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ABSTRACT

Aims. “Compact ellipticals” are so rare that a search for M 32 analogs is needed to ensure the very existence of this class.
Methods. We report here the discovery of A496cE, a M 32 twin in the cluster Abell 496, located in the halo of the central cD.
Results. Based on CFHT and HST imaging we show that the light profile of A496cE requires a two component fit: a Sérsic bulge
and an exponential disc. The spectrum of A496cE obtained with the ESO-VLT FLAMES/Giraffe spectrograph can be fit by a stellar
synthesis spectrum dominated by old stars, with high values of [Mg/Fe] and velocity dispersion.
Conclusions. The capture of A496cE by the cD galaxy and tidal stripping of most of its disc are briefly discussed.

Key words. galaxies: evolution – galaxies: dwarf – galaxies: bulges – galaxies: kinematics and dynamics –
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1. Introduction

Compact elliptical galaxies are known to be high surface bright-
ness low-luminosity objects like the prototype of this class,
M 32, satellite of the Andromeda galaxy. Compared to dwarf
ellipticals of same absolute magnitude, the effective surface
brightness of M 32 is about 100 times higher and its effective ra-
dius is 10 times smaller (Graham 2002). Presently, only five ob-
jects belonging to the class of “compact elliptical” galaxies (cE)
are known; the four other objects are NGC 4486B (in the vicin-
ity of M 87, the Virgo cluster cD), NGC 5846A (a close satellite
of the giant elliptical galaxy NGC 5846), and two objects in the
Abell 1689 cluster (Mieske et al. 2005). These extremely rare
galaxies are thought to be generated by tidal stripping of more
massive galaxies (Nieto & Prugniel 1987; Bekki et al. 2001;
Choi et al. 2002), but how such a high stellar surface density
can be present the central part of the galaxy is not entirely clear.
The structural parameters of M 32 derived by Graham (2002)
from the light profile include a bulge and a low surface bright-
ness disc, indicating that the precursor could be an early type
disc galaxy. The evolution in the past of the prototypical cE is
however still a matter of debate (see Mieske et al. 2005) and

� Based on observations obtained at the Canada-France-Hawaii
Telescope (program 03BF12) which is operated by the National
Research Council of Canada, the Institut des Sciences de l’Univers of
the Centre National de la Recherche Scientifique and the University of
Hawaii. Also based on ESO VLT data (program 074.A-0533), and on
HST archive data (proposals 5121 and 8683).

Fig. 1. HST WFPC2 image of the central region of Abell 496 (filter
F702W). The objects discussed in this Letter are labeled.

several observational projects aimed at searching for cE galaxies
were conducted until now with no success (Drinkwater & Gregg
1998, Ziegler & Bender 1998).

In this Letter we report the discovery of the sixth “compact
elliptical” galaxy in the cluster Abell 496. We present results
based on the analysis of high-resolution spectroscopic data (R =
7000 in the 5000–5800 Å range) obtained with FLAMES/Giraffe
(multi-object “MEDUSA” mode) at ESO VLT UT2 in the fall of
2004, combined with a photometric study based on HST WFPC2
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direct images in three filters: F555W, F702W, and F814W
available in the HST archive. The discovery has been made from
deep ground-based u∗ g′ r′ i′ imaging conducted at CFHT with
Megacam in the fall of 2003 and dedicated to obtain morpho-
logical and structural properties of dwarf early type galaxies in
Abell 496. Detailed informations on spectroscopic and photo-
metric observations as well as data reduction will be provided in
a forthcoming paper discussing the whole sample of galaxies.

For the Abell 496 cluster we adopt the distance modulus
35.70 and spatial scale 0.627 kpc arcsec−1, assuming H0 =
73 km s−1, ΩM = 0.27, and ΩΛ = 0.73. All the photometric
measurements discussed in this Letter are corrected for Galactic
absorption according to Schlegel et al. (1998), and redshift effect
(K-correction) assuming an early-type galaxy spectrum. A cos-
mological surface brightness dimming correction has been ap-
plied taking into account the cluster velocity, corrected for infall
of the Local Group towards Virgo taken equal to 9707 km s−1.

