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ABSTRACT

Aims. To find an objective classification of the globular clusters in our Galaxy, M 31, and LMC.
Methods. A new method of Cluster Analysis (CA)was carried out and the set of parameters for this method was selected through an
objective process, Principal Component Analysis (PCA). Robustness of the classification was established using bootstrap samples.
Results. In every case they exhibit multi-population structure instead of bimodality as is found in many spirals and giant elliptical
galaxies. The kinematics of MW and M 31 GCs are examined in support of these sub-populations in the cluster system. It is found
that for MW and M 31 GCs a disc, inner halo, and outer halo populations of GCs are more likely to exist than only the disc and halo
populations of GCs in MW as concluded by Zinn (1985, ApJ, 293, 424). This supports the existence of three populations more firmly
explained by Zinn (1993, Globular Cluster-Galaxy Connection, 38) and Mackey & Gilmore (2004, MNRAS, 355, 504) whereas only
two populations are found for LMC GCs. The new multivariate analysis increases the importance of the inclusion of many parameters
while at the same time it eliminates less significant parameters and helps to enunciate a unique theory of galaxy formation.
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1. Introduction

Globular clusters have long been considered as the unique tool
for studying galaxy formation and evolution, but the first step
is to study the formation process of the globular clusters (GCs)
themselves. There are various theories regarding the formation
of GCs. Among them (1) gaseous merger, (2) in situ GC forma-
tion, and (3) tidal stripping are important. According to merger
theory, GCs in gE and cD galaxies were created by the gaseous
merger of two progenitor spiral galaxies (Ashman & Zepf 1992;
Zepf & Ashman 1993) so that there are two populations of GCs.
One is the metal-poor GCs of the progenitor spirals and other is
the metal-rich GCs formed in the collision of high velocity gas.
One of the most noteworthy success of this model is the discov-
ery of the protoglobular clusters in the currently merging galax-
ies (Whitmore et al. 1993; Schweizer et al. 1996). In the merger
model the high S N galaxies said to be created by the merger of
several normal S N galaxies. But in practice the GC systems of
high S N galaxies do not have more metal-rich GCs but instead
have more metal-poor ones. This means that GC metallicity gra-
dients are steeper in high S N galaxies contrary to the prediction
of Ashman & Zepf (1992). According to the most favourable
theory (Forbes et al. 1997) GCs are considered to be formed
in situ star formation episodes during a collapse process. In the
first episode a chaotic merging of many small gaseous subunits
(Searle & Zinn 1978; Katz 1992) occurs. During this phase a
small fraction of the gas turns into stars and most of them reside
in GCs, i.e. the ratio of stars in GCs to field stars is large (Forbes
et al. 1997). So, the GCs formed in this phase are metal-poor.
In the second phase, the stars enrich the medium and now field

� Appendices A and B are only available in electronic form at
http://www.aanda.org

stars form in large numbers (due to more efficient cooling at high
metallicity) and the GCs which form in this phase are metal-rich.
In the third phase the remaining gas settles as a galactic disc at
the centre of the galaxy. Spiral galaxies may be considered as an
extreme case of this process. Here there is almost no pre-galaxy
star formation. So the GCs which form in the second phase are
metal-poor compared to the metal-rich GCs in the second phase
for elliptical galaxies. Spirals then go on to form a prominent
disc and associated GCs in the third phase of collapse. But the
main difficulty of this process is the lack of a detailed mechanism
for creating distinct phases of GCs formation from a single halo
collapse. Also, this analysis is intended to find the bimodality of
a single parameter which is colour.

In the present study we carry out a multivariate analysis,
which is likely to be more appropriate in a multivariate set up.
Early attempts to analyse the characteristics of the Galaxy and
GCs by statistical methods were carried out by Brosche (1973),
Peterson & King (1975), Brosche & Lentes (1984), Eigenson &
Yatsyk (1989), Djorgovski (1991), Covino & Fracassini (1993).
Some correlations of the slope of GCs present day mass function
(PDMF) with other parameters were studied by Capaccioli et al.
(1991) who found that two or at most three significant parame-
ters determine the PDMF slope. This problem was also discussed
by Djorgovski (1991). Several correlations among GCs metal-
licity and galaxy parameters were studied by van den Bergh
(1975), Brodie & Huchra (1991), Forbes et al. (1996), Harris
(1991), Djorgovski (1995). Djorgovski (1995) uses core radius,
velocity dispersion, central surface brightness, and mass-to-light
ratio to define a Fundamental Plane for the GCs of elliptical
galaxies. These correlations provide rough distance indicators
for GCs. In an earlier work Covino & Fracassini (1993) car-
ried out a Principal Component Analysis (PCA) followed by
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Cluster Analysis (CA) for more than one parameter at a time
to study the clustering nature of GCs in different galaxies in
the Local Group. Their analysis suffers from several difficulties.
First in their study the parameter set is not same for all galaxies.
Also the number of parameters is very large (6 for M 31, 8 for
LMC, and 10 for Milky Way) so that it is difficult to study the
clustering nature in finer details and their interrelations. Finally,
the number of clusters, which they selected in an ad hoc manner,
is the eighth hierarchy stage. Also the sample size is small.

In the present problem we have first used PCA to search for
the optimum set of parameters which gives the maximum vari-
ation for the globular clusters in Milky Way, M 31, and LMC.
This method reduces the number of parameters to be selected
for CA and hence serves the purpose of PCA. Then we took
that optimum set of parameters and applied a new method of
CA (Sugar & James 2003) which finds the optimum number of
groups of GCs instead of choosing group in an ad hoc manner.
Also in our case the sample size of Milky Way is almost double.
This helps to sort out the optimum number of clusters and opti-
mum set of parameters so that a more efficient theory of galaxy
formation can be developed on the basis of this multivariate anal-
ysis. In this connection it is also important to mention that under
the given set up a partitioning algorithm for cluster analysis is
more appropriate than a hierarchical algorithm since the set up
is not nested. The new method for finding the optimum number
of clusters is based on partitioning algorithm.

