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ABSTRACT

Context. This study pertains to the optimization of the layout of a single configuration interferometric array to achieve a desired natural
tapering for the density distribution of its UV plane coverage. Existing techniques that seek this goal determine a two dimensional
density gradient that acts on the UV samples and in turn on the antenna positions. This gradient is commonly computed by gridding
the UV plane, and is sometimes averaged over a number of different scales due to the sparseness of the UV samples.
Aims. The goal of this study is to demonstrate a new method that can move antenna positions to achieve an ideal density distribution
for the UV samples without the need for gridding.
Methods. An approach is described where the UV samples are projected into a one dimensional vector. If an equivalent projection
is done for an ideal model distribution, the difference between these vectors yields correction terms which can be mapped to new
antenna positions. Such modifications are made in all directions until a close match is achieved to the desired UV plane coverage and
equivalently, by the Fourier transform, the ideal point spread function.
Results. Results are provided that relate achievable resolution (for Gaussian UV coverage) to the number of antennas available to the
algorithm, for a few different observation modes. Preliminary layouts are shown for the Square Kilometer Array pathfinder project,
the Karoo Array Telescope.
Conclusions. The proposed method is applicable to very few as well as a large number of antennas. Multiple objective optimization
is not considered.
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1. Introduction

The Karoo Array Telescope (KAT), which is currently being de-
veloped, is a South African pathfinder project for the Square
Kilometer Array (SKA). The instrument was originally envis-
aged to consist of 20 unmovable antennas with 15 m diameter
dishes, but this may be reduced to 7 initially and later be ex-
panded to 100 or 230 antennas. Since it is unclear at this stage for
which science cases the instrument should be optimized, a gen-
eral purpose tool has been developed to facilitate the configu-
ration design given possible experiment conditions. This paper
discusses the optimization technique used for antenna placement
and reports on some early results.

Conceptually, the proposed algorithm is only concerned with
the optimization of the layout of an interferometer array for
imaging where the number of antennas and the diameter of the
dishes are predetermined. It is only the positions of the an-
tennas that need to be optimized for a given mode of obser-
vation (specified by the parameters: site latitude, declination,
frequency, fractional bandwidth, number of channels, duration,
correlator dump rate, on-source and off-source time), subject to
terrain constraints at the site. A few authors have addressed this
problem previously.

An algorithm by Keto (1997) optimizes the zenith snap-
shot UV coverage of a layout. It is advocated that a uniform
UV density distribution has superior imaging properties. The
algorithm draws a random two dimensional coordinate from
a uniform probability distribution and moves the closest and
neighbouring UV samples towards that position by adjusting
the antenna positions. The neighbourhood size and the distance

moved are decreased over time, and after numerous iterations,
the resultant layout very interestingly resembles the Reuleaux
triangle.

A paper by Boone (2001) explores the effects of different
observation conditions on the layout design while imposing ter-
rain constraints. In this method, two dimensional pressure forces
are calculated for UV samples falling into cylindrical coordinate
segments in the UV plane. The current UV density distribution is
compared to that of an ideal model to produce the pressure forces
that act on the UV samples. This method moves antenna posi-
tions according to their geometric relationship with UV samples
due to earth rotation synthesis. Since the number of UV samples
are finite, larger segments are necessary to achieve good esti-
mates of the density values. However, smaller segments are nec-
essary to retain good position accuracy. Consequently, a range
of segment sizes are used in this method.

In the current paper, the goal remains as above to realize
an ideal model UV distribution, yet an entirely different imple-
mentation is suggested that avoids gridding the relatively sparse
number of UV samples. This is done by tomographic projection
to reduce the problem to one dimension. The need to consider
different neighbourhood sizes becomes moot.

First a fundamental conceptual one dimensional problem is
defined and solved in Sect. 2. This solution is then extended to
two dimensions in Sect. 3 and integrated into the problem of cor-
recting a two dimensional distribution of UV samples in Sect. 4.
The paper continues by presenting simulated results in Sect. 5,
suggesting possible layouts for KAT, and ends with conclusions
about the design method.
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Fig. 1. One dimensional data points taken from a normal distribution
are moved so that the density of the resultant points can be represented
accurately by an ideal Gaussian curve.

2. One dimensional independent data points

Consider the problem where a vector of independent data points
is given, and it is necessary to determine quantitatively how
closely the density distribution of the values in this vector fol-
low an ideal model. It is also required to calculate how these data
points should be moved so that its density distribution matches
the ideal model precisely. In the text below, a classical approach
is outlined briefly for context before the recommended method
is discussed.