2. Properties of the newly discovered object

The galaxy is listed in HyperLeda1 as PGC 3084811 (Paturel
et al. 2003). However, this name cannot be resolved by
other public astronomical databases (NED, SIMBAD), therefore
we adopt the IAU recommended name, ACO496J043337.35-
131520.2 and will refer to it hereafter as “A496cE”.

A496cE is located 22 arcsec (14 kpc in projected distance)
from the cluster centre; it appears in projection on the outer parts
of the central cD galaxy (see Fig. 1). The background (i.e. the
cD halo) has been subtracted from the HST images using a mul-
tiscale wavelet analysis and reconstruction technique described
e.g. by Adami et al. (2005). The cD halo surface brightness
at the region where A496cE resides is about 24 mag arcsec−2

in the B band and has a significant gradient, therefore correct
background estimation is crucial for the surface photometry of
A496cE. Elliptical isophotes with free central position, elliptic-
ity and position angle have been fitted to the images of A496cE
using the IRAF ELLIPSE task. On the r′ image, the position an-
gle changes notably and the ellipticity rises from about 0.05 to
0.1 between 1.8 and 2.6 arcsec.

We have combined the HST light profiles for the inner part of
the galaxy (radius < 3.5 arcsec) with the deeper r′ band CFHT
photometry for the outer parts (radius > 3.5 arcsec), where the
seeing (FWHM = 0.8 arcsec) does not play an important role.
The empirical normalization factor for the r′ profile has been
derived from the best match of the two profiles between 2 and
4 arcsec.

We have fit the 1-dimensional surface brightness profile us-
ing both a Sérsic and a Sérsic + exponential disc model (see
Graham 2002 and Graham & Guzmán 2003) with a free con-
stant background level within 10 arcsec from the galaxy cen-
tre. As in the case of M 32 (Graham 2002), a single-component
Sérsic profile does not fit accurately the light profile and an expo-
nential disc is needed. Figure 2 and Table 1 present the surface
brightness profile of A496cE and the best-fitting results of its
photometric decomposition.

An unsharp masking technique with elliptical blurring
(Lisker et al. 2006), shown to be very sensitive to the presence
of possible embedded structures, reveals no structures either on
HST or on CFHT images.

We have built F555W−F702W and F555W−F814W colour
maps using the Voronoi adaptive binning technique (Cappellari
& Copin 2003) to achieve minimal signal-to-noise ratios of

1 http://leda.univ-lyon1.fr/

Fig. 2. Best fitting two-component Sérsic+disc profile overplotted on
the composite light profile (F555 and r′). Bulge and disc components
are shown as dash-dotted blue and dashed green lines respectively.

Table 1. Global parameters (luminosity, radial velocity, central ve-
locity dispersion) and best-fitting parameters for the one-component
(Sérsic) or two-component model (Sérsic+disc) of the light profiles of
A496cE, A496g1, and A496g2 in B band. Data for M 32 are taken from
van der Marel et al. (1998), Graham (2002), and for NGC 4486B from
Ferrarese et al. (2006) and HyperLeda.

A496cE A496g1 A496g2 M 32 N4486B
MB,tot –16.79 –17.32 –17.91 –15.85 –16.63
v km s−1 9747±1 10286 ± 3 9948 ± 1 −197 ± 15 1557 ± 35
σ0 km s−1 104 ± 2 145 ± 3 79 ± 1 76 ± 10 170 ± 4

MB,b –16.60 –17.32 –17.91 –15.34 –16.63
Re,b kpc 0.24 0.66 0.96 0.10 0.18
µ0,b 17.37 18.70 17.79 16.31 14.00
nb 1.29 1.35 1.94 1.5 2.73
µe 19.82 21.30 21.65 19.23 19.58
〈µ〉e 18.00 20.44 20.63 18.34 18.39
MB,d –14.80 n/a n/a –14.78 n/a