In the present paper we closely follow the approach of
Covino & Fracassini (1993) in order to classify GCs. The new
aspects of our study are as follows:

1. We incorporate the recent catalogue of Milky Way GCs
(Harris 1996) which contains data on 147 GCs which is
almost double the sample size (74) used by Covino &
Fracassini (1993). Also we used the recent catalogues of
M 31 GCs (Barmby et al. 2002) and LMC GCs (Mackey &
Gilmore 2003) which include the structural parameters to-
gether with photometric parameters unlike the sample used
by Covino & Fracassini (1993). Also the core radii values
used for LMC GCs were measured using HST which gives
more accurate measurements than the previous values.

2. We use PCA to search for the optimum set of parameters
giving maximum variation for all the GCs in Milky Way,
M 31, and LMC instead of using the method for comparative
study between the GCs among the galaxies.

3. We used that optimum set of parameters for CA instead of
using different sets of parameters for different galaxies in an
ad hoc manner and this process increases the consistency of
the study.

4. We used a method of CA (Hartigan 1975) which is based on
a partitioning algorithm and then applied a new technique to
find the optimum number of groups, not a number selected in
an ad hoc manner as the eighth hierarchy stage is selected in
the paper by Covino & Fracassini (1993). We have taken dif-
ferent bootstrap samples generated from the original sample
to test the robustness of the results of the analyses.

In the following sections we discuss the methods, sample sets
and finally the results obtained from the analysis.

2. Method

In order to study the underlying nature of the data under con-
sideration we have to start from the correlation matrix because
Principal Component Analysis is based on this correlation or co-
variance matrix. Although a scatter plot is an essential first step

in studying the the association between two variables, it is often
useful to quantify the strength of the association by calculating
a summary index. One commonly used measure is the correla-
tion coefficient (Pearson’s correlation coefficient) denoted by r
or rxy, which measures the strength of linear correlation between
the values of two parameters x and y.

In Principal Component Analysis (Chattopadhyay &
Chattopadhyay 2006) we are interested in discovering which pa-
rameters in a data set form coherent subgroups that are relatively
independent of one another. The specific aim of the analysis is to
reduce a large number of parameters to a smaller number while
retaining maximum spread among experimental units. The anal-
ysis therefore helps us to determine the optimum set of parame-
ters causing the overall variations in the nature of GCs. PCA has
been discussed in detail in Appendix A.

Cluster analysis is the art of finding groups in data. Over the
last forty years different algorithms and computer programs have
been developed for CA. The choice of a clustering algorithm
depends both on the type of data available and on the particular
purpose. Generally clustering algorithms can be divided into two
principal types viz. partitioning and hierarchical methods.

A partitioning method constructs K clusters i.e. it classifies
the data into K groups which together satisfy the requirement of
a partition such that each group must contain at least one object
and each object must belong to exactly one group. So there are at
most as many groups as there are objects (K <= n). Two differ-
ent clusters cannot have any object in common and the K groups
together add up to the full data set. Partitioning methods are ap-
plied if one wants to classify the objects into K clusters where K
is fixed (which should be selected optimally). The aim is usually
to uncover a structure that is already present in the data. The K-
means method of (MacQueen 1967) is probably the most widely
applied partitioning clustering technique.

Hierarchical algorithms do not construct single partition with
K clusters but they deal with all values of K in the same run. The
partition with K = 1 is a part of the output (all objects are to-
gether in the same cluster) and also the situation with K = n
(each object forms a separate cluster). In between all values of
K = 2, 3, ... n − 1 are covered in a kind of gradual transition.
The only difference between K = r and K = r + 1 is that one
of the r clusters splits in order to obtain r + 1 clusters or two
of the (r + 1) clusters combined to yield r clusters. Under this
method either we start with K = n and move hierarchically step-
by-step, where at each step two clusters are merged, depending
on similarity until only one is left i.e. K = 1 (agglomerative) or
the reverse, i.e. start with K = 1 and move step-by-step, where
at each step one cluster is divided into two- (depending on dis-
similarity) until K = n (divisive). Most of the previous works
(Covino & Fracassini 1993) were done on the basis of hierarchi-
cal clustering. But we feel that for the problem under consider-
ation the partitioning method is more applicable because (a) A
partitioning method tries to select best clustering with K groups
which is not the goal of hierarchical method. (b) A hierarchi-
cal method can never repair what was done in previous steps.
(c) Partitioning methods are designed to group items rather than
variables into a collection of K clusters. (d) Since a matrix of
distances (similarities) does not have to be determined and the
basic data do not have to be stored during the computer run par-
titioning methods can be applied to much larger data sets. For K-
means algorithm (Hartigan 1975) the optimum value of K can be
obtained in different ways.

By using this algorithm we first determined the structures of
sub populations (clusters) for varying numbers of clusters tak-
ing K = 2, 3, 4 etc. For each such cluster formation we
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computed the values of a distance measure dK =
(1/p)minxE[(xK − cK)′(xK − cK)] which is defined as the
distance of the xK vector (values of the parameters) from the
centre cK (which is estimated as the mean value) p is the order of
the xK vector. Then the algorithm for determining the optimum
number of clusters is as follows (Sugar & James 2003). Let us
denote by d′K the estimate of dK at the Kth point. Then d′K is the
minimum achievable distortion associated with fitting K centres
to the data. A natural way of choosing the number of clusters is
to plot d′K versus K and look for the resulting distortion curve
(Fig. 5). This curve is always monotonic decreasing. Initially
one would expect much smaller drops for K greater than the true
number of clusters because past this point adding more centres
simply partitions within groups rather than between groups.
According to Sugar & James (2003), for a large number of
items the distortion curve when transformed to an appropriate
negative power (p/2), will exhibit a sharp “jump” (if we plot K
versus transformed d′K). Then we calculated the jumps in the

transformed distortion as JK = (d′K
−p/2 − d′−p/2

K−1 ).
The optimum number of clusters is the value of K associated

with the largest jump. The largest jump can be determined by
plotting JK against K and the highest peak will correspond to
the largest jump (Figs. 6, 7 and 17).