One approach of determining the closeness numerically
could be to bin the data points into a histogram, and then to
compute the root mean square error between its counts and the
ideal model that has been rescaled and sampled appropriately.
The points could be moved in the direction of the local gradient
of the difference between the histogram and the ideal, similar
to the discussion in Boone for the two dimensional case. This
would be acceptable if there is a large number of data points, but
remains problematic in the choice of bin size and bin edge posi-
tion. The spacing must be increased to ensure enough data points
fall into a bin, yet be small enough so that the histogram shape
remains representative of the density distribution, since some po-
sition information is lost in the binning process. Boone considers
multiple bin sizes in an attempt to alleviate this problem.

Figure 1 illustrates quantities that are used to describe
a method for solving the problem addressed in this section.
A vector of N points ρi′ taken from a normal distribution is dis-
played above its histogram which gives a crude visualization
of the density distribution of the points. An ideal density pro-
file p(ρ), where ρ is the position variable, is superimposed over
the histogram to show that there is a poor match between the
ideal and the data points for such a small number of random
points.

It is useful, as will be apparent shortly, to determine cumula-
tive distribution functions (Leon-Garcia 1994) of the data points
and that of the ideal distribution. For the data points ρi′ , a dis-
crete cumulative distribution is obtained simply by sorting the
values in the vector in ascending order to ρi defining i = Si′
with ρi ≤ ρi+1 where i is the index. For the ideal density distri-
bution p(ρ), the cumulative distribution P(ρ) is scaled

P(ρ) =
N∫ ∞

−∞ p(ρ′) dρ′

∫ ρ
−∞

p(ρ′) dρ′, (1)

so that it can be quantized regularly in the vertical axis into
as many intervals (yielding index or i) as there are data points.
Quantization in the vertical axis requires that the inverse of the
ideal cumulative distribution ρ = P−1(i) where ρ = P−1 (P(ρ))
be calculated.

For a particular index which corresponds to a data point in
Fig. 1, the difference in position, between the ideal cumulative
distribution and the cumulative data points distribution yields the
amount by which the particular data point must be displaced in
order to achieve the ideal density distribution. This can be ex-
pressed as

∆ρi = P−1(i) − ρi. (2)

A measure of closeness between these distributions can be de-
fined as the root mean square error in position between these
two cumulative distribution curves

χ2 =
1
N
·

N∑
i=1

∆ρ2
i . (3)

The vector of points that has been modified using this tech-
nique is also displayed along with its histogram at the bottom
of Fig. 1 and shows a perfect correspondence to the ideal den-
sity distribution.

3. Two dimensional independent data points

A two dimensional distribution is uniquely specified by a set
of its one dimensional projections taken over a range of
180 degrees, according to work by Radon (Kak & Slaney 1988).
This principle is widely exploited in the field of computed ax-
ial tomography to reconstruct gridded images from line integral
data. The method described below relies on this principle to en-
sure that the ideal distribution is attained, provided that the pro-
jections are made equal to that of the ideal distribution.

The top left diagram in Fig. 2 shows how N two dimen-
sional data points (xi′ , yi′) are projected into one dimensional
data points ρi′ at an angle θ j, by the equation

ρi′ = xi′ cos(θ j) + yi′ sin(θ j) (4)

which must be sorted in ascending order by value to ρi as in
Sect. 2.

For the general case of an arbitrary (asymmetric) ideal dis-
tribution, the Radon transform must be employed at a particular
angle θ j using

pθ j (ρ) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y) δ
(
x cos(θ j) + y sin(θ j)

)
dx dy (5)

where f (x, y) is the ideal continuous density distribution func-
tion with f (x, y) ≥ 0, and pθ j(ρ) is a projection of the ideal dis-
tribution at angle θ j. The accumulative integral of this projection

Pθ j (ρ) =
N∫ ∞

−∞ pθ j(ρ′) dρ′

∫ ρ
−∞

pθ j(ρ
′) dρ′ (6)
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Fig. 2. Data points taken from a bivariate normal distribution (left col-
umn) are displaced in one direction (middle column) so that the density
of the resultant points closely follows a precomputed ideal profile (not
shown explicitly) in that direction. This process is repeated in a number
of different directions until the points appear to be uniformly spaced
within a disc (top and middle rows) or donut (bottom row).

and particularly its inverse P−1
θ j

(i) where ρ = P−1
θ j

(
Pθ j(ρ)

)
will be

used. For the rest of this paper we will be concerned with cir-
cularly symmetric ideal density distributions, so the subscript θ j

may be dropped, even though the technique is not restricted to
this case.

The data points (xi′ , yi′) are updated in the direction orthogo-
nal to that of the projection as depicted in the middle column of
Fig. 2 using

(
x′i′ , y

′
i′
)
=
(
xi′ + ∆ρi′ cos(θ j), yi′ + ∆ρi′ sin(θ j)

)
(7)

where

∆ρi = λ ·
(
P−1(i) − ρi

)
(8)

and i = Si′ with λ = 1 for the case of independent data points as
assumed in this section.

