A 33 hour period for the Wolf-Rayet/black hole X-ray binary candidate NGC 300 X-1

S. Carpano, A. M. T. Pollock, A. Prestwich, P. Crowther, J. Wilms, L. Yungelson, and M. Ehle

XMM-Newton Science Operations Centre, ESAC, ESA, PO Box 50727, 28080 Madrid, Spain
E-mail: scarpano@sciops.esa.int

1

2

3

4

5

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
Department of Physics & Astronomy, University of Sheffield, Hicks Building, Hounsfield Rd, Sheffield S3 7RH, UK
Dr. Remies-Observatory, Astronomisches Institut der FAU Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany
Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya Str., 119017 Moscow, Russia

Received 27 February 2007 / Accepted 10 March 2007

ABSTRACT

Context. NGC 300 X-1 is the second extragalactic candidate, after IC 10 X-1, in the rare class of Wolf-Rayet/compact object X-ray binaries exemplified in the Galaxy by Cyg X-3. From a theoretical point of view, accretion onto a black hole in a detached system is possible for large orbital periods only if the mass of the relativistic object is high or the velocity of the accreted wind is low.

Aims. We analysed a 2 week SWIFT XRT light curve of NGC 300 X-1 and searched for periodicities.

Methods. Period searches were made using Lomb-Scargle periodogram analysis. We evaluated the confidence level using Monte Carlo simulations.

Results. A period of 32.8 ± 0.4 h (3σ error) was found for NGC 300 X-1 with a confidence level >99%. Furthermore, we confirm the high irregular variability during the high flux level, as already observed in the XMM-Newton observations of the source. A folded light curve is shown, with a profile that is in agreement with SWIFT. The mean absorbed X-ray luminosity in the SWIFT observations was 1.5 × 10^{38} erg s^{-1}, close to the value derived from the XMM-Newton data.

Conclusions. While Cyg X-3 has a short period of 4.8 h, the period of NGC 300 X-1 is very close to that of IC 10 X-1 (34.8 ± 0.9 h). These are likely orbital periods. Possibility of formation of accretion disk for such high orbital periods strongly depends on the terminal velocity of the Wolf-Rayet star wind and black-hole mass. While low masses are possible for wind velocities <1000 km s^{-1}, these increase to several tens of solar masses for velocities >1600 km s^{-1} and no accretion disk may form for terminal velocities larger than 1900 km s^{-1}.

Key words. X-rays: individuals: NGC 300 X-1 – X-rays: binaries – stars: Wolf-Rayet

1. Introduction

Wolf-Rayet/black hole binaries are believed to be stars in the evolutionary stage following high-mass X-ray binaries. The existence of helium-star/compact object X-ray binaries was suggested independently by van den Heuvel & de Loore (1973) to explain the nature of the galactic source Cyg X-3, and by Tutukov & Yungelson (1973) based on results of evolutionary computations. To appear as an X-ray source, an accretion disk must form and hence the velocity of the Wolf-Rayet (WR) star wind must be slow enough for the material around the compact object to be accreted. According to Illarionov & Sunyaev (1975), a black hole appears as a strong X-ray source in a detached binary system only when the orbital period, \(P_{\text{orb}} \):

\[
P_{\text{orb}} \leq \frac{4.8 \, M_{\text{BH}}}{v_{1000} \delta^2} \, (\text{h})
\]

where \(M_{\text{BH}} \) is the black hole mass in solar units, \(v_{1000} \) is the velocity of the accreted wind in units of 1000 km s^{-1} and \(\delta \) is a dimensionless parameter of order unity. It has been shown by Ergma & Yungelson (1998) and Lommen et al. (2005) that these periods for solar metallicity stars cannot be larger than several tens of hours.

So far, Cyg X-3 is the only valid candidate in our galaxy for a Wolf-Rayet/compact object X-ray binary system. Its X-ray luminosity is high, \(L_X \sim 10^{38} \text{ erg s}^{-1} \). The companion star was identified as a WR star by van Kerckwijk et al. (1992) and then designated as WR 145a in the 7th catalogue of galactic Wolf-Rayet stars (van der Hucht 2001). Its orbital period is very short, 4.8 h (Parsignault et al. 1972).

IC 10 X-1 (\(L_X \sim 1.2 \times 10^{38} \text{ erg s}^{-1} \)), in the starburst galaxy IC 10 located at 0.8 Mpc, was the first extragalactic candidate for this class of objects (Bauer & Brandt 2004; Wang et al. 2005). A period of 34.8 ± 0.9 h has been observed recently thanks to SWIFT observations (A. Prestwich et al., ATel #955, paper in preparation). We report in this Letter the discovery of a very similar but slightly shorter period of 32.8 h for NGC 300 X-1, which is the second extragalactic Wolf-Rayet/compact object X-ray binary candidate (Carpano et al. 2007).