3. Data set

Our analysis is based on three samples of GCs in Milky Way,
M 31, and LMC which have appropriate photometric and struc-
tural parameter values.
Sample 1. This consists of 135 GCs taken from the catalogue
of Harris (1996) which have nonzero values of all the param-
eters used for CA. The parameters used for PCA are distance
from the galactic centre (Rgc), absolute visual magnitude (MV ),
colour (B − V), concentration parameter (c), core radius (Rc),
central surface brightness (µV ), radial velocity (Vr), metallicity
([Fe/H]), and horizontal branch ratio (HBR). We are mainly con-
centrating on parameters which are intrinsic and independent in
nature.
Sample 2. This consists of 35 GCs of the catalogue of Barmby
et al. (2002). The parameters used are Rgc, MV , b(B−V), [Fe/H],
c, Rc, Vr, and µV . We have converted the visual magnitudes from
Barmby et al. (2000) to absolute visual magnitudes using a dis-
tance of 770 kpc (Sparke & Gallagher 2000) for M 31.
Sample 3. This consists of 23 GCs used in the paper by Mackey
& Gilmore (2003). The parameters used are Rgc, MV , (B−V), c,
Rc, Vr, [Fe/H], and µV . We have converted the visual magnitudes
from Mackey & Gilmore (2003) to absolute visual magnitudes
using a distance of 49 kpc (Sparke & Gallagher 2000) for LMC.

In Tables 3, 5, and 7 we have mentioned the elements of
the correlation matrices corresponding to Samples 1, 2, and 3
respectively.

After finding the different groups by cluster analysis it is nec-
essary to study the properties of the groups identified in terms of
their ages along with other parameters. Again we have used B−V
as one of the parameters in PCA. As ages and B − V values are
subjected to measurement errors it is worthwhile to identify the
nature of errors included in the data.

For Milky Way we considered 43 GCs and for LMC we
considered 23 GCs. Their ages and corresponding errors can be
obtained from Chaboyer et al. (1992) and Mackey & Gilmore
(2003) respectively and are listed in Table 1. The means and
standard deviations of these errors are listed in Table 2. The
means and standard deviations (SD) of extinctions in colour

Table 1. Errors and extinctions in ages and colours of the GCs in Milky
Way (MW) and LMC.

MW GCs LMC GCs
ID Errors E(B − V) ID Errors E(B − V)

Gyr log (age) (Gyr)
104 1.3 Harris (1996) 1711 +.05−.05
288 1.6 1754 +0.06−0.07
362 2.0 1755 0.01

1261 1.3 1805 +.30−.10
1851 1.0 1810 0.34
1904 1.5 1818 +.3−.1 0.25
2298 2.2 1831 +.3−.3
2808 1.6 1835 +.07−.08
3201 1.6 1850 +.2−.2 0.13
4147 1.6 1854 0.11
4590 1.0 1856 +.3−.3 0.07
5024 1.6 1866 0.01
5053 1.5 1885 0.23
5272 1.0 1898 +.3−.3
5466 2.0 2004 +.2−.2 0.36
5897 2.1 2019 +.07−.09
5904 1.3 2031 +.1−.1 .06
6101 1.3 2100 +.2−.2
6121 2.0 2121 +.06−.07
6171 2.3 2136 +.1−.1
6205 2.6 2156 +.2−.2 -0.16
6218 1.3 2157 +.2−.2
6254 2.0 2164 +.2−.2
6341 1.7 2173 +.07−.09
6352 1.3 2213 +.1−.12
6397 1.9 2214 +.2−.2
6535 2.4 2231 +.1−.13

Table 1. continued.

MW GCs
ID Errors E(B − V)

Gyr
6584 1.4 Harris (1996)
6652 1.7
6752 2.2
6809 1.3
6838 1.1
7006 1.3
7078 2.0
7099 1.8
7492 2.0
Ter 7 0.8
Ter 8 1.7

Rup 106 0.9
Pal5 1.6

Pal12 1.7
Ic4499 1.2
Arp2 1.0

E(B − V) for Milky Way (MW) and LMC GCs are also listed
in Table 2. It is interesting to note that most of the error and ex-
tinction distributions are Gaussian as indicated in Table 2 and
Figs. 1−4 respectively. These show that the ages and colours of
Milky Way and LMC GCs are consistent with respect to the mea-
surement errors and extinctions. To study errors corresponding
to ages for MW GCs we excluded some of the outliers and the fit
is good which is evident from the Anderson Darling (AD) statis-
tic. In Appendix B we have discussed Quantile Quantile Plot
and Anderson Darling Statistic which have been used for fitting
of Normal Distribution.
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Table 2. Error analysis for the GCs of MW and LMC.

Name Errors in Age E(B − V)
positive error

LMC GCs Mean 0.16 0.13
SD 0.09 0.16
AD 1.36 0.23

Remark Good fit Very Good fit

negative error
Mean –0.15

SD 0.08
AD 1.27

Remark Good fit
MW GCs Mean 1.59 1.95

SD 0.44 0.62
AD 0.45 0.11

Remark Good fit Very good fit

Table 3. Correlation matrix for the parameters of Sample 1.

Parameter Rgc MV c µV B − V [Fe/H] Rc HBR Vr

Rgc 1
MV 0.22 1
c –0.32 –0.25 1
µV 0.38 0.72 –0.52 1

B − V –0.29 –0.02 0.05 0.16 1
[Fe/H] –0.29 0.10 0.10 0.07 0.60 1

Rc 0.04 0.11 –0.68 0.11 –0.16 –0.15 1
HBR –0.13 0.26 0.09 –0.26 –0.44 –0.77 0.11 1

Vr 0.03 0.03 –0.05 0.09 –0.02 0.06 0.17 –0.03 1
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Fig. 1. QQ Normal plot for positive errors in ages of LMC GCs.