Re,d kpc 0.92 n/a n/a 0.84 n/a
µ0,d 22.55 n/a n/a 22.28 n/a

20 per bin in the F814W image and 40 in F702W. No colour
gradient is detected. However, this should not be considered as
a certain evidence for the uniform distribution of stellar popula-
tion parameters with radius. For instance, for M 32 the effects of
age and metallicity gradients on the V − I colour exactly com-
pensate each other, resulting in a flat colour profile (Rose et al.
2005).

We have analysed the spectrum of A496cE using the
novel stellar population fitting technique described in detail in
Chilingarian (2006) and Chilingarian et al. (2007). By fitting
the spectrum with high-resolution models of simple stellar pop-
ulations (SSP) computed with PEGASE.HR (Le Borgne et al.
2004), we are able to extract simultaneously stellar kinematics:
v, σ, and stellar population parameters such as SSP-equivalent
age and metallicity. Although some template mismatch is seen
due to the supersolar [α/Fe] in A496cE, the quality of the fit is
rather good (χ2/d.o.f. = 1.6).

We have obtained the α/Fe abundance ratio of the stel-
lar population by measuring the following absorption line-
strength indices (Worthey et al. 1994): Mgb, Fe5270, and Fe5335
using the α-enhanced models by Thomas et al. (2003). The
kinematical parameters are given in Table 1 and those of the
stellar populations in Table 2. A496cE has a rather high ve-
locity dispersion for its luminosity. It resides above the se-
quence of elliptical galaxies on the Faber-Jackson (1976) rela-
tion, shown in Fig. 3, presenting a compilation of data for dwarf
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Table 2. Stellar population parameters of A496cE, A496g1, and
A496g2 compared to M 32 and NGC 4486B (Sánchez-Blázquez et al.
2006). Comma-separated values for M 32 correspond to the parameters
at the core and at one effective radius as given by Rose et al. (2005).

t, Gyr Z, dex [Mg/Fe]
A496cE 16.4 ± 1.9 −0.04 ± 0.02 0.19 ± 0.07
A496g1 15.3 ± 2.8 −0.19 ± 0.03 0.43 ± 0.09
A496g2 13.1 ± 2.0 −0.43 ± 0.03 0.28 ± 0.08

M 32 4.0, 7.0 0.00, –0.25 –0.25, –0.08
N4486B 9.5 0.4 0.3

Fig. 3. Faber–Jackson relation for ellipticals and bulges of disc galax-
ies. Giant and intermediate-luminosity ellipticals are in blue, bulges of
disc galaxies in red, dwarf ellipticals and lenticulars in black. The up-
per end of the arrow representing M 32 corresponds to the HST STIS
measurements (Joseph et al. 2001), and the filled circle represents the
value obtained from earlier HST FOS data (van der Marel et al. 1998),
which was in agreement with more recent ground-based observations.

(Geha et al. 2003; van Zee et al. 2004; De Rijcke et al. 2005), in-
termediate luminosity, and giant elliptial galaxies, and bulges of
bright lenticulars (Bender et al. 1992). Due to the aperture size of
the FLAMES/Giraffe fibre our velocity dispersion for A496cE
nearly corresponds to the effective velocity dispersion and the
central value is probably significantly higher. The properties of
A496cE, such as metallicity and Mg/Fe ratio are similar to those
of bulges of moderate-luminosity lenticulars and spirals. The age
and metallicity of A496cE correspond to a stellar mass-to-light
ratio (M/L)∗,B = 19±2 (M/L)� (value for the PEGASE.HR SSP
computed with Salpeter IMF). Thus, the derived stellar mass of
A496cE is (1.7 ± 0.4) × 1010M�.

