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ABSTRACT

Aims. We attempt to describe kinetic properties of the solar wind termination shock (and similar MHD shocks in general) using the
appropriate form of the kinetic Boltzmann equation, for arbitrary inclinations ΘBn between the magnetic field and the shock normal.
Methods. In order to understand the deviations from the perpendicular shock, for which we have already derived an exact solution
in an earlier publication, we first prove that our current Boltzmann equation is unable to describe a stationary quasiparallel shock. To
ease and open up further research, we derive conditions for the specific form of the relevant Boltzmann equation.
Results. We demonstrate that the simplest Boltzmann equation aiming to describe a parallel MHD shock is in conflict with the
predictions from pure MHD. We identify several possible reasons for this, and likewise derive conditions based on the mass flow
conservation which must be fulfilled for the shock to be stationary. Assuming that a model for (quasi-)stationary shocks does exist,
we are able to explain the unchanged power law index at the passage of the solar wind termination shock observed by the Voyager
1 spacecraft in 2004. We also show that different dissipation mechanisms lead to different transition scales for perpendicular and
parallel MHD shocks, and that these differences in the dissipation process also need to be included in the case-competent Boltzmann
equation.
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1. Introduction

Magnetohydrodynamics (MHD) is the most successful theory so
far capable of describing astrophysical shocks, such as the so-
lar wind termination shock, planetary bowshocks, or supernova
shock waves. The shocks are usually described in the form of
jump conditions, which are based on the conservation of certain
flows of physical quantities, such as the mass flow, the momen-
tum, and the energy flows (for more recent different model ap-
proaches concerning the multifluid properties of the solar wind
termination shock see Zank et al. 1993; Chalov & Fahr 1994,
1995, 1996; Zank 1999; Fahr & Scherer 2005). For a magne-
tized plasma, the jump conditions are usually used in the form
given by Serrin (1959), Zel’dovich & Raizer (1966), Landau &
Lifshitz (1977) or Diver (2001). However, there are several prob-
lems with the MHD treatment of the shock. First and foremost,
this approach only works for collision-dominated shocks, guar-
anteeing an effective equilibrium of the distribution functions.
But there are many kind of shocks where this condition is not
fulfilled, such as solar wind bowshocks found near astrophys-
ical objects (comets or planets), shocks forming in corotating
interaction regions, traveling interplanetary shocks, or the helio-
spheric termination shock.

Another, less popular problem related to the MHD treat-
ment of astrophysical shocks is the fact that the jump condi-
tions for the lower moments of the distribution function are
underdetermined, which means that there remains one variable
that cannot be determined by the set of jump conditions alone.
Usually, this variable is selected to be the downstream pressure
anisotropy, λ = p⊥/p‖, since in most physical situations, the de-
pendence of the system on this parameter is very weak (see, e.g.

Erkaev et al. 2000). Nevertheless, the MHD description of a
shock transition is not complete; in particular the dissipation
mechanisms producing entropy are not specified. Even without
going into too much detail, it is well known that a full under-
standing of such processes requires the knowledge of the full
upstream and downstream distribution functions, including its
dependence upon time and position, which is clearly not pro-
vided by a simple set of MHD jump conditions (or, for that part,
MHD itself, where the distribution function is reduced to a few
low-order velocity moments, while only the knowledge of all
these moments is equivalent to a distribution function.

In addition, recently, several spacecraft missions have pro-
vided us with directly measured data of the immediate upstream
and downstream distribution functions around several astrophys-
ical shocks. The Voyager 1 spacecraft took data on the solar wind
termination shock (Stone et al. 2005; Decker et al. 2005; Burlaga
et al. 2005; Gurnett & Kurth 2005), observing power law spectra
with identical power law indices on both sides of the transition
region (Cummings et al. 2006). The Cluster mission consists of
four identical spacecrafts able to observe the dynamics of the ter-
restrial bowshock on a much larger scale (Escoubet et al. 1997);
observations from these satellites hint that the shock is highly
nonstationary (see e.g. Lobzin et al. 2007).

While numerical simulations are, in principle, able to model
such systems with rather high accuracy using shock simulation
calculations within hybrid or full particle codes (e.g., see Hada
et al. 2003; Scholer et al. 2003), these simulations are, never-
theless, numerical, which makes understanding the physics be-
yond the results somewhat difficult. In many situations, these
simulations, especially in case of quasiparallel shocks, do not
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show a regular shock shape, but a highly irregular profile. This
is, in principle, in good agreement with Cluster observations;
however, there are no theoretical, physical explanations for these
results yet (Lobzin et al. 2007).

Recently Krasnoselskikh et al. (2002) have investigated
the non-stationarity of strong collisionless quasiperpendicular
shocks and thereby have compared available theoretical results
with full particle numerical simulations. They have proposed an
analysis of the shock stationarity based on the theory of nonlin-
ear waves. As it turns out, for those shocks with supercritical
Mach numbers the region, where an abrupt increase of the mag-
netic field occurs, can be treated as a nonlinear whistler wave
of large amplitude. They show that beyond some linear whistler
Mach number MA,w no stationary linear wave trains can survive
in the shock precursor, i.e. stand still ahead of the field ramp,
but are swept into the ramp and pile up there to form a strongly
nonlinear whistler wave. This critical Mach number is found by
the expression

MA,w =
1
2

√
mi

me
cosΘB,n (1)

and shows that oblique shocks can still appear as stationary even
for large Mach numbers of the order of MA,w ≥ 21. At even
larger Mach numbers, however, i.e. beyond the so-called non-
linear whistler Mach number M̆A,w, even the nonlinear whistler
wave structure cannot be balanced anymore by the effects of
dispersion and dissipation. This is the case when the scale of
the ramp structure becomes shorter than the dispersion length or
the ion inertial length λi = (c/ωi)

∣∣∣cosΘB,n

∣∣∣. Under these condi-
tions two-fluid MHD approaches are needed in which, depend-
ing on the value of λi, electron inertia can either be neglected or
needs to be taken into account. Above critical Mach numbers of
M̆A,w the ramp structure becomes unstable itself, i.e. decays into
a time-dependent multi-ramp system. This supercritical Mach
number according to Krasnoselskikh et al. (2002) is given by
M̆A,w =

√
2MA,w.