From the above findings it may be inferred that since the
error distributions are Gaussian (symmetric), the errors are sup-
posed to be averaged out in final analysis and results are not
likely to be affected by them.

4. Results and discussions

4.1. Principal component analysis

We begin with a minimal number of parameters (selected by
the trial and error method) and search for principal compo-
nents giving the maximum percentage of total variation. In
this respect we can say that we included many parameters
like central surface brightness, colour and radial velocities,
but they do not give maximum variation in PCA. Some
of the parameter sets are given for comparison in Table 4
(e.g. S1(Rgc,MV ,Rc), S2(Rgc,MV , c), S3(Rgc, B − V,Vr),
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Fig. 2. QQ Normal plot for extinctions of LMC GCs.
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Fig. 4. QQ Normal plot for extinctions of MW GCs.

S4(Rgc,MV , µV ), S5(Rgc,MV , c,Rc), S6(MV , c, [Fe/H]),
S7(c,Rc, [Fe/H]), S8(HBR, [Fe/H], c). Only the parameter
set S7(c,Rc, [Fe/H]) has maximum variation (85.7 percent) as
seen from last column of Table 4 with two principal components
having eigen values greater than or nearly equal to 1. PCA
analysis for Sample 2 and Sample 3 are listed in Tables 6
and 8 respectively. This also shows that the parameter sets S7
([Fe/H], c,Rc) and S6 ([Fe/H], c,Rc) in Tables 6 and 8 respec-
tively give maximum variation with two principal components
with eigen values greater than or nearly equal to 1 (94.4 percent
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Table 4. Results of PCA for Sample 1.

Set Principal Component Eigen value Cumulative %
S1(Rgc,MV ,Rc) 1 1.6 53.1

2 0.8 79.9
3 0.6 100.0

S2(Rgc,MV , c) 1 1.4 47.3
2 1.1 82.9
3 0.5 100.0

S3(Rgc, B − V,Vr) 1 1.3 43.7
2 0.9 75.3
3 0.7 100.0

S4(Rgc,MV , µV ) 1 1.5 51.5
2 0.9 81.9
3 0.5 100.0

S5(Rgc,MV , c,Rc) 1 2.0 50.7
2 0.8 71.3
3 0.7 88.9
4 0.4 100.0

S6(MV , c, [Fe/H]) 1 1.6 53.0
2 0.8 80.0
3 0.6 100.0

S7(c,Rc, [Fe/H]) 1 1.6 54.7
2 0.9 85.7
3 0.4 100.0

S8(HBR, [Fe/H], c) 1 1.5 49.7
2 0.9 79.2
3 0.6 100.0

Table 5. Correlation matrix for the parameters of Sample 2.

Parameter Rgc MV c µV B − V [Fe/H] Rc

Rgc 1
MV –0.34 1
c –0.01 –0.058 1
µV –0.24 0.76 –0.33 1

B − V –0.25 0.16 0.39 –0.214 1
[Fe/H] –0.215 0.66 –0.26 0.48 0.68 1

Rc 0.25 –0.01 –0.82 0.34 –0.46 0.09 1

and 96.1 percent in last columns). The group means are given in
Tables 9 to 13.

It is found that the statistical dimensionality for the GCs in
all the galaxies in the Local Group is two which involves the pa-
rameters core radius (Rc), concentration parameter (c) and metal-
licity. This is minimum but gives a total variation as high as
96 percent. This is maximum compared to all previous analy-
ses (Kormendy & Djorgovski 1989; Djorgovski & de Carvalho
1990; Santiago & Djorgovski 1993; De Carvalho & Djorgovski
1992). This is the goal of PCA.

4.2. Cluster analysis

We found in the previous analysis that the maximum variation
among the GCs in the Milky Way, M 31, and, LMC is due to the
parameter set ([Fe/H], c,Rc). The metallicity values for GCs in
M 31 are available for 35 clusters. So the sample size is slightly
reduced for M 31 in our case compared to Covino & Fracassini
(1993). The results for CA for Sample 1 are shown in Table 9
and Figs. 5 and 6 respectively. The jumps are at 4 and 6 re-
spectively. To test the robustness of the classification we took
several bootstrap samples generated from the original sample.
In most of the situations it was found both from the jumps and
from the ([Fe/H],Rc) plots that the proper number of groups

Table 6. Results of PCA for Sample 2.

Set Principal Component Eigen value Cumulative %
S1(Rgc,MV ,Rc) 1 1.4 47.7

2 1.0 80.6
3 0.6 100.00

S2(Rgc,MV , c) 1 1.3 44.5
2 1.0 78.2
3 0.7 100.00

S3(Rgc, B − V, c) 1 1.5 48.8
2 1.0 81.8
3 0.5 100.0

S4(B − V, c,Rc) 1 2.1 71.0
2 0.7 94.0
3 0.2 100.0

S5(Rgc,MV , c,Rc) 1 1.9 46.5
2 1.3 79.9
3 0.6 96.3
4 0.2 100.0

S6(MV , c,Rc) 1 1.8 60.5
2 1.0 93.9
3 0.2 100.0

S7([Fe/H], c,Rc) 1 1.9 62.7
2 1.0 94.4
3 0.2 100.0

Table 7. Correlation matrix for the parameters of Sample 3.

Parameter Rgc Vr Rc c µV [Fe/H] MV

Rgc 1
Vr 0.32 1
Rc 0.09 0.19 1
c –0.19 –0.03 –0.88 1
µV 0.61 –0.13 0.13 –0.38 1

[Fe/H] 0.46 0.44 0.16 –0.11 0.28 1
MV 0.52 –0.26 –0.03 –0.18 0.75 –0.12 1

(clusters) should be 3. We took this decision because of the fol-
lowing reasons.