This procedure is repeated for 1000 different projection an-
gles θ j, 0 ≤ θ j < π, resulting in the distributions in the right
hand column of the figure. Good results are, however, already
achieved for iterations less than N, the number of data points.
The angle θ j is picked at random from a uniform distribution
over the indicated range.

4. Implementation of the algorithm

In the previous section, independent data points were consid-
ered. However, the UV samples, which need to be manipulated
towards an ideal density distribution in order to achieve the de-
sired point spread function, cannot be moved independently.
These UV samples are all the permutations of relative antenna
displacements that are transformed by linear mappings due to
earth rotation and multi frequency synthesis (Taylor et al. 2003).

Moving a single UV sample can be done accurately by mov-
ing two antennas equally, relative to each other. This, however,
causes all the other UV samples associated with these two an-
tennas to be moved as well (by half of the distance travelled by
that single UV sample) and effects the resultant UV density dis-
tribution adversely.

In practice, this problem is addressed by determining val-
ues for λ in Eq. (8), as described in the next paragraph, which
changes depending on the observation settings and the number
of antennas. If the technique described in Sect. 3 was iterated
for a fixed value of λ, where λ is too large, then results become
unstable, while convergence is slow if λ is too small.

It is, however, easy to perform a line search (the line search
algorithm) to determine which λ minimizes

χ2 =

M∑
j

N∑
i

(
P−1(i) − ρi,θ j

)2
(9)

at each iteration. It is necessary to perform at least two (M = 2)
orthogonal projections for the computation of χ2 to avoid insta-
bility when there are very few antennas in the layout. If only
a single projection is used, then optimizing the fit of that projec-
tion only will be done at the expense of projections at comple-
mentary angles. Consequently the line search algorithm is stable
for M = 1 only when there are a fair number of antennas in
the layout.

When M = 2, the algorithm converges quickly to a subset
of solutions, but not a single solution, and the line search inter-
estingly reveals that λ approximately equals a constant for any
number of iterations. In fact, once λ and its variability is known,
it may no longer be necessary to perform a line search at each
iteration.

For larger M, the algorithm converges to a smaller subset of
solutions, or even a single solution. In this case λ eventually de-
creases with iteration but more computation is needed for each
line search and more iterations are needed to reach good results
because λ is generally smaller. For these reasons, M = 2 is rec-
ommended and used throughout.

It remains useful simply to iterate using a fixed small value
for λ (neglecting the line search, hence called the fixed λ al-
gorithm) to achieve a result that closely resembles a preferred
layout used as a starting point. A suitable value for λ can be de-
termined experimentally or using a line search.

5. Results

5.1. Determining the scale for layouts with Gaussian
UV coverage

The algorithm defined above (3000 iterations) was used to gen-
erate different layouts with Gaussian UV coverage. From 3 up
to 250 antenna layouts were optimized for the cases of snap-
shot and 8 h track (a snapshot every 5 min) observations about
the zenith for spectral and continuum imaging (multi frequency
synthesis with a fractional bandwidth of 0.2) at a site latitude
of −30 degrees. For each instance the target resolution was
40 arcsec at 1.4 GHz and the maximum and minimum baselines
were recorded.

It was found that layouts with fewer antennas have larger
minimum baselines than those with a large number of antennas
to achieve the same resolution. Also, increasing the observation
time or fractional bandwidth increases the ratio between maxi-
mum and minimum baselines in the resultant layouts. Both these
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Fig. 3. Typical half power beamwidth resolutions at 1.4 GHz are shown as a function of the number of antennas available to the algorithm to
generate layouts having Gaussian UV coverage. Results are provided for 4 different optimization criterion as indicated by the labels (continuum
imaging assumes a fractional bandwidth of 0.2). All layouts have a minimum antenna spacing of 30 m.

types of synthesis increase the density of short baseline UV sam-
ples making a larger beam for a given layout, implying that the
fixed optimization target resolution occurs at an increased layout
size.

To get good UV coverage at low spatial frequencies, the min-
imum baseline should be as small as possible. The minimum
antenna spacing is limited by the dish diameter physically, and
also by the impact of shadowing on sensitivity. In order to make
a meaningful comparison of the results above which were op-
timized for a fixed target resolution, the layouts are rescaled so
that the minimum separation between antennas equals double
the dish diameter (i.e. 30 m) which ensures that no shadow-
ing occurs for 8 h observations or for the range of declinations
from −90 to +30 degrees. From this it follows that the natural
solutions for Gaussian UV coverage produced by this algorithm
suggest resolutions for layouts as a function of the number of
antennas as indicated in Fig. 3. Higher resolutions in this figure
indicate smaller minimum antenna spacings for the fixed target
resolution optimization results mentioned above.