In face of these difficulties, we have recently developed a
completely different approach, based on kinetic equations (Fahr
& Siewert 2006), aiming to describe the solar wind termination
shock, although our results should offer considerably more ap-
plication opportunities. Especially, our approach should be able
to cross the gap between a numerical treatment of many parti-
cles in a box, where one is always in danger of overemphasizing
numerics over physics, and the MHD treatment, which may be
insufficient in face of highly nonstationary processes, as hinted
in numerical simulations (Hada et al. 2003; Scholer et al. 2003).

So far, we have successfully applied our model to close the
set of anisotropic jump conditions for the purely perpendicular
shock, suggesting that our approach leads to physical results.
In addition, our approach should prove useful as a test case for
numerical codes aiming to simulate the creation and behavior of
astrophysical shocks. (Of course, these simulations do likewise
present a possibility to test our kinetic approaches.)

While the perpendicular shock leads to a simple and ana-
lytic relation between the upstream plasma and the downstream
plasma (see Eq. (6)), up to now, for an arbitrary inclination
between the magnetic field and the plasma flow, we were un-
able to arrive at a physical downstream distribution function. In
this paper, we greatly expand our previous analysis of the par-
allel shock, and obtain an improved description of the physics
which one has to respect when aiming to understand quasiparal-
lel shocks in astrophysical plasmas.

2. The Boltzmann equation for the shock

2.1. Recent work

In a recent paper (Fahr & Siewert 2006) we have derived the
Boltzmann equation for the distribution function f (w‖, w⊥, s)
of a collisionless magnetized plasma crossing an MHD shock,
where w‖,⊥ are the velocity components of the individual plasma
particles parallel and perpendicular to the magnetic field. The
equation is written in the accelerated reference frame co-moving
with the bulk velocity U, and s is the streamline coordinate in
the direction of the shock normal. In the most simple configura-
tion, when only the deceleration of the ions across the shock is
considered, the Boltzmann equation takes the form

d
ds

f (w‖, w⊥, s) = A‖
d

dw‖
f (w‖, w⊥, s) + A⊥

d
dw⊥

f (w‖, w⊥, s) (2)

with

A‖ = − Un

Un + w‖ cosΘBn

(
cosΘBn

dUn

ds
+ w

d
ds

cosΘBn

)
(3)

A⊥ = − Un

Un + w‖ cosΘBn

(
w⊥
2B

dB
ds
+ w

d
ds

sinΘBn

)
(4)

where ΘBn is the angle between the magnetic field B and the
shock normal and Un is the normal bulk velocity of the plasma.
We note that these quantities are usually not constant, but are
functions of s in the transition region of the shock. For general
cases, this equation needs to be solved numerically, which intro-
duces additional complications in terms of boundary conditions
to be imposed on the numerical method. In addition, however,
many numerical methods used to solve partial differential equa-
tions require the addition of further, “stability”-generating terms,
which may be interpreted as the presence of additional terms in
the initial equation (see Press 1987–2002, Chap. 19).

An alternate approach is to multiply this equation by parallel
and perpendicular velocities, integrate over velocity space, and
obtain differential equations for the change of a few selected ve-
locity moments, which corresponds to the pure MHD treatment.
However, in this situation, as in common MHD, one is again
faced with a hierarchy of momentum equations which need to be
closed. In addition, nonlinear terms such as (Un + w‖ cosΘBn)−1

introduce terms which may no longer be identified with the
usual MHD moments, complicating the situation even further.
For these reasons, we now attempt to solve this equation analyt-
ically.

For a purely perpendicular shock (ΘBn,1,2 = π/2), where the
subscripts 1 and 2 denote the upstream and downstream sides of
the shock, the Boltzmann equation reduces to

d
ds

f (w‖, w⊥, s) = −w⊥
2B

dB
ds

d
dw⊥

f (w‖, w⊥, s). (5)

In Fahr & Siewert (2006) and Siewert & Fahr (2007), we have
demonstrated that practically all MHD properties of the plasma
do not depend on the fine structure (i.e. the transition scale)
itself. This includes the velocity distribution function,

f2(w‖, w⊥, s) = f1

(
w‖,
w⊥√

x

)
, (6)

and the velocity moments,

ai j,2 = x(1+i/2)ai j,1, (7)
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which are defined as

ai j =
〈
wi
‖w

j
⊥ f (w‖, w⊥)

〉
=

∫
d3wwi

‖w
j
⊥ f (w‖, w⊥). (8)

These relations have been derived using a separation ansatz
(Siewert & Fahr 2007) and are not an approximation, but an ex-
act result. This result allows to describe what happens with a
specific upstream distribution function at the crossing of a per-
pendicular shock. One especially interesting result is that power
law spectra, as they have been predicted and observed widely
in astrophysics (see e.g. Schlickeiser 2002; Fisk & Gloeckler
2006), are preserved with respect to their power law index when
crossing a shock; should a similar result also hold for arbitrary
inclinations of the magnetic field, we might have the explanation
for the Voyager 1 data (Cummings et al. 2006)

Unfortunately, for the purely parallel shock, we encountered
several technical problems (Fahr & Siewert 2006), mainly re-
lated to a singularity at w‖ = −Un in Eqs. (3) and (4), which
need to be interpreted and treated in a physical way. For a purely
parallel shock, the Boltzmann equation reduces to

d
ds

f (w‖, w⊥, s) = − Un

Un + w‖
dUn

ds
d

dw‖
f (w‖, w⊥, s). (9)

This expression is not solvable using a separation ansatz, since
the term proportional to w‖

Un+w‖
, which appears in Eq. (4), ex-

cludes such an approach.