1. From the plots of cluster vs jumps in most of the situations
we observed that there was a maximum peak corresponding
to 3 clusters (Fig. 7).

2. From the ([Fe/H],Rc) plots we also found if we choose
the optimum number as 3 then the physical classification is
quite clear whereas if we choose 4 or more clusters as opti-
mum then the classification is rather messy. These features
are presented in Figs. 13 and 8 respectively for the original
Sample 1.

3. For our conclusion that the optimum number of clusters is 3
we have deviated slightly from the original algorithm (Sugar
& James 2003) because it is a well known fact that cluster
analysis is an exploratory data analytic technique and it de-
pends heavily on proper physical explanation.

In support of the above discussion we have presented some of
our findings related to bootstrap samples in Table 10 and in
Figs. 8−12 respectively. In the tables we have mentioned the
mean values for ([Fe/H], c,Rc) and the cluster points at which
we have found peaks. Hence we have taken the optimum num-
ber of subgroups statistically and physically as three. Cluster 1,
with high metallicities, low core radii, Cluster 2, with the lowest
metallicity, low core radii, and Cluster 3 with still low metallic-
ity, and high core radii. These are also reflected in the cluster
means listed for these groups in the above tables. So we have
carried out CA with K = 3 and the group means for all the
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Fig. 5. xy diagram for the number of clusters (K) and corresponding
distortions (d′K) for Sample 1.

Table 8. Results of PCA for Sample 3.

Set Principal Component Eigen value Cumulative %
S1(Rgc,MV ,Rc) 1 1.5 50.9

2 1.0 84.6
3 0.5 100.0

S2(Rgc,MV , c) 1 1.6 54.4
2 0.9 84.1
3 0.5 100.0

S3(Rgc,MV , c,Rc) 1 2.0 50.0
2 1.4 85.7
3 0.5 97.7
4 0.1 100.0

S5(c,Rc, B − V) 1 1.7 58.3
2 1.0 91.9
3 0.2 100.0

S6(c,Rc,[Fe/H]) 1 1.9 64.1
2 1.0 96.1
3 0.1 100.0

S7(Rgc,MV , µV ) 1 2.3 75.5
2 0.5 92.2
3 0.2 100.0

S8(Rgc, [Fe/H],Vr) 1 1.8 60.5
2 0.7 83.3
3 0.5 100.0

Table 9. The group means for the parameters of the GCs of Sample 1.

No of clusters at the peaks 4, 6
Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4

No. of members 37 41 45 12
〈[Fe/H]〉 –0.59 –1.54 –1.69 –1.29
〈c〉 1.66 2.11 1.21 0.92

〈Rc〉(pc) 2.66 0.59 3.86 17.53

parameters are shown in Table 11. The ([Fe/H],Rc),([Fe/H], c),
and ([Fe/H], c,Rc) plots are shown in Figs. 13−15 respectively.
The clustering is very prominent in Fig. 15 implying the fact
that three dimensional parametric classification is more authen-
tic than the two dimensional one as the classification is not
clearly seen e.g. in ([Fe/H], c) plane.

Now the kinematics of MW GCs are studied to examine the
physical consistency of the classification following Zinn (1985).
The basic assumption is that the rotational velocity of each sub
group in the classification is constant. For this it is necessary
to know the distances of GCs from the galactic centre and the
results depend slightly on the values adopted for R� and the ve-
locity of the LSR about the galactic centre (v�) which are taken

Fig. 6. xy diagram for the number of clusters (K) and jumps for
Sample 1.
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Fig. 7. xy diagram for the number of clusters (K) and jumps for
Bootstrap Samples, dash for second, solid line for fourth and dotted
line for third Bootstrap Sample respectively.

as 8.2 kpc and 220 km s−1 for the present situation. The analysis
follows the method of Frenk & White (1980). The values of ro-
tational velocities (vrot) and velocity dispersion (σlos) are listed
in Table 11 for each group. Also the group means for heights
from the galactic plane (|z|), distances from the galactic centre
(Rgc), metallicities, concentration parameters (c), core radii, and
central surface brightness (µV ) are listed for these sub groups. It
is found that for [Fe/H] > −0.8 the cluster group has substantial
rotation for Rgc < 4.4 kpc (Cluster 1) and for [Fe/H] < −0.8
and GCs have less rotation for Rgc > 4.4 kpc. This supports
the analysis by Zinn (1985). The innermost group (Cluster 1)
has substantial rotational velocity (∼124 km s−1), highly metal
rich (∼−0.64) having smaller core radii (∼2.71 pc). They are
concentrated near the galactic disc (|z| ∼ 1.73 kpc) and close to
the Galactic centre (Rgc ∼ 4.19 kpc). The velocity dispersion
is comparatively smaller. But outside the inner region there are
two groups instead of one as found by Zinn (1985). One group
(Cluster 2) has very low metallicity, far from the Galactic disc,
comparatively low rotational velocity (∼5 km s−1) with moder-
ate core radii. The other group (Cluster 3) has low metallicity,
high core radii, small rotation (∼20 km s−1), highest velocity dis-
persion (σlos ∼ 131 km s−1), farthest from the Galactic centre
(Rgc ∼ 31.69 kpc) and concentrated farthest from the Galactic
disc (|z| ∼ 18.81 kpc). So they may be associated with GCs of
the outer halo. The ages of the MW GCs used are from Chaboyer
(1992) and the ages vs metallicities for Clusters 1, 2, and 3 are
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Table 10. The group means for the parameters of the GCs of Bootstrap samples.