NGC 300 X-1 is the brightest X-ray point source in the dwarf spiral galaxy NGC 300 at a distance of \(\sim 1.88\text{ Mpc} \) (Gieren et al. 2005). The galaxy is almost face-on and has a low Galactic column density of \(N_H = 3.6 \times 10^{20} \text{ cm}^{-2} \) (Dickey & Lockman 1990). Study of its X-ray population has been done by Read & Pietsch (2001) using ROSAT and by Carpano et al. (2005) using XMM-Newton. Based on the existing four XMM-Newton observations, it has been shown in Carpano et al. (2007) that the position of the
X-ray source \((\alpha_{2000} = 00^h55^m10.00^s, \delta_{2000} = -37^\circ42'12''06'')\) coincides with a WR candidate, WR 41 (Schild et al. 2003), within 0''11 ± 0''45. WR 41 has now been spectroscopically confirmed as an early-type WN star (Crowther et al., in preparation).

The four \textit{XMM-Newton} light curves, lasting \(\sim 10\) h each, showed irregular variability, and during one observation, the flux increased by about a factor of ten in 10 h. No period between 5 s and 30 ks (8.3 h) was found in the data. The mean observed (absorbed) luminosity in the 0.2–10 keV band was \(\sim 2 \times 10^{38}\) erg s\(^{-1}\). The unabsorbed X-ray luminosity reached \(L_{0.2-10\text{keV}} \sim 1 \times 10^{39}\) erg s\(^{-1}\) suggesting the presence of a black hole, although beamed emission from a neutron star cannot be excluded. The spectrum could be modelled by a power-law with \(\Gamma \sim 2.45\) with additional relatively weak emission, notably around 0.95 keV.

In this Letter, we report the discovery of a 32.8 h period for NGC 300 X-1. The remainder of the Letter is organised as follows. Section 2 briefly describes the \textit{SWIFT} observations and data reduction. In Sect. 3, we report analysis of the \textit{SWIFT} XRT light curve and search for periodicities using a Lomb-Scargle periodogram analysis. A folded \textit{XMM-Newton} light curve is shown in Sect. 4, while a discussion of our results is given in Sect. 5.

2. Observations and data reduction

NGC 300 X-1 was observed with the \textit{SWIFT} Gamma-Ray Burst Explorer (Gehrels et al. 2004) between 2006 December 26 and 2007 January 10, for a total of 83 ks. The light curve of NGC 300 X-1 was extracted from the X-ray Telescope, XRT (Burrows et al. 2005) which operates in the 0.2–10 keV energy band. There are 146 XRT observations lasting between 10 and 1477 s. We kept only data from 124 observations lasting more than 100 s.

For the production of the X-ray light curve, we analysed the calibrated and screened PC event files (level 2) provided in the set of data products. Source and background regions were extracted using the \texttt{FTOOLS\(^{1}\)} \texttt{ftselect} task. The circular source region was centred on the \textit{XMM-Newton} source position \((\alpha_{2000} = 00^h55^m10^s00^s, \delta_{2000} = -37^\circ42'12''06'')\) with a radius of 40'', which is larger than the telescope PSF (18''). A similar sized region was extracted for the background, in a blank region close to NGC 300 X-1.

3. Time analysis of \textit{SWIFT} light curve

The \textit{SWIFT} XRT background-subtracted light curve is shown in Fig. 1. Times are given in hours from the beginning of the observation. We overplotted the best-fit sinusoid function. For clarity, the amplitude has been multiplied by a factor of 1.5. It is clear that the flux varies in a regular way, with the minima likely to be eclipses of the accreting companion.

We searched for a periodic signal between 5 and 100 h, using a Lomb-Scargle periodogram analysis (Lomb 1976; Scargle 1982). By means of Monte Carlo simulations, we evaluated the confidence level assuming a null hypothesis of white noise. Results are plotted in Fig. 2. The full, dashed and dotted lines represent the 68%, 90% and 99% confidence level respectively. We found that the 32.84 h period is significant at a confidence level >99%. To estimate the error, we fitted a sine function using the IDL task \texttt{curvefit} keeping trial periods fixed. The reduced chi-square, \(\chi^2_r\) with \(v = 121\), is shown in Fig. 3. The full, dotted and dashed lines represent \(\Delta \chi^2 = 1.00, 2.71\) and 6.63 respectively. The corresponding 1, 2 and 3 \(\sigma\) period range are [32.67–33.00], [32.57–33.12] and [32.42–33.28] respectively. Note that the \(\chi^2_r\) larger than 1 shows that the light curve cannot be described by a pure sinusoid function.

The \textit{SWIFT} XRT light curve folded at 32.84 h is shown in Fig. 4. Phase zero is associated to the beginning of the first \textit{SWIFT} observation. From Figs. 1 and 4, we confirm irregular high variability outside the eclipse as observed in the \textit{XMM-Newton} data (Carpano et al. 2007).