2.2. The almost perpendicular shock

Aiming to understand the parallel shock better, we now estimate
whether this configuration is the exception where our equation
fails, or if, perhaps, the perpendicular shock is the only config-
uration where our equation works. In order to do this, we in-
vestigate the quasi-perpendicular shock (ΘBn = π/2 − ∆α), and
develop the Boltzmann equation around π/2, leading to

d
ds

f
∣∣∣∣∣
π/2−∆α

� d
ds

f
∣∣∣∣∣
π/2
− ∆α d

dα

(
d f
ds

)∣∣∣∣∣∣
π/2

· (10)

In this equation the first term on the right hand side (RHS) rep-
resents the regular term in the perpendicular equation (Eq. (5)),
which adequately describes the purely perpendicular shock
(Siewert & Fahr 2007), while the other term is the first-order
(linear) correction for an angle α = π/2 − ∆α.

The second term on the RHS of Eq. (10) may be evalu-
ated starting from the general form of the Boltzmann equation
(Eq. (2)), leading to

d
dα

(
d f
ds

)
=

dA‖
dα

d f
dw‖
+ A‖

d2 f
dα dw‖

+
dA⊥
dα

d f
dw⊥

+ A⊥
d2 f

dα dw⊥
· (11)

The partial derivatives with respect to α may be evaluated to

dA‖
dα
− Un w‖ sinα

(Un + w‖ cosα)2

(
cosα

dUn

ds
+ w

d
ds

cosα

)

+
Un

Un + w‖ cosα

(
sinα

dUn

ds
+ w

d
ds

sinα

)
(12)

dA⊥
dα
= − Un w‖ sinα

Un + w‖ cosα

(
w⊥
2

d
ds

ln B + w
d
ds

sinα

)

− Un

Un + w‖ cosα
w

d
ds

cosα· (13)

Taking α(s) ≡ π/2, most of the above terms vanish, and we
obtain

dA‖
dα

∣∣∣∣∣
α=π/2

= −dUn

ds
(14)

dA⊥
dα

∣∣∣∣∣
α=π/2

= −w‖w⊥2
d
ds

ln B
dUn

ds
· (15)

Since, per definition, f does not depend upon α, but only on s,
we may rewrite the second order-derivatives as

d2 f
dα dwi

=
d2 f

ds dwi
· ds

dα
· (16)

Since we only need to evaluate this expression for α = π/2,
where, in this special configuration, there is no functional con-
nection between the two quantities s and α, we automatically see
that the second-order derivatives identically vanish. In the more
general case, the expression dα/ds is given by

dα
ds
=

d
ds

arccot

(
Bn

Bt

)
= −

∣∣∣∣∣ d
dx

arctan x
∣∣∣∣∣ BnBn1

B2
t Bt1

dUn

ds
, (17)

which is zero for the perfectly perpendicular shock. We would
like to emphasize that this is only one of several possible repre-
sentations of dα/ds; especially for α = 0, there is no divergence.

Taking these results together, we may write Eq. (10) in the
form

d
ds

f � − ∆αdUn

ds
d f
dw‖

− (
1 + w‖∆α

) w⊥
2

d
ds

ln B
d f

dw⊥

= A‖,∆α
d f
dw‖
+ A⊥,∆α

d f
dw⊥
, (18)

where

A‖,∆α = −∆αdUn

ds
(19)

A⊥,∆α = − (
1 + w‖∆α

) w⊥
2

d
ds

ln B. (20)

2.3. The Boltzmann equation in the rest frame of the parallel
shock

In this analysis, we now also consider the Boltzmann equation
in the non-accelerated rest frame of the standing transition re-
gion, which we derive now. This approach may be useful to es-
timate which terms in Eq. (2) are more “problematic” than oth-
ers. We would also like to note that, as we are working in the
non-relativistic limit, the Boltzmann equation derived in the co-
moving accelerated rest frame of the plasma stream should be
qualitatively identical with the equation one would derive in the
inertial rest frame of the shock transition region. In fact, most of
the terms in the Boltzmann equation may be derived exactly in
the same way as in Fahr & Siewert (2006), which means we only
need to emphasize the changes.

In a more general form, the Boltzmann equation is written as

(w · ∇x) f (w, x) + (F · ∇w) f (w, x) = 0, (21)

where (F · ∇w) is the force term, and (w · ∇x) is the drift term,
describing changes in velocity and configuration space, respec-
tively. Following the transformation into an inertial reference
frame, we must remove the convective term and the pseudo
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forces, and replace these terms with the (now physical, i.e.
Newtonian) force responsible for the deceleration. Usually, it is
assumed that a local electric potential wall develops as conse-
quence of the electric charge concentrations on both sides of the
transition region, which in turn create electric fields and deceler-
ates the upstream ions. For this reason, we now derive the MHD
prediction of this additional, Newtonian force term in the case
of the purely parallel shock. Assuming that the shock transition
region is only a function of the streamline coordinate s, we may
write the force term in the form

Fs
d

dw‖
f = − e

m
E(s)

d
dw‖

f . (22)

For simplicity, we will omit the f in the following steps, re-
ducing the equation to an operator. In addition, we define the
charge-to-mass ratio e/m ≡ µ. Finally, we restrict ourselves to
the parallel shock.