3. Discussion

3.1. Comparison with other E, dE, and cE galaxies

The very small effective radius, about 250 pc, high mean sur-
face brightness, µBe = 19.60 mag arcsec−2, and dwarf lumi-
nosity (MB = −16.96 mag) put the bulge of A496cE on the
continuation of the sequence of giant ellipticals and bulges in
the Kormendy (Kormendy 1977) and MB − µeff diagrams toward
small effective radii and fainter luminosities. Fig. 4 presents the
updated versions of Figs. 9a,g from Graham & Guzmán (2003):
absolute B magnitude and effective radius Re versus mean B sur-
face brightness within effective radius 〈µ〉e. The plot contains
only data for elliptical galaxies and bulges of lenticulars/spirals
(where bulge/disc decomposition has been made in the origi-
nal sources), all integrated measurements for S galaxies have
been excluded. Data in computer-readable format for dE and
E galaxies from Binggeli & Jerjen (1998), Caon et al. (1993),

Fig. 4. Structural properties of elliptical galaxies and bulges. Giant and
intermediate-luminosity ellipticals, power-law and core galaxies are
shown in blue, bulges of disc galaxies in red, dwarf ellipticals and
lenticulars in black. We keep the original morphological classification
(E / dE) for the data points coming from the Virgo Cluster ACS Survey,
Caon et al. (1993), and D’Onofrio et al. (1994), therefore they appear
both in blue and black.

D’Onofrio et al. (1994), Faber et al. (1997), Graham & Guzmán
(2003), Stiavelli et al. (2001) and homogenization algorithms
for these datasets have been kindly provided by A. Graham. We
also included: photometric parameters of E and dE/dS0 galax-
ies from the Virgo Cluster ACS Survey (Ferrarese et al. 2006),
photometric data on giant, intermediate elliptical galaxies, and
bulges of spirals and lenticulars from Bender et al. (1992), pho-
tometric parameters of the Sérsic component of M 32 (Graham
2002), and data for 430 elliptical galaxies from the HyperLeda
database, with radial velocities below 10 000 km s−1 and brighter
than MB = −18.0 mag. All the measurements are corrected for
Galactic absorption, cosmological dimming, K-correction, and
converted into B band according to Fukugita et al. (1995) as-
suming an elliptical galaxy SED.

Reflecting structural properties of elliptical galaxies, giants
and dwarfs reside in different regions of these diagrams. The se-
quence formed by giant elliptical galaxies and bulges of spirals is
clearly extended towards smaller effective radii / higher surface
brightnesses by M 32 and NGC 4486B. A496cE resides very
close to NGC 4486B in both plots. Thus, we can conclude that
the structural properties of the A496cE bulge resemble those of
elliptical galaxies and bulges of spirals and lenticulars. However
the bulges of M 32 and A496cE lie in a region where no other
object is found, indicating that they differ from normal bulges.

We have chosen S0 galaxies from the sample of Sil’chenko
(2006), with velocity dispersion and stellar population param-
eters coinciding with the values for A496cE: NGC 3098 (σ =
105 km s−1, [Fe/H] = −0.2, t = 10 Gyr), and NGC 4379
(σ = 108 km s−1, [Fe/H] = 0.0, t = 15 Gyr). Their B luminosi-
ties (MB = −18.9,−18.6, HyperLeda) are about two magnitudes
higher than that of A496cE. Assuming a bulge-to-disc ratio of
1:1 by mass for early-type galaxies, this implies that if the pro-
genitor of A496cE was an intermediate-luminosity disc galaxy,
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with its disc completely stripped by harassment, it must have lost
at least 2/3 of its bulge mass.