We estimate the X-ray luminosity by converting the mean count rate, 0.012 counts s\(^{-1}\) to flux with WebPIMMS\(^{2}\), using the spectral parameters derived by Carpano et al. (2007). The mean absorbed luminosity in the 0.2–10 keV energy band is \(1.5 \times 10^{38}\) erg s\(^{-1}\), which is close to that found from the \textit{XMM-Newton} data, \(L_{0.2-10\text{keV}} \sim 2 \times 10^{38}\) erg s\(^{-1}\) (Carpano et al. 2007) and close to the ROSAT value, \(L_{0.1-2.4\text{keV}} \sim 2.2 \times 10^{38}\) erg s\(^{-1}\) (Read & Pietsch 2001).

1 http://heasarc.nasa.gov/lheasoft/ftools

2 http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
4. XMM-Newton folded light curve

We searched for periodicity in the four XMM-Newton data samples observed between 2000 and 2005 (see Carpano et al. (2006) for more details about the observations). Although the unfavourable sampling precludes a rigorous period search, we have used some a priori information we have on the eclipse profile to fold the light curve. From Table 1 and Fig. 2 of Carpano et al. (2007), we can compare the flux and light curve shape of the several observations to the SWIFT profile of Fig. 4. The flux was minimum in the first XMM-Newton observation and began to increase at the end. This could be associated to the eclipse state of the X-ray source. The second XMM-Newton observation, 6 days later, is likely associated with an eclipse egress. In the third observation the flux is lower than in the second and fourth observations, and shows a small decrease trend: this data set could be associated with the beginning of the eclipse ingress. And in the fourth XMM-Newton observation, the flux is high and likely outside the eclipse. We used this information to constrain the phase of each beginning of data set, in the folded light curve. Only few values of the period around 33 h, but larger than 32.8 h, are possible to provide a reasonable profile.

Figure 5 shows the XMM-Newton EPIC MOS light curve folded at a period of 33.066 h, within the 2σ error of the SWIFT period. Phase zero is associated with the start of the

\begin{equation}
\log(R_{WR}) = -0.6629 + 0.5840 \log(M_{WR}).
\end{equation}
Given that orbital period of the system is known, Eqs. (1)–(4) define combinations of the component masses for which an accretion disk may form. The plots are shown in Fig. 6 for different values of the β parameter and the terminal velocity. We restrict to $M_{\text{WR}} > 7 M_\odot$ and $M_{\text{BH}} > 3 M_\odot$, which are standard lower limit for the WR and BH masses respectively.

Looking at these graphs we can note that, for a terminal velocity around 1000 km s$^{-1}$, whatever the mass of the Wolf-Rayet star and the value of the β parameter, the lower limit for the black hole mass is below $7 M_\odot$. With higher values for the terminal velocity, this lower limit increases significantly and becomes more and more dependent on the β parameter. For velocities of 1600 km s$^{-1}$, the mass must be at least several tens of solar masses, while no accretion disk may form for terminal velocities significantly higher than 1900 km s$^{-1}$. From the optical spectrum of WR 41, the terminal velocity of the wind is about 1250 km s$^{-1}$ and the mass of the Wolf-Rayet star is estimated between 18 M_\odot and 40 M_\odot (Crowther et al., in preparation). This leads to a black hole mass for NGC 300 X-1 larger than 13 M_\odot for $\beta = 1$.

Similar arguments apply for IC 10 X-1: the mass of the Wolf-Rayet star was derived to be 35 M_\odot, and its terminal wind velocity 1750 km s$^{-1}$ (Clark & Crowther 2004). This means that the mass of the black hole companion must be at least of $\sim 35 M_\odot$, for an orbital period of 34.8 h.

To conclude, it seems a surprise that orbital periods found in both extragalactic WR/compact object X-ray binaries IC 10 X-1 and NGC 300 X-1 are so similar. Furthermore, their difference to the short period of Cyg X-3 may suggest different paths of evolution.

Acknowledgements. This paper is based on observations obtained with the SWIFT gamma-ray burst mission and observations from XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. L.Y. is supported by the Russian Academy of Sciences grant “Origin and evolution of stars and galaxies” and NSF grant No. PHY99-07949. We warmly thank Neil Gehrels and Dave Burrows for approving the SWIFT observing time.

References
Tutukov, A., & Yungelson, L. 1973, Nauchnye Informatsii, 27, 70

Fig. 6. Allowed WR and BH masses, in solar units, that satisfy the condition for the formation of an accretion disk for different values of the terminal velocity of the wind. Different values of the wind velocity β parameter (2.0, 1.5, 1.0 and 0.5) are represented by dark to light blue. For each value of β, the allowed region of M_{WR}–M_{BH} parameter space extents all the way up to the right.