The electric field E(s) may be derived from the MHD equa-
tion of ion motion, which is given for a one-dimensional system
in the form

ρU
dU
ds
= −dP

ds
+ µρE, (23)

where P is the local pressure. Solving this equation for the elec-
tric fields E then yields

E = (µρ)−1

(
ρU

dU
ds
+

dP
ds

)
. (24)

Using the polytropic relation C = P/ργ (with the polytropic
index γ), we obtain

E = (µρ)−1

(
ρU

dU
ds
+Cγργ−2 dρ

ds

)
· (25)

Introducing the constant mass flow F = ρU, we may further-
more write

E = (µρ)−1U
dU
ds

⎛⎜⎜⎜⎜⎝1 − γP1

ρ1U2
1

(U1

U

)γ+1
⎞⎟⎟⎟⎟⎠ , (26)

and finally, using c2
s1 = γP1/ρ1 and M1 = U1/cs1,

E = (µρ)−1U
dU
ds

⎛⎜⎜⎜⎜⎝1 − 1

M2
1

(U1

U

)γ+1
⎞⎟⎟⎟⎟⎠ . (27)

Inserting this into Eq. (22), we obtain the following force term
to our Boltzmann equation:

U
dU
ds

⎛⎜⎜⎜⎜⎝1 − 1

M2
1

(U1

U

)γ+1
⎞⎟⎟⎟⎟⎠ d

dw‖
· (28)

Obviously, the first term in this equation exactly yields the
pseudo force term responsible for the bulk deceleration of
the system. If we want that this equation is identical to the
Boltzmann equation derived in the accelerated reference frame,
we obtain the condition

U
dU
ds

1

M2
1

(U1

U

)γ+1 d
dw‖

!
=

d
dt
, (29)

i.e. we (should) have derived an expression for the convective
change of the distribution function in the solar wind rest frame.
However, on a closer look, this analogy does not hold perfectly,
as the distribution function is different in both reference frames,
too.

3. Solving the Boltzmann equation

To solve the Boltzmann equation for an arbitrary angle ΘBn, we
use the representation

f (w‖, w⊥, s) = f1(w̄‖(w, s), w̄⊥(w, s)), (30)

which means that on the downstream side of the shock, the ions
are expected to be distributed, essentially, conformally invariant,
however with new, s-dependent variables, where the modified
variables w̄‖ and w̄⊥ describe the distortion. Taking the derivative
with respect to s, and assuming that there is no explicit time-
dependence, we obtain

d f
ds
=

d f
dw̄‖

dw̄‖
ds
+

d f
dw̄⊥

dw̄⊥
ds
· (31)

Using the method of comparing coefficients, and a Boltzmann
equation of the form given in Eq. (2), we then obtain the relations

d
ds
w̄‖ = A‖(w̄, s) (32)

d
ds
w̄⊥ = A⊥(w̄, s). (33)

These expressions represent two differential equations which,
applying the parameters for our Boltzmann equation (Eqs. (3)
and (4)), are of the first order and coupled (because of the terms

proportional to w =
√
w2
‖ + w

2⊥). Usually, solving these equa-

tions for w̄‖ and w̄⊥ requires a numerical procedure, using the
initial conditions

w̄‖(s1) = w‖ w̄⊥(s1) = w⊥. (34)

Thus we have reduced the initial partial differential equation
(PDE) to two ordinary differential equations (2ODE), which is
an improvement from a numerical point of view.

3.1. The perpendicular shock revisited

To verify that the ansatz presented in Eq. (30) does not contradict
earlier results, we first demonstrate that the exact solution for the
perpendicular shock (Siewert & Fahr 2007),

f2(w‖, w⊥) = f1

(
w‖,
w⊥√

x

)
, (35)

is reproduced, where x is the MHD compression ratio. The
Boltzmann equation for the purely perpendicular shock is

d f
ds
= −w⊥

2
d
ds

(ln B)
d f

dw⊥
· (36)

Solving the differential Eqs. (32) and (33) trivially leads to w̄‖ =
w‖ and to

w̄⊥ = w⊥ exp

(
−1

2

∫ s

s1

ln B(s) ds

)
=
w⊥
x(s)
· (37)

Thus we can already conclude that this result supports the repre-
sentation (30), where the Boltzmann equation is reduced to two
ODEs.
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3.2. The parallel shock

Next, we investigate the purely parallel shock (ΘBn = 0), where
the Boltzmann equation reduces to Eq. (9), which automatically
leads to

w̄⊥ ≡ w⊥, (38)

while w̄‖ is the solution of the differential equation

d
ds
w̄‖ = − Un

Un + w̄‖
dUn

ds
· (39)

This is a nonlinear (and therefore nontrivial) problem, although
it is possible to verify numerically that this relation automati-
cally leads to an additional deceleration of the system. However,
since numerical methods are, in principle, prone to errors, we
now present an analytical proof for this.