Bootstrap samples No of clusters Variables Cluster 1 Cluster 2 Cluster 3
at peaks

No. of members 36 68 31
1 3, 5 〈[Fe/H]〉 –0.59 –1.46 –1.80

〈c〉 1.42 2.00 0.93
〈Rc〉(pc) 2.84 0.92 12.66

No. of members 41 66 28
2 3 〈[Fe/H]〉 –0.73 –1.61 –1.67

〈c〉 1.50 1.86 0.82
〈Rc〉(pc) 3.06 1.26 13.36

No. of members 43 68 24
3 3,5 〈[Fe/H]〉 –0.57 –1.58 –1.60

〈c〉 1.70 1.8 0.87
〈Rc〉(pc) 2.84 1.32 10.45

No. of members 56 65 14
4 3,7 〈[Fe/H]〉 –0.89 –1.65 –1.01

〈c〉 1.97 1.44 1.24
〈Rc〉(pc) 1.17 2.81 17.49

Fig. 8. [Fe/H] vs. Rc (pc) diagram for Sample 1. The suffixes indicate
the cluster number.

Fig. 9. [Fe/H] vs. Rc (pc) diagram for first Bootstrap Sample 1. The
suffixes indicate the cluster number.

shown in Fig. 16. The mean ages for these groups are also listed
in Table 11. The GCs of the outer halo are younger compared to
those of inner halo and their age- metallicity scatter plot shows
no correlation. The GCs in the inner halo (Cluster 2) are the
oldest population (∼1014.83 yr) and the age- metallicity diagram
shows a correlation with considerable scatter. The ages of all
the GCs in each cluster are not known. The GCs whose ages are
available from Chaboyer (1992) are used. So these diagrams suf-
fer from complicity and firm conclusion. Also the rotational ve-
locities calculated for these groups (Clusters 2 and 3) show that
GCs in the inner and outer halo have substantially smaller rota-
tion and higher velocity dispersion. All these facts are consistent
with the work carried out by Zinn (1993) and subsequently by
many authors (van den Bergh 1993; Lynden-Bell & Lynden-Bell
1995; Silk & Wyse 1993). The present analysis differs from the

Fig. 10. [Fe/H] vs. Rc (pc) diagram for second Bootstrap Sample 1. The
suffixes indicate the cluster number.

former work in the sense that the classification is done in an ob-
jective and more scientific way on the basis of multiple param-
eters at a time instead of taking color or metallicity or horizon-
tal branch ratio parameter one at a time and making revisions
every time e.g. in the works of Zinn (1985) and Zinn (1993)
where there are two and three sub populations respectively. So
the present analysis selects the optimum, unique group and helps
to enunciate unique theory for galaxy formation. Also the choice
of the optimum set of parameters for CA was done in an objec-
tive way through PCA. So from the present classification it can
be concluded that initially there was a halo in which metal poor
GCs formed (inner halo). Then the medium got enriched from
the evolving stars and a disc of GCs formed which are compar-
atively metal rich. The GCs of the outer halo might have been
accreted from the neighbouring galaxies through tidal accretion.
This is concluded from the kinematic properties, absence of age-
metallicity correlation and metallicity gradient etc in Cluster 3.
This is also suggested by Mackey & Gilmore (2004) on the ba-
sis of HB morphology of the Galactic halo GCs and those in the
neighbouring dwarf galaxies.

The CA for M 31 GCs are shown in Table 12 and Fig. 17
respectively. The optimum number in this case is also three like
those in MW. Cluster 1 has high metallicity, very low core radii
and close to the galactic centre. Cluster 2 has minimum metallic-
ity, comparatively lower core radii, and is very far from the cen-
tre. Cluster 3 has comparatively low metallicity, maximum core
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Fig. 11. [Fe/H] vs. Rc (pc) diagram for third Bootstrap Sample 1. The
suffixes indicate the cluster number.

Fig. 12. [Fe/H] vs. Rc (pc) diagram for fourth Bootstrap Sample 1. The
suffixes indicate the cluster number.

Fig. 13. [Fe/H] vs. Rc (pc) diagram for final cluster analysis result for
Sample 1. The suffixes indicate the cluster number.

Fig. 14. [Fe/H] vs. c diagram for final cluster analysis result for
Sample 1. The suffixes indicate the cluster number.

radii. For calculating the rotational velocities of these groups the
function

v = vsys + vrot sin (φ)

(Perett et al. 2002) is fitted to the radial velocities of the GCs
of M 31 where φ is the position angle taken from Barmby et al.
(2000), vsys is the mean velocity of the M 31 cluster system

Fig. 15. [Fe/H], Rc (pc), c diagram for final cluster analysis result for
Sample 1. The suffixes indicate the cluster number

Table 11. The group means for the parameters of the GCs of Sample 1
in the final analysis.

Variables Cluster 1 Cluster 2 Cluster 3
No. of members 41 69 25
〈[Fe/H]〉 –0.64 –1.61 –1.58
〈c〉 1.60 1.82 0.91

〈Rc〉(pc) 2.71 10.16 12.12
〈|z|〉(kpc) 1.73 5.49 18.81
〈Rgc〉(kpc) 4.196 10.16 31.69
〈µV 〉) 18.792 17.28 22.32

〈vrot〉 (km s−1) 124 5 20
σlos 88 129 131

〈log (Age)〉(yr) 11.81 14.83 14.66

Table 12. The group means for the parameters of the GCs of M 31.