If higher resolutions are seeked with fewer antennas than
these graphs indicate, then either the lowest spatial frequen-
cies are not sampled or the point spread function is no longer
Gaussian-like (which can be corrected at a loss in sensitivity by
weighting the UV samples). If more antennas are used to create
a layout at a given resolution, then the minimum antenna spac-
ing is reduced to retain a Gaussian-like point spread function,
and then shadowing may worsen the sensitivity.

The variability in data points in Fig. 3a is attributed to the
fact that a perfect fit of the UV samples to a Gaussian model is
unattainable, and some layouts are better optimized than others.
In Eq. (9), M = 2 only and the orientation is chosen at random.
This causes the line search cost function to change significantly
at each iteration. Increasing the number of projections, M, will
evaluate the shape of the UV coverage distribution more thor-
oughly and prevent one projection from being overfitted at the
expense of projections at other angles. The value of M = 2 is
chosen to tradeoff the computational speed to this variability.

5.2. Preliminary layouts for KAT

The layout of an interferometer such as KAT should ideally be
optimized over a multitude of experiment conditions for which

Table 1. Observation parameters and layout results.

20 antennas 100 antennas 230 antennas
Centre frequency 1.4 GHz 1.4 GHz 1.4 GHz
Declination –30.715◦ –30.715◦ –30.715◦
Fractional bandwidth 0.2 0.2 0
Number of channels 16 14 1
Correlator dump time 2 min 4 min 2 min
Observation time 8 h 8 h 8 h
UV samples 729600 8316000 6320400
Grid size 256 1024 1024
Pixel size 10′′ 2.5′′ 2.5′′

Minimum baseline 30 m 30 m 30 m
Maximum baseline 884 m 4475 m 5352 m
Maximum sidelobe 1.9% 0.61% 0.49%

the instrument will be used. Since the science cases for KAT re-
main vague, and the algorithm as implemented thusfar opti-
mizes a layout for a single imaging experiment at a time only,
the preliminary layouts presented here are simply optimized for
8 h (spectral/continuum) imaging observations about the zenith.
Optimization is performed subject to topographical constraints
of one of the candidate sites at a latitude of 30.715 degrees
South.

The three cases being considered are 20, 100 and
230 antenna layouts which are illustrated in Fig. 4. Notice how
the layouts appear to have filled rounded triangular shapes.
The 20 and 100 antenna layouts are optimized for continuum
imaging while the 230 antenna layout is optimized for spectral
imaging to restrict the maximum baseline to be around 5 km.
Observation parameter details are given in Table 1. The table
also presents peak sidelobe levels of artefacts remaining in the
natural point spread functions of Fig. 4, and maximum baseline
results for the three layouts.

6. Conclusions

This paper presented a method for optimizing an interferome-
ter layout to achieve a desired natural point spread function for
one targeted observation mode. The method avoids the need for
gridding the UV data points and avoids estimating a two di-
mensional density function, since it acts in one direction at
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Fig. 4. Results for layouts of 20, 100 and 230 antennas with Gaussian UV coverage are shown in the top, middle and bottom rows respectively.
From left to right are the layouts (flash flood watercourses and dams in white), UV coverages, UV coverage histograms and natural point spread
functions for the observation conditions that the layouts are optimized. Both the 20 and 100 antenna layouts are optimized for continuum imaging
observations, while the 230 antenna layout is optimized for spectral imaging observation as defined in Table 1. The point spread function images
are contrast-stretched to display only the range from −2% to +2% of their peak values.

a time only. Layouts with very few and many antennas can be
optimized.

Of particular interest are layouts that have Gaussian UV cov-
erage. It is shown that the algorithm imposes resolution as
a function of the number of antennas given constraints on the
minimum baseline and also the observation parameters. These
results can be used to estimate scale sizes of layouts in design-
ing KAT. A few layouts have been suggested which appear to
have rounded triangular boundaries but the connection with the
Reuleaux triangle has not been explored.

The advantage of performing optimization over a range of
observations has not been quantified and is sometimes regarded
to be negligible over simply optimizing for zenith snapshot con-
ditions (Taylor et al. 2003, p. 554). In this paper the approach
was to achieve an optimal point spread function for the obser-
vation which requires the highest sensitivity. Although the same
point spread function will not be retained for different obser-
vation settings, its shape can be manipulated by weighting the
UV samples at some loss in sensitivity.

In the end a layout is seeked that performs well for all
observation modes of importance. Towards this final goal, there

remains scope for follow-up work to optimize for multiple ob-
jectives using a population based approach that utilizes the algo-
rithm described here as a tool to produce new layouts.
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