Since our Boltzmann equation has been explicitly derived in
the co-moving accelerated MHD reference frame, the parallel
velocity moment,

U‖,2 = 〈w‖〉2 =
∫

d3w w‖ f2(w), (40)

should always be zero. This condition may be verified by taking
the differential Eq. (9), multiplying it with w‖ and integrating
over d3w, leading to∫

d3w w‖
d
ds

f =
d
ds

U‖

= −
∫

d3w
Unw‖

Un + w‖
dUn

ds
d

dw‖
f . (41)

Clearly, this is a differential equation for the change of the paral-
lel velocity moment across the shock. Because of our choice of
the reference frame, it should be equal to zero for all s. Applying
the substitution

Un(s) + w‖ = x, (42)

we obtain

0
!
= −2πUn

dUn

ds

∫ ∞

0
dw⊥

∫ ∞

−∞
dx

x − Un

x
d f
dx
· (43)

Since we are only considering nontrivial configurations, we get
Un(s) � 0, and since we are attempting to model a shock, where
a deceleration does exist, we obtain dUn/ds � 0 as well, and our
condition reduces to

0
!
= −

∫ ∞

0
dw⊥

∫ ∞

−∞
dx

x − Un

x
d f
dx

= −
∫ ∞

0
dw⊥

∫ ∞

−∞
dx

(
1 − Un

x

) d f
dx

= Un

∫ ∞

0
dw⊥

∫ ∞

−∞
dx

1
x

d f
dx
· (44)

Assuming that a physical, non-trivial distribution function f
exists, we partially integrate it, leading to

0
!
= Un

∫ ∞

0
dw⊥

([
f (x)

x

]∞
−∞
+

∫ ∞

−∞
f (x)

1
x2

dx

)

=

∫ ∞

0
dw⊥

∫ ∞

−∞
f (x)

1
x2

dx. (45)

For a physical distribution function (i.e. f (w) ≥ 0), the integrand
is always larger than zero, which means that, as long as Un � 0,

the only way to obtain a vanishing kinetic parallel velocity in
the co-moving accelerated MHD reference frame is to set f (x) ≡
0, i.e. working in a vacuum. This result clearly proves that our
Boltzmann equation is inherently unable to describe the parallel
MHD shock, as there is always a finite difference between the
MHD and the kinetic co-moving reference frames.

3.3. The almost perpendicular shock

Finally, we consider the almost perpendicular shock, i.e. just an
infinitesimal step from the situation where our approach works.
In this case, it automatically follows from Eqs. (19) and (32)
that this Boltzmann coefficient describes a systematic decelera-
tion of the upstream velocity distribution function away from the
co-moving reference frame, on top of the implicit MHD decel-
eration at the shock.

To improve our analysis, we now repeat the arguments pre-
sented in Sect. 3.2, taking the parallel Boltzmann equation in the
rest frame of the shock,

w‖
∂

∂s
f = −Un

dUn

ds
∂

∂w‖
f , (46)

and integrating it over d3w, leading to

∂

∂s
U‖ = −Un

dUn

ds

∫
d3w

∂

∂w‖
f . (47)

For a physical distribution function, the integral is proportional
to∫ ∞

−∞
dw‖

d f
dw‖
≡ 0, (48)

suggesting that an upstream parallel plasma should not be af-
fected by this equation at all, while a deceleration should occur
in this reference frame. Taken together with the earlier result for
the accelerated reference frame, both results hint that the only
solution to a parallel shock may be the trivial xMHD = 1 situa-
tion, i.e. the distribution function is not affected by the shock at
all. From these results we automatically see that the systematic
deceleration of the upstream plasma flow may not be attributed
to the electric field gradient of the single-ion plasma in the tran-
sition region, leading us to the conclusion that a simple kinetic
description is inherently unable to describe an MHD shock in a
single-fluid plasma.

4. Necessary properties for physical downstream
distribution functions

4.1. The MHD mass flow

Is it at all possible, for a solution of an equation of the form (2),
to find a combination of functions A‖ and A⊥ which is not in
conflict with MHD? We now attempt to answer this question by
going deeper into the underlying mathematical structures.

We begin with the most simple MHD jump condition, the
mass flow conservation,

ρ1Un1 = ρ2Un2, (49)

which must always be valid for a source-free fluid system. (If this
were not the case, particles would be stopped inside or reflected
from the transition region, leading to two-stream instabilities and
accumulation of local space charges, requiring additional, care-
fully balanced terms both on the MHD and the kinetic sides of
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our problem.) From this condition, it follows that the kinetically
devised MHD moments, which are given by Eq. (8), must fulfill
the relations

ρ2 = xρ1 (50)

U‖,2 = 〈w‖〉2 = 0, (51)

where the second relation must hold only in the accelerated
co-moving reference frame.

Making the ansatz given by Eq. (30), we may write Eq. (50)
in integral form,∫

d3w f1(w̄‖(w), w̄⊥(w)) = x
∫

d3w f1(w‖, w⊥). (52)

Transforming the LHS of this equation into the new coordinates
w̄(w) leads to∫

d3w f1(w̄‖(w), w̄⊥(w)) =
∫

d3w̄ D f1(w̄‖, w̄⊥), (53)

where D is the Jacobi determinant associated with the variable
transformation.