Variables Cluster 1 Cluster 2 Cluster 3
No. of members 9 19 7
〈[Fe/H]〉 –0.43 –1.51 –1.41
〈B − V〉 1.06 0.76 0.73
〈c〉 1.67 1.55 1.08

〈Rc〉(pc) 0.545 0.92 1.93
〈Rgc(kpc) 5.28 8.78 8.17
〈µV〉 16.28 16.01 16.56

〈vrot〉 (km s−1) 52.87 31.16 51.90

(de Vaucouleurs et al. 1991) taken as −300 ± 4 km s−1. They
are shown in Table 12. It is found that Cluster 1 and Cluster 3
have comparable rotational velocities while Cluster 2 has some-
what lower rotational velocity. Also Cluster 1 is the most metal
rich component of the system and closest to the galactic centre.
So it can be associated with the disc part like MW Cluster 1. On
the other hand Cluster 2 is the most metal poor component and
farthest from the galactic centre. So it can be associated with the
outer halo like MW Cluster 3 and Cluster 3 of M 31 can be as-
sociated with the inner halo like MW Cluster 2. Also from the
([Fe/H],Rc) diagram (Fig. 18) it is clear that the groups are very
similar to those of MW GCs (Fig. 13). So it can be concluded
that formation history of MW and M 31 are more or less similar.

The CA for LMC GCs shows that there are aparantly three
groups (Table 13).The third group containing only 3 GCs has
more or less similar characteristics as first group (Cluster 1).
The GCs in these two groups are almost coeval (∼108 yr). Also
the mean metallicities (∼−0.37 and ∼−0.34) of these groups and
mean distances (∼3 kpc) from the galactic centre are similar.
Only the core radii differ. Almost similar features have been
found for several other bootstrap samples. As a result we may
consider them as a single group. The number of GCs in the sec-
ond group (Cluster 2) is also very small (4) but this may be due to
lack of data points. Since metallicity values are available only for
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Fig. 16. Scatter diagram of age in logarithmic scale (yr) vs. metallicity
with available values of ages in clusters 1, 2 and 3 respectively as a
result of cluster analysis for Sample 1.

Table 13. The group means for the parameters of the GCs of LMC.

Variables Cluster 1 Cluster 2 Cluster 3
No. of members 16 4 3
〈[Fe/H]〉 –0.37 –1.6 –0.34
〈B − V〉 0.33 0.55 0.18
〈µV 〉 18.33 17.40 18.49
〈c〉 1.39 1.26 0.68

〈Rc〉(pc) 2.62 3.72 10.87
〈Rgc (kpc) 3.18 1.5 2.85

〈log (Age)〉 (yr) 8.09 10.20 7.77

23 GCs of LMC (Mackey & Gilmore 2003) the sample size has
been reduced from that one (39) used by Covino & Fracassini
(1993). Now it is a well known fact that metallicity has good
correlation with colour (B − V). So if the CA is carried out with
(c,Rc and B−V) with the Covino & Fracassini (1993) sample as
(B − V) is available for 39 GCs in that sample, then the classifi-
cation (Fig. 20) shows a good concentration in Cluster 2. On the
basis of the above discussion it may be inferred that the actual

Fig. 17. xy diagram for the number of clusters (K) and jumps for
Sample 2.

Fig. 18. [Fe/H], Rc (pc) diagram in the cluster analysis for Sample 2.
The suffixes indicate the cluster number.

Fig. 19. [Fe/H], Rc(pc) diagram in the cluster analysis for Sample 3. The
suffixes indicate the cluster number.

number of clusters in LMC is likely to be two instead of three
as in the cases of MW and M 31. But this feature is not directly
reflected through CA due to small sample size. The group means
are shown in Table 13. The metallicity vs core radii diagram is
also shown in Fig. 19. The ages of the LMC GCs used are from
Mackey & Gilmore (2003). The mean ages of the groups are
also listed in the table. It is seen that outer GCs (Cluster 1) are
younger and more metal rich than those of inner GCs (Cluster 2)
which exhibits reverse nature as compared with that of MW and
M 31 GCs. Also the outer GCs of LMC are much younger (of
the order of Myr) than those of MW GCs. These indicate that
the formation history of LMC may be different from that of MW
or M 31. This will be clear if a spectroscopic study of the GCs
can be carried out and the sample size is increased.

5. Conclusions

We have applied multivariate analysis for the reclassification
of the globular clusters of our Galaxy, M 31, and LMC. First
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Fig. 20. B − V , Rc (pc) diagram in the cluster analysis for sample of
LMC GCs of Covino & Fracassini (1993). The suffixes indicate the
cluster number.

a Principal Component Analysis is performed to search for
the optimum set of parameters giving the maximum over all
variation among the GCs in these galaxies. It is found that
metallicity, concentration parameter and core radius are the
parameters responsible for maximum variation in the GCs of
Milky Way and M 31. The statistical dimensionality is two in
every situation which is less than those of elliptical galaxies
(Santiago & Djorgovski 1992). This procedure is completely
different from the method of studying two point correlation
or studying the properties of GCs with respect to a single
parameter like colour or HB morphology as done by previous
authors (Zinn 1985, 1993; Mackey & Gilmore 2004). As the
present set up is multivariate, it is quite likely to carry out
the analysis by multivariate methods. Also there are various
parameters responsible for the variation among GCs. It is better
to select the optimum set giving maximum variation. This
reduces the difficulty in handling large number of parameters
simultaneously and drawing any physical conclusions while at
the same time restores the significant parameters responsible
for maximum variation. This is the goal of PCA. In the present
situation the optimum set does not include HB morphology
parameter which is HBR but includes chemical composition
and morphological parameters instead (Table 4, S7, and S8).
So it is more scientific to perform classification on the basis
of these significant parameters selected objectively instead of
taking any parameter in a subjective way. Then Cluster Analysis
is carried out with respect to this optimum set. Here two and
three clusters are found in case of MW, M 31, and LMC GCs.
The robustness of the classification is tested by taking a few
bootstrap samples generated from the original one. The classifi-
cation differs from that by Zinn (1985) and is in agreement with
Zinn (1993) and Mackey & Gilmore (2004). For MW and M 31
three clusters, disc, inner halo, and outer halo GCs are found.
The kinematic properties, age metallicity diagram, metallicity
gradients studied for these groups also support the true nature
of the classification. The analogous behaviour of the GCs with
MW GCs in different parametric planes shows that they have a
similar nature as those of MW GCs. Perrett et al. (2002) have
calculated the kinematic properties of some 200 GCs in M 31
and have found two groups, disc and halo GCs with metallicities
peaked at −0.5 and −1.41 respectively. In the present analysis,
three groups have been found with mean metallicities −0.43,
−1.41, and −1.51 respectively. The existence of the third group
with minimum metallicity is analogous in properties with in-
ner halo GCs of MW. For LMC GCs two groups have been found

instead of three though the conclusion is not very firm due to
the small size of the sample. The evolution history is likely to
differ from those of MW and M 31. As there is controversy in
the formation of GCs in disc (Schommer et al. 1992) or in pres-
sure supported halo (van den Bergh 2004) so more clear picture
will come out from the spectroscopic study of GCs with a larger
sample size.
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Appendix A: Appendix on principal component
analysis

