the goals of the
work presented in this paper, since the required time scales
are much longer than those affordable with current numerical
magneto-hydrodynamical (MHD) codes. Moreover, the under-
lying physics necessary to be included (like neutrino transport,
diffusion, radiation, and cooling) is far more complex. However,
in the light of the results presented here, in which astrophysically
expected values for the magnetic field have been adopted, we can
speculate about the following scenario. If the MRI is ineffective,
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after core bounce the magnetic field does not grow significantly
strong during one (or maybe several) seconds, and therefore dif-
ferential rotation generated in the collapse could persist. This
“one-second-window” would provide sufficient time for several
instabilities to develop in the PNS. Such instabilities are promis-
ing sources of gravitational waves.

The restriction to the passive magnetic field approximation
in studying magneto-rotational core collapse of weakly magne-
tized progenitors can be justified if the MRI is indeed inefficient,
since none of the other estimated mechanisms seem to be able
to amplify the magnetic field significantly on dynamical time
scales. Otherwise, an “active” magnetic field approach becomes
necessary. However, it has to be stressed that the use of active
magnetic fields alone for core collapse simulations will probably
not be sufficient to model all the effects amplifying the magnetic
field, since the numerical resolution needed to correctly describe
them (probably less than 10 m) is not affordable in current nu-
merical simulations. In addition most of the prospectively rele-
vant effects have to be investigated in three dimensions, which
makes the computational task even more challenging.
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Appendix A: Code tests

Here we discuss several tests we have designed in order to check
the accuracy of our numerical code when solving the induc-
tion equation with the numerical methods described in this pa-
per (see also Cerdá-Durán & Font 2007). The “toroidal test” is
set up for assessing the ability of the code to maintain various
magnetic field configurations in equilibrium (labelled TTA and
TTB) and to correctly compute the amplification of the toroidal
magnetic field as it is wound up by a rotating fluid (TTC). On
the other hand, the “poloidal test” (PT) is designed to check
whether the code can correctly compute the compression of the
poloidal magnetic field in a spherical collapse. Finally, the strong
spherical explosion test checks that the code is able to handle
the presence of radial shocks. We refer the interested reader
to Cerdá-Durán & Font (2007) for details on the setup of the
toroidal and poloidal tests as well as the diagnostics we use to
compute the errors and order of convergence of our numerical
schemes.

A.1. Toroidal tests

Figure A.1 shows the global error σ in the toroidal magnetic
field Bϕ for the three tests TTA, TTB, and TTC against 1/ f and
the corresponding fits to a power law. Here f denotes the factor
which specifies the increase in resolution from a coarse reference
grid (see Cerdá-Durán & Font 2007, for details). The resulting
convergence order of each numerical scheme (minmod, MC, and
PHM) as well as the errors for the highest resolution grid can be
found in Table A.1. Our results show that (i) the order of con-
vergence and the error is almost independent of the cell recon-
struction scheme employed, (ii) the order of convergence for the
TTC test is smaller than for the TTA and TTB tests, and (iii)
the order of convergence for the tests TTA and TTB is N > 2,
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Fig. A.1. Global error σ in the toroidal magnetic field Bϕ after a time
evolution of 1 ms as a function of 1/ f for a sequence of models with
grid resolutions 80 × 10 ( f = 1), 160 × 20 ( f = 2) and 320 × 40
( f = 4). The top panel shows the error for the TTC test using different
reconstruction schemes and the corresponding best fits to a power law:
minmod (open circles, dotted line), MC (filled squares, dashed line),
and PHM (filled circles, solid line). The bottom panel shows the error
and respective fits using the PHM reconstruction for the TTA test (open
circles, dotted line), TTB (filled circles, dashed line), and TTC (open
squares, solid line).

Table A.1. Convergence order N for the tests performed (TTA, TTB,
TTC, and PT) and for different reconstruction procedures (minmod,
MC, and PHM). The error σ320×40 for the higher resolution grid is also
given.

Test Reconstruction scheme N σ320×40

TTA minmod 2.45 1.2 × 10−6

TTA MC 2.16 2.4 × 10−6

TTA PHM 2.46 2.1 × 10−6

TTB minmod 2.64 7.7 × 10−6

TTB MC 2.53 1.2 × 10−5

TTC PHM 2.85 0.5 × 10−6

TTC minmod 1.38 4.0 × 10−5

TTC MC 1.48 7.0 × 10−5

TTC PHM 1.39 3.5 × 10−5

PT minmod 1.41 8.3 × 10−4

PT MC 1.11 8.6 × 10−4

PT PHM 1.17 8.6 × 10−4

and hence higher than the theoretical expectation (which is sec-
ond order, since it is limited by the order of the time discretiza-
tion, for which we use a conservative, second order Runge-Kutta
scheme).