4.2. Transformation equations for the variables

We now need to estimate which coordinate transformationsw(w̄)
are compatible with these relations. Considering that only the
upstream parallel velocity moment, 〈w‖〉1, identically vanishes
on account of the initial assumptions, we require a linear relation
between the parallel components,

w‖ = C‖w̄‖. (54)

If there were any nonlinear terms involved in this relation, the
downstream velocity moment would be nonzero in any refer-
ence frame because of an admixture of higher-order moments.
Similarly, there must be no perpendicular velocity contributions
to this relation, which would otherwise lead to an admixture as
well. Applying the “natural” coordinates for this problem, i.e.
cylinder coordinates, averaging over the azimuthal angle, and
applying Eq. (54), the Jacobi determinant is given by

D =
dw‖
dw̄‖

dw⊥
dw̄⊥
w⊥
w̄⊥
= C‖

dw⊥
dw̄⊥
w⊥
w̄⊥
· (55)

This allows us, by applying Eq. (55) to Eq. (52) and Eq. (53), to
obtain the relation

C‖
dw⊥
dw̄⊥
w⊥
w̄⊥
= x. (56)

This is an exact differential equation, which is trivially solved by

w⊥ =
√

x
C‖
w̄⊥ = C⊥w̄⊥ C⊥ =

√
x

C‖
, (57)

demonstrating that the perpendicular coordinates must be con-
nected by a linear relation as well.

This result already allows us to write the most general, parti-
cle number conserving downstream ion distribution function as

f2(w‖, w⊥) = f1

(
w‖
C‖
,
w⊥
C⊥

)
, (58)

where the coefficients C‖ and C⊥ must not depend upon w. In
addition, the condition

C‖ ·C2
⊥ = x (59)

must also be fulfilled. This result is in agreement with the per-
pendicular solution, where C‖ = 1 and C⊥ =

√
x.

4.3. The functions A‖ and A⊥ for our Boltzmann equation

Using the formalism developed in the previous sections, we may
now explain why our Boltzmann equations seemingly conflicts
with basic MHD. Inserting Eq. (58) into Eq. (2), we obtain

d f
ds
=

d f
dw̄‖

dw̄‖
ds
+

d f
dw̄⊥

dw̄⊥
ds

= A‖(w)
d f
dw‖
+ A⊥(w)

d f
dw⊥

= A‖(w)
dw̄‖
dw‖

d f
dw̄‖
+ A⊥(w)

dw̄⊥
dw⊥

d f
dw̄⊥

=
A‖(w)

C‖
d f
dw̄‖
+

A⊥(w)
C⊥

d f
dw̄⊥
· (60)

Then, by comparing coefficients, we obtain

A‖(w̄) C−1
‖ = −w̄‖

dC‖
ds

C2
‖

(61)

A⊥(w̄) C−1
⊥ = −w̄⊥

dC⊥
ds

C2⊥
· (62)

These two differential equations for C‖ and C⊥ may be brought
into the standard form

d
ds

C‖ = −A‖(w)

w‖
·C‖ = −a‖C‖ (63)

d
ds

C⊥ = −A⊥(w)
w⊥

· C⊥ = −a⊥C⊥, (64)

where ai = Ai/wi must not depend upon w. If this were not the
case, then the resulting Ci would posses a similar dependence,
which in turn would break the mass flow conservation. These
equations are formally solved by

C‖,⊥(s) = exp
∫ s

s1

−a‖,⊥(s)ds, (65)

and Eq. (59) may be written as

ln x(s) = −
∫ s

s1

(a‖(s) + 2a⊥(s))ds, (66)

which allows us to test any pair of Boltzmann coefficients Ai

using a simple integration.
Since a‖ and a⊥ must not depend on w‖,⊥, we automati-

cally see that our Boltzmann coefficients given by Eqs. (54)
and (57) are only able to describe a simple (i.e. not explicitly
time-dependent, not turbulent, etc.) MHD shock for ΘBn ≡ π/2,
when the derived coefficients ai do not depend upon w. For all
other magnetic field orientations, the singular factor clearly rules
out the required w-dependence.

5. Applications of our formalism

5.1. Relations between the upstream and downstream
moments

Using the requirements derived in Sect. 3 for a stationary MHD
shock, we may now derive relations between the upstream and
downstrem MHD moments; repeating the calculations done by
Siewert & Fahr (2007), we obtain

ai j,2 = Ci+1
‖ C j+2

⊥ ai j,1, (67)
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and, for the downstream pressure anisotropy,

λ2 =
p⊥,2
p‖,2
=

C2⊥
C2
‖
λ1· (68)

Using Eq. (59), this expression may be rewritten as

λ2 =
x

C3
‖
λ1 =

C6⊥
x2
λ1· (69)

According to Erkaev et al. (2000), the jump conditions of the
system may be expressed as the solution of two nonlinear poly-
nomial equations for the three unknown variables ε, x, and λ2,
where usually λ2 is taken as the undetermined parameter. Now,
however, using the additional Eq. (69), it is possible to close
the system of jump conditions, as long as the underlying kinetic
equation fulfills Eq. (59). This result also proves that, at least in
principle, it is possible to arrive at a kinetic description of a sta-
tionary MHD shock with arbitrary inclination. Finally, assuming
that such a description does exist, it is then trivial to close the
MHD jump conditions at a stationary boundary layer; instead,
the nontrivial problem is finding the correct kinetic description.

5.2. Power law spectra passing an arbitrarily oriented shock

Next, we would like to point out an interesting fact. Taking
Eq. (58), and applying this to a power law distribution function,

fk,1 ∝ wk ∝ wk
⊥, (70)

we may write for the downstream site

fk,2 ∝ C−k
⊥ w

k
⊥, (71)

using precisely the same power k as on the upstream side, as the
coefficients Ci do not depend uponw. This result explains the ob-
servations made by Voyager 1, where it was, surprisingly, found
that the observed solar wind power law index did not change dur-
ing the event interpreted as the passage over the solar wind ter-
mination shock (Cummings et al. 2006). It also gives the theoret-
ical explanation of a result derived by Fisk & Gloeckler (2006),
however not based on the assumption of pitch angle isotropic
distribution functions.