The purpose of the principal component analysis is to reduce the
complexity of multivariate data by transforming the data into
the principal components space and choosing the first n princi-
pal components that explain most of the variation in the original
variables.

Let the components xi of a random vector x =
(x1, x2, . . . , xp)′ are measured in the same or comparable units.
Also assume that the variances of the variables do not vary too
much. Let Σ denote the covariance matrix of the random vec-
tor x. Σ is assumed to be at least positive semi definite rank
r(≤ p). All the eigen values of Σ are real and non negative. Let
λ1 ≥ λ2 . . . ≥ λp ≥ 0 be the ordered eigen value of Σ. Then there
exists an orthogonal matrix Gp×p = (gp×1

1 g
p×1
2 . . . g

p×1
p ), GG′ =

Ip such that G′Σ G = Dλ, Dλ = Diag(λ1, λ2, . . . , λp)
Consider the transformation

y = G′x (A.1)

Then

Cov (y) = Dλ. (A.2)

The vectors g1, g2, . . . , gp of the matrix G are called eigen vec-
tors corresponding to the eigen values λ1, . . . , λp. It can be
shown that

λ1 = g
′
1Σg1 = DMmaxa:a′a=1a′Σa

λ2 = g
′
2Σg2 = DMmaxb:b′b=1,b′g1=0b′Σb

...

and so on.
From the above result it follows that for any set of orthogonal

vectors hi, h′ihi = 1 and for any k ≤ p

λ1 + λ2 + . . . + λk = DMΣk
i=1g

′
iΣgi ≥ DMΣk

i=1h′iΣhi

where by DM we denote a diagonal matrix.
For this reason, the component

y1 = g
′
1x (A.3)

is called the first principal component.

y2 = g
′
2x (A.4)

is called the second principal component and so on.

Here Var(yi) = λi, Because λ1 ≥ λ2 . . . λp, y1 has the largest
variance λ1, y2 has the second largest variance λ2 and so on.
Since

λ1 + λ2 + . . . + λp = trΣ = DMΣp
i=1σii (A.5)

the sum of the variances of p principal components is the same as
the sum of the variances of the original variables xi . . . xp. Thus
the components with smaller variances could be ignored without
significantly affecting the total variance and thereby reducing the
number of variables from p to say k ≤ p.

Many criteria have been suggested by different authors for
deciding how many principal components to retain. Some of
these criteria are as follows :

1. Include just enough components to explain some arbitrary
amount (say 90%) of the variance.

2. Exclude those principal components with eigen values below
the average. For principal components calculated from the
correlation matrix, this criteria excludes components with
eigen values less than 1. This criterion has been used in the
present paper.

3. Use of the screeplot technique.

Appendix B: Appendix on q-q plot and anderson
darling test

Quantile-Quantile Plot
The quantile-quantile (q-q) plot is a graphical technique for

determining if two data sets come from populations with a com-
mon distribution. A q-q plot is a plot of the quantiles of the first
data set against the quantiles of the second data set. By a quan-
tile, we mean the fraction (or percent) of points below the given
value. That is, the 0.3 (or 30%) quantile is the point at which
30% of the data fall below and 70% fall above that value.

A 45-degree reference line is also plotted. If the two sets
come from a population with the same distribution, the points
should fall approximately along this reference line. The greater
the departure from this reference line, the greater the evidence
for the conclusion that the two data sets have come from popu-
lations with different distributions.

In order to fit a theoretical distribution to a data set we
take the data set as the first sample and observations from the
theoretical distribution under consideration (in our case Normal)
as the second sample.

Anderson-Darling test
The Anderson-Darling test (Stephens 1974) is used to test if

a sample of data came from a population with a specific distri-
bution. It is a modification of the Kolmogorov-Smirnov (K-S)
test and gives more weight to the tails than does the K-S test.
The K-S test is distribution free in the sense that the critical val-
ues do not depend on the specific distribution being tested. The
Anderson-Darling test makes use of the specific distribution in
calculating critical values. This has the advantage of allowing a
more sensitive test and the disadvantage that critical values must
be calculated for each distribution.

The Anderson-Darling test is an alternative to the chi-square
and Kolmogorov-Smirnov goodness-of-fit tests.

Definition: The Anderson-Darling test is defined as:
H0: The data follow a specified distribution.
Ha: The data do not follow the specified distribution.
Test Statistic: The Anderson-Darling test statistic is defined as

A2 = −N − S

where

S = ΣN
i=1((2i − 1)/N)[ln (F(Yi) + ln (1 − F(YN+1−i))]

F is the cumulative distribution function of the specified
distribution. Note that the Yi are the ordered data.

Significance Level: Critical Region: The critical values for
the Anderson-Darling test are dependent on the specific distri-
bution that is being tested. Tabulated values and formulas have
been published (Stephens 1974, 1976, 1977, 1979) for a few spe-
cific distributions (normal, lognormal, exponential, Weibull, lo-
gistic, extreme value type 1). The test is a one-sided test and the
hypothesis that the distribution is of a specific form is rejected if
the test statistic, A, is greater than the critical value.