The numbers reported in Table A.1 demonstate that we
obtain similar results in all three tests for linear reconstruc-
tion schemes (minmod and MC) and for the third order recon-
struction scheme (PHM), as the order of the scheme is limited
by the second order discretization in time and by the linear



P. Cerdá-Durán et al.: Relativistic passive-magneto-rotational core collapse 189

30 40 60502010 70

3.0
2.5
2.0
1.5
1.0
0.5
0.0

2

8

6

4

Fig. A.2. Local order of convergence (color coded) for the TTA test
after a total time evolution of 1 ms. White color is used for values ≥3.0.
The horizontal and vertical axes represent the number of cells of the
reference grid in the radial and angular direction, respectively.

interpolation of the cell-centered magnetic fluxes (which is a
consequence of using a staggered grid in the flux-CT scheme for
the magnetic field). To understand these results we note that in
test TTC there is a component of the magnetic field, B∗ϕ, which
grows linearly in time, while in tests TTA and TTB no compo-
nents evolve. Hence, the order of convergence for the latter is
higher than for test TTC. This can be explained by investigat-
ing the local order of convergence, i.e. the order obtained when
computing the error σi j in each numerical cell instead of the
global error σ. The results for test TTA are displayed in Fig. A.2
(similar plots can be obtained for the other two cases). At some
particular grid zones the order of convergence is larger than two,
while at most locations it remains around two.

A.2. Poloidal test

As mentioned before the setup and specifications of the poloidal
test are described in detail in Cerdá-Durán & Font (2007).
Here we simply focus on showing the comparison and perfor-
mance of the various numerical schemes employed in our sim-
ulations. (Note that in Cerdá-Durán & Font 2007, only the min-
mod scheme was assessed.) Fig. A.3 shows the evolution of the
error in the quantity r D∗/B∗ θ at the equatorial plane (which
is a quantity that should not change with time with respect to
a Lagrangian coordinate system) during the spherical collapse
of a 4/3-polytrope for different {r, θ} grid resolutions (80 × 10,
160 × 20, and 320 × 40), equally-spaced in the angular direc-
tion and logarithmically spaced in the radial direction. Table A.1
gives again numbers for the error and the order of convergence
of the various schemes computed at the end of the simulation
(t = 20 ms). In all cases the errors are below 1%, even for the
coarsest grid, and the order of convergence is higher than 1 (the
presence of local extrema in the radial profiles of some hydro-
dynamical variables explains the reduction of the theoretical or-
der as a built-in feature of total-variation diminishing numerical
schemes). Comparisons between the HLL approximate Riemann
solver and the KT symmetric scheme yield almost identical re-
sults (in agreement with Lucas-Serrano et al. 2004; Shibata &
Font 2005; Antón et al. 2006).

A.3. Strong spherical explosion

Explosions are among the most demanding tests for multi-
dimensional codes as they show the ability of numerical schemes
to handle shocks. Since the majority of existing MHD codes are
written in Cartesian coordinates, the most common test is the
cylindrical explosion. For relativistic MHD codes the setup of
Komissarov (1999) for this test has been used by other authors
(Del Zanna et al. 2003; Leismann et al. 2005) to compare dif-
ferent codes. However, in spherical coordinates it is not possible
to impose the symmetries needed for this test. The most nat-
ural choice is thus the spherical explosion. Kössl et al. (1990)
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Fig. A.3. Global error on r D∗/B∗ θ for the poloidal test (PT) as a func-
tion of time for three different grid resolutions: 80 × 10, 160 × 20, and
320 × 40, and for four different reconstruction schemes (minmod, MC,
and PHM).

performed this test in the case of Newtonian MHD. To our
knowledge, no spherical explosions tests have been performed
in relativistic MHD. Therefore, we have designed such a spher-
ical explosion test in which the initial jump conditions in the
variables are the same as for the test by Komissarov (1999). In
this way a relativistic shock is formed which does not occur in
the Newtonian case of Kössl et al. (1990).