6. Outlook

6.1. The physics behind the singular factor

In the last sections, we have demonstrated that two simple phys-
ical principles, stationarity and mass flow conservation, strongly
restrict the Boltzmann coefficients in Eq. (2). We now attempt to
understand what kind of physical processes might be compati-
ble with these conditions. In order to do this, we first note that,
during the initial derivation of our Boltzmann equation (Fahr &
Siewert 2006), we obtained an equation of the form

Bt
∂

∂t
f + Bs

∂

∂s
f = B‖

∂

∂w‖
f + B⊥

∂

∂w⊥
f , (72)

where the coefficients Bi are simple, non-singular functions of
w and s. Then, using the implicit stationarity, the substitution
∂
∂t → Un

∂
∂s was made, followed by a division so that this equa-

tion reduced to

(UnBt + Bs)
∂

∂s
f = B‖

∂

∂w‖
f + B⊥

∂

∂w⊥
f , (73)

where the left handed side (LHS) is equivalent to (Un +
w‖ cosΘBn), which is then divided out, giving rise to the global
singularity in our Ai.

Obviously, we need to understand the physical meaning be-
hind the LHS. Considering that Un is the normal bulk velocity of
the plasma flow, it is straightforward to interpret the entire term
as a differential bulk velocity, i.e. the entire “slice” of individual
particles moving at identical w‖ (and arbitraryw⊥) is crossing the
shock with a differential velocity of

U ′n = Un + w‖ cosΘBn. (74)

This leads to many differential streams, which in turn leads to
many two-stream instabilities, a situation which, to our knowl-
edge, has not been considered theoretically yet. However, this re-
sult also hints that, in principle, additional nonlinear processes,
such as turbulence and wave-particle interactions, must neces-
sarily appear in a kinetic shock theory.

6.2. The problem of charge neutrality

Furthermore, this analysis points towards another problem,
namely the question of charge-neutrality. In MHD, this assump-
tion is usually a requirement, although in many situations, elec-
trons are left out of the analysis because of their small rest
masses. This hints that the remedy for that situation must be
to include electrons as a separate dynamical population. This
is because only in case of the perpendicular MHD shock the
system of the plasma bulk velocity is a preferred system, since
here the perpendicular magnetic field controlling both the bulk
motion of the ions and the electrons is just convected with this
bulk velocity system. This causes bulk velocities of ions to be
identical with that of electrons, which is no longer the case for
non-perpendicular shocks. In the latter case, electrons react com-
pletely differently compared to ions to the electric fields inside
the transition region. While these fields do decelerate the ions,
leading to a very similar term in the Boltzmann equation than
the pseudo forces appearing in the co-moving accelerated refer-
ence frame, electrons will be accelerated instead; considering the
much smaller electron mass compared to the heavier ions, this
acceleration should be much larger than the proton deceleration,
perhaps even leading into the relativistic regime. This, however,
enforces the need to also consider an independent Boltzmann
equation for the electrons and, in addition, to couple the two
Boltzmann equations for ions and electrons, by addition of ade-
quate friction force terms.

Some general control on this two-population system for the
parallel shock (z-direction parallel to B) is given by standard
electrodynamic requirements for this shock. From Maxwells
equation rotB = 4π j, we may conclude for the 1-dimensional
shock that

[rotB]x = −
dBy
dz
= 0

[rotB]y = −dBx

dz
= 0

[rotB]z = 4π jz
!
= 0, (75)

which means that the electric current in the transition region al-
ways has to vanish, i.e.

jz = e(neUe − npUp) = 0, (76)

and that the electric space charge density η is given by

η = e(np − ne) = enp(1 − Up/Ue). (77)
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6.3. The thickness of the transition region

So far, we have made no specific assumptions on the fine struc-
ture of the shock transition region, partially on account of the
fact that we have never truly required such assumptions yet.
However, the nonstationarity of the shock clearly suggests that
this simplification is no longer valid, and that we need to allow
for an explicitly extended shock. In this section, as a preparation
for further work, we present estimations on how thick the shock
might be in the perpendicular and parallel situations.

Roughly spoken the extent of the collision-less shock tran-
sition is defined by the length needed in a shock-generated gra-
dient structure to create enough entropy, and dissipate enough
kinetic energy of the upstream flow into thermal energy of
the downstream flow. The rate of entropy generation, however,
strongly depends on the available mechanisms which can effec-
tively work for such dissipations, with the available mechanisms
in turn depending on the distribution function of the plasma.