We now compare the properties of A496cE with two
galaxies of our spectroscopic sample in the WFPC2 field:
ACO496J043338.22-131500.7 and ACO496J043332.07-
131518.1 (PGC 93410), hereafter A496g1 and A496g2
respectively. The light profile of A496g1 is well fitted with
a single Sérsic component law. We can also fit the A496g2
profile with a single component model, though a faint disc in the
external part may also be present, as discussed in a forthcoming
paper. For both objects the effective radii are several times
larger than for A496cE, while the luminosities do not differ
strongly. The metallicity and velocity dispersion of A496g2 are
not higher than expected for an object of such a luminosity,
but the [Mg/Fe] ratio is very high, indicating a very short star
formation period (see e.g. Matteucci, 1994). Gas might have
been expelled by ram pressure, efficient in the central parts of
rich clusters (see e.g. Abadi et al. 1999), so star formation was
abruptly terminated.

For A496g1 the overall metallicity is ∼0.2 dex higher than
expected for its luminosity, but the [Mg/Fe] ratio and velocity
dispersion are exceptionally high (see Fig. 3), so this galaxy
is closer to an intermediate-luminosity elliptical or S0 galaxy
with MB ≈ −19 mag. The old ages of the stellar populations of
A496cE, A496g1, and A496g2 prove that none of these objects
merged with galaxies having young stellar populations or star-
formation during the last 10 Gyr, an indirect evidence for their
habitation in the centre of Abell 496 since that epoch.

3.2. Possible origin of A496cE

The presence of an outer exponential disc in A496cE argues that
this galaxy should not be considered as purely elliptical. Lisker
et al. (2007) have proposed that only nucleated dwarf ellipticals
follow the classical spheroid picture and a large number of dEs
in Virgo could be shaped like thick discs and formed from mass
loss from bigger infalling galaxies. However A496cE did not fol-
low the same evolutionary path as the three peculiar subclasses
of dwarfs described by Lisker et al., since its properties provide
decisive evidence that this object is quite unique.

Block et al. (2006) have simulated a head-on collision of
Andromeda with a low mass companion, now observed as M 32.
Their numerical simulations show that a fraction of M 32 gets
stripped on a timescale of a few 107 years. Under certain cir-
cumstances if the disc galaxy is stripped starting from its outer
parts, the overall potential becomes shallower and the bulge may
shrink, leading to a smaller object.

A496cE is observed very close to the cluster centre. If it has a
short-period orbit partially immersed in the cD halo, consecutive
passages should lead to a relatively fast and efficient stripping.
The old stellar population of A496cE indicates that the main part
of the disc was stripped long ago. But how could such an object
survive for about 10 Gyr very close to the cD galaxy without
being accreted by it?

The two aspects that rule the processes of galaxy mergers
are: (1) dynamical friction, decreasing the orbit size and causing
an accreting object to pass closer and closer to the centre of the
cluster; and (2) tidal forces, which can totally disrupt an object
if it passes sufficiently close to the cD galaxy.

The bulge of A496cE is very compact and dense, thus it
must be rather resistant to tidal disruption. Its exponential pro-
file shows no evidence for truncation beyond the tidal radius
of A496cE rtid ∼ 2 kpc. We assume a pericentral distance
dp = 14 kpc, i.e. that A496cE is passing near its pericentre

now with an orbital plane orthogonal to the line of sight. This
is possibly the case, because the radial velocity of A496cE dif-
fers from that of the cD by only 100 km s−1. Assuming a mass of
∼1013M� for the cD, the pericentral velocity is v ≈ 2000 km s−1.

The dynamical friction is ∼M2ρ

v2
. Given that A496cE is 4–6 times

more massive (assuming the same dark matter fraction) than
M 32 (≈3.0 × 109 M�), the orbital velocity 10 times higher, and
halo densities are comparable, the dynamical friction force is
3–4 times less efficient for A496cE than for M 32. Therefore,
there is a good chance for A496cE to survive for billions of
years in the central region of the cluster. Its progenitor must have
lost a large fraction of its mass during the first passage in or-
der to decrease significantly the dynamical friction effects. The
high metallicity and supersolar [Mg/Fe] ratio are additional ar-
guments for its massive progenitor origin.
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