Our test setup consists of an initial explosion zone with
P = 1.0 and ρ = 10−2 for r < 0.8, surrounded by an ambient
gas with P = 3 × 10−5 and ρ = 10−4. The explosion region joins
the ambient medium by matching an exponential decline in a
transition region region 0.8 < r < 1.0. The velocities are ini-
tially zero, and the magnetic field is homogeneous and parallel
to the symmetry axis. The background spacetime is considered
to be flat. The inital data are evolved using an ideal gas EOS
with adiabatic index γ = 4/3. We use an evenly spaced grid with
a maximum radius of r = 6.0. We perform the test for three res-
olutions (80 × 10, 160 × 20, and 320 × 40) for all reconstruction
schemes.

Figure A.4 shows the Lorentz factor W at t = 4.0. A strong
spherical shock has formed, propagating close to the speed of
light, and as a consequence the magnetic field lines are com-
pressed in the direction perpendicular to the axis. The results for
this test are qualitatively comparable to the weakly magnetized
case in Komissarov (1999). Figure A.5 shows radial profiles for
P and Bθ along the equatorial plane at the end of the simula-
tion, using various reconstruction schemes. These plots are qual-
itatively similar to those of the cylindrical explossion (see e.g.
Fig. B.4 in Leismann et al. 2005). All numerical schemes exhibit
first order convergence with increasing resolution, as is expected
to happen at shocks. The MC and PHM schemes yield very sim-
ilar results, while minmod shows slightly lower values.

Appendix B: Estimation of the growth rates
of the Ω-dynamo

To compute the characteristic time scales on which the
Ω-dynamo mechanism amplifies the magnetic field one has to
study how the wind-up proceeds. Let us consider a stationary
rotating configuration with no meridional flows, v∗ r = v∗ θ = 0
and v∗ϕ = Ω∗(r, θ) r sin θ, where Ω∗(r, θ) stands for the rotation
law. Under these conditions and in the passive field approxima-
tion, the induction equation can be integrated analytically. The
solution shows that the poloidal component of the magnetic field
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Fig. A.4. Spherical explosion test at t = 4. The Lorentz factor W is color
coded, and magnetic field lines are overplotted.
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Fig. A.5. Results for the spherical test explosion at t = 4. The plots
show profiles for the fluid pressure P (top panel) and the magnetic field
component Bθ (bottom panel) along the equatorial plane using different
reconstruction schemes: minmod (dotted line), MC (dashed line), and
PHM (solid line). The grid resolution is 320 × 40.

remains constant and the toroidal component grows linearly with
time as

B∗ϕ(t) = B∗ϕ(t = 0) + t� B∗ · ∇̂Ω∗. (B.1)

This equation specifies the toroidal magnetic field at any given
time, provided that the poloidal component is constant and the
angular velocity profile is fixed. For a time t � B∗0

ϕ /(�B∗·∇̂Ω∗),
which is ∼1 ms in our simulations, we can use this expression to
compute the magnetic energy

Emag ϕ ≈
∫

d3x
B∗
Ω

2

2

(
�|∇̂Ω∗|

)2
t2, (B.2)

where B∗
Ω

is the component of B∗ parallel to ∇̂Ω∗. The rotation
profiles of the final PNS can be approximated in all our models
by the rotation law (25) (Villain et al. 2004). In the Newtonian
limit (26), which is good enough for this estimate, we can com-
pute an upper limit to the magnetic energy considering the max-
imum value of |�∇̂Ω∗|max = Ω

∗
c/2, which yields

Emag ϕ ≤ EmagΩ
Ω∗c

2

4
t2. (B.3)

Therefore, an estimate for the upper limit of the amplification of
the magnetic energy parameter is

βmag ≈ βϕ ≤ βΩΩ
∗
c

2

4
t2 ≤ βpolo

Ω∗c
2

4
t2 =

(
t
τΩ

)2

, (B.4)

where we have defined the time scale for amplification of the
magnetic field by the Ω-dynamo as

τΩ =
2

Ω∗c
√
βpolo
· (B.5)

This gives us the characteristic time scale in which βmag reaches
a value of 1; therefore, the saturation time tsat should be a fraction
of this time. As the Ω-dynamo operates by transforming rota-
tional energy into magnetic energy, the maximum energy can be
extracted by the magnetic field is the one that is contained in the
differential rotation of the core. In accordance with numerical
simulations using strong magnetic fields (Obergaulinger et al.
2006b) we estimate this amount to be 10% of the total rotational
energy, i.e. βmag(tsat) = 0.1 βrot(tsat). We also assume that the evo-
lution of the magnetic energy parameter is given by Eq. (B.4)
and that the energy is conserved, i.e. βrot(t) = βrot(t0) − βmag(t).
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