Lee et al. (1986) have considered single ion trajectories
through a planar MHD structure in a test particle approach, by
parameterizing the planar perpendicular MHD shock by a shock
scale λ measured in natural ion length units x0 = U1/Ωi (where
U1 is the upstream plasma bulk velocity, and Ωi = eBt1/mic is
the ion gyrofrequency related to the upstream tangential field
component Bt1). They have found that, for a strong shock (i.e.
Bt2/Bt1 � 4), the gyrophase average of the downstream gyra-
tional ion energy first increases with increase of λ up to a max-
imum value

〈
Eg2

〉
� 0.35 · (miU2

1/2) at λmax = 0.25 and then
decreases at further increase of λ. This downstream gyrational
energy

〈
Eg2

〉
, however, is in a low-entropic form and by no

means fulfills the dissipation requirements of Rankine-Hugoniot
relations with a conversion rate

〈
Eg2

〉
/(miU2

1/2) = 0.75 of up-
stream kinetic into downstream thermal energy. Nevertheless
from their study it becomes evident that the parameter λ can
be optimized such that the resulting dissipation attains a maxi-
mum. For very small values of λ, pure ion overshoot will happen,
while for large λ, pure conservation of the magnetic ion moment
will occur. Maximum dissipation, however, appears to be in be-
tween these two extreme cases. This intermediate case is per-
haps realized when an unstationary shock structure eventually
becomes stationary just when meeting the right steepness condi-
tions. Though not based on a rigorous theoretical treatment, one
may nevertheless draw the qualitative conclusion from it, that the
strong perpendicular MHD shock may have a transition scale of
λ⊥ � 0.25 · (U1/Ωi).

In contrast to the above, a corresponding scale estimate λ‖
for the parallel shock has to be elaborated on completely dif-
ferent physical grounds. In this particular case, where Bn1 =
Bn2 is valid, no dissipation can be achieved by conversion into
gyrational energy modes. The only way to realize dissipation
is through dynamical coupling between ions and overshooting
electrons either by electrostatic or by Whistler wave turbulences
which culminates in the requirement (see Quest 1986) that the
upstream electron resistive diffusion length Ddiff be of the order
of the ion inertial length Di � c/ωp,i (where ωp,i =

√
4πne2/mi

is the ion plasma frequency). This criterion has been proven to be
fairly correctly fulfilled based on corresponding investigations
of data obtained with ISEE at several Earth bowshock crossings
(Scudder et al. 1986). More recently it has been shown in mea-
surements of the Cluster satellites (Lobzin et al. 2007) that the
required anomalous electron resistivity most probably in case of
the Earth‘s bowshock is enforced by large amplitude Whistler
waves which are driven unstable towards some saturation level

in the bowshock transition region. These authors are also able
to demonstrate that the bowshock structure is unstationary, as
long as Whistler wave turbulence amplitudes stay low, and only
becomes stationary, if the turbulence amplitudes have reached a
supercritical level.

We thus can estimate the transition scale λ‖ of the parallel
MHD shock looking for the dimension over which overshooting
electrons can couple their kinetic energy via Whistler waves to
the shocked ions. Whistler waves in the electron frame have fre-
quenciesωwhich in the ion bulk frame are seen with a frequency
ώ with the following relation valid

ώ = ω − k∆U (78)

where k is the wave vector of the Whistler wave and ∆U is the
difference in the bulk velocities of protons and electrons. The
latter can easily be estimated by the expression

∆U � Ui2 − Ue2 � −
√

mi

me
U1. (79)

Only the left-handed Whistler wave can be absorbed by ions
when the Whistler wave frequency is seen in the ion frame as
ion cyclotron frequency Ωi, thus requiring as resonance condi-
tion a Whistler frequency of

ωi,r = Ωi − ki

√
mi

me
U1 (80)

which can be expressed as a pure function of frequency when
using the Whistler wave dispersion relation k = k(ω) and thus
yields

ωi,r =
Ωi

1 +
√

mi
me

(U1/Vϕ,i)
(81)

where Vϕ,i = Ωi/ki is the phase velocity of the resonant Whistler
wave. When entering with the above frequency ωi,r into the
Whistler wave dispersion relation one finds with c � U1 � VA,1
for the absorption of the resonant Whistler wave a typical extinc-
tion length of

λ‖ � λi � 2π

(
1 +

√
mi

me

U1

Vϕ,i

)
VA,1

Ωi
(82)

is then obtained.
Reminding now that the following relation is valid

VA,1

Ωi
= c

√
mi

4πne2
=

c
ωp,i
, (83)

we finally find

λ‖ � 2π

(
1 +

√
mi

me

U1

Vϕ,i

)
c
ωp,i
= 2π

(
1 +

√
mi

me

U1

Vϕ,i

)
λ⊥ (84)

demonstrating that, depending on the specific shock conditions,
the transition scale of the parallel shock is larger than that of the
associated perpendicular shock by about

λ‖ ≥ 10 · λ⊥. (85)

To summarize, the different transition scales at different mag-
netic field orientations supports our initial idea that the parallel
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and perpendicular shocks require a significant amount of addi-
tional physical processes included into our model.

7. Conclusions

We have analyzed the simplest form of the Boltzmann equa-
tion for an ion-only MHD plasma crossing a shock, where no
additional physical processes besides the deceleration itself are
present. Our results clearly prove that this equation is unable
to describe the situation, since both the plasma is decelerated
more strongly than predicted by the MHD jump conditions, and
the mass flow is not conserved either. We have clearly identified
one point where our current approach may be oversimplified,
an inadequate (or even missing) treatment of electrons, and it is
highly possible that even more such points do emerge in a more
in-depth analysis, which is currently in progress.

However, despite all complications, we are already able to
give one interesting result. Assuming that a Boltzmann equation
compatible with stationary shock conditions does exist (which
may be valid, perhaps, after sufficient time-averaging), we are
able to explain the observations of the passage of the Voyager
1 spacecraft across the solar wind termination shock in 2004
(Stone et al. 2005; Decker et al. 2005; Burlaga et al. 2005;
Gurnett & Kurth 2005), where the power law index of the so-
lar wind does not seem to change (Cummings et al. 2006). This
connection supports our results and encourages further research,
including, but not limited to modeling of situations where even,
after averaging over time, the shock front is not stationary, as
found e.g. in supernova shock waves.
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