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ABSTRACT

We discuss the estimation of galaxy correlation properties in several volume limited samples, in different sky regions, obtained from
the Fourth Data Release of the Sloan Digital Sky Survey. The small scale properties are characterized through the determination of
the nearest neighbor probability distribution. By using a very conservative statistical analysis, in the range of scales [0.5, ∼30] Mpc/h
we detect power-law correlations in the conditional density in redshift space, with an exponent γ = 1.0 ± 0.1. This behavior is stable
in all the different samples we considered; thus it does not depend on galaxy luminosity. In the range of scales [∼30, ∼100] Mpc/h
we find evidence for systematic unaveraged fluctuations and we discuss in detail the problems induced by finite volume effects on the
determination of the conditional density. We conclude that in such a range of scales there is evidence for a smaller power-law index of
the conditional density. However we cannot distinguish between two possibilities: (i) that a crossover to homogeneity (corresponding
to γ = 0 in the conditional density) occurs before 100 Mpc/h; (ii) that correlations extend to scales of order 100 Mpc/h (with a smaller
exponent 0 < γ < 1). We emphasize that galaxy distributions in these samples present large fluctuations at the largest scales probed,
corresponding to the presence of large scale structures extending up to the boundaries of the present survey. We discuss several
differences between the behavior of the conditional density in mock galaxy catalogs built from cosmological N-body simulations and
real data. We discuss some theoretical implications of such differences considering also the super-homogeneous features of primordial
density fields.
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1. Introduction

A major problem in modern cosmology is the statistical charac-
terization and the physical understanding of large scale galaxy
structures. The first question in this context concerns the studies
of galaxy correlation properties. Two-point properties are par-
ticularly useful to determine correlations and their spatial exten-
sion. There are different ways of measuring two-point properties
and, in general, the most suitable method depends on the type of
correlation, strong or weak, characterizing a given point distri-
bution in a sample.

For example, Hogg et al. (2005) recently measured the con-
ditional average density in a sample of Luminous Red Galaxies
(LRG) from a data release of the Sloan Digital Sky Survey
(SDSS). Such a statistic is very useful to determine correlation
properties in the regime of strong clustering and the spatial ex-
tension of strong fluctuations in a given sample. This was firstly
introduced by Pietronero (1987) and then measured in many
samples by Sylos Labini et al. (1998). We refer the reader to
Baryshev & Teerikorpi (2006) for a review of the measurements
of the reduced and complete correlation functions by different
authors in the various angular and three-dimensional samples.

The conditional density gives the average density of points
in a spherical volume (or a spherical shell) centered around
a galaxy (see Gabrielli et al. 2004, for a discussion of this

method). The results obtained by Hogg et al. (2005) can be sum-
marized as follows:

(i) A simple power-law scaling corresponding to a correlation
exponent γ ≈ 1 gives a very good fit to the data up to
at least 20 Mpc/h, over approximately a decade in scale.
These results are in good agreement with those obtained
by Sylos Labini et al. (1998) through the analyses of many
smaller samples and more recently by Vasilyev et al. (2006)
in the 2dFGRS.

(ii) At larger scales (i.e. r > 30 Mpc/h) the conditional den-
sity continues to decrease, but less rapidly, until about
∼70 Mpc/h, above which it seems to flatten up to the largest
scale probed by the sample (100 Mpc/h). The transition be-
tween the two regimes is slow, in the sense that the condi-
tional density at ∼20 Mpc/h is about twice the asymptotic
mean density. Joyce et al. (2005) have discussed the impli-
cations of these results noticing, for example, that the pos-
sible convergence to a well defined homogeneity in a vol-
ume equivalent to that of a sphere of radius 70 Mpc/h,
places in doubt previous detections of “luminosity bias”
from measures of the amplitude of the reduced correlation
function ξ(r). They emphasized that the way to resolve these
issues is, in volume limited (VL) samples corresponding to
different ranges of luminosity, to first use the conditional
density to establish the features of galaxy space correlations.
Sylos Labini et al. (1998) found evidence for a continuation
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of the small scale power-law to distances of the order of
hundreds of Mpc/h, although with weaker statistics, which
seems not be confirmed by Hogg et al. (2005).

In this paper we continue the analysis of galaxy distributions pre-
viously applied to the 2dFGRS data (Vasilyev et al. 2006) to the
so-called “main galaxy sample” of SDSS Data Release (DR4),
in the spirit of the tests discussed above. In a companion paper
we discuss the properties of the LRG sample of the SDSS DR4,
which can be directly compared with the results of Hogg et al.
(2005) and Eiseinstein et al. (2005).

The paper is organized as follows. In Sect. 2 we describe
the data and the way we have constructed the VL samples. We
also discuss the determination of the nearest neighbor (NN) dis-
tribution, and of the average distance between nearest galaxies,
which allows us to define the lower cut-off for the studies of cor-
relations. In addition we discuss the determination of the radial
counts in different VL samples, emphasizing that large variations
for this quantity are found in the different samples. Such fluctu-
ations, which seem to be persistent up to the sample boundaries,
correspond to the large scale structures observed in these cata-
logs. The quantitative characterization of the correlation proper-
ties of these fluctuations is presented in Sect. 3, where we discuss
the determination of the conditional average density in the differ-
ent VL samples. In particular we present several tests useful to
clarify the effect of systematic fluctuations at scales of the order
of the sample size.

In Sect. 4 we discuss the differences between the galaxy con-
ditional density, measured in these samples and the conditional
density of point-particles in cosmological N-body simulations.
We show that by using these statistics, together with a study of
the NN probability distribution, two-point properties of observed
galaxies of different luminosity and mock galaxy catalogs con-
structed using particles lying in region with different local den-
sity in cosmological N-body simulations, present different be-
haviors. In Sect. 5 we draw our main conclusions.

2. The data

The SDSS (http://www.sdss.org) is currently the largest
spectroscopic survey of extragalactic objects and one of the most
ambitious observational programs ever undertaken in astron-
omy. It will measure about 1 million redshifts, giving a com-
plete mapping of the local universe up to a depth of several
hundreds of Mpc. In this paper we consider the data from the
latest public data release (SDSS DR4) which is accessible at
http://www.sdss.org/dr4 (Adelman-McCarthy et al. 2005)
containing redshifts for more than 565 thousand galaxies and
67 thousand quasars. There are two independent parts of the
galaxy survey in the SDSS: the main galaxy sample and the
LRG sample. Here we discuss the former only. The spectro-
scopic survey covers an area of 4783 square degrees of the ce-
lestial sphere. The apparent magnitude limit for the galaxies is
17.77 in the r-filter and photometry for each galaxy is available
in five different bands, of which we consider the ones in the r
and g filters.

2.1. Definition of the samples

We have used the following criteria to query the SDSS DR4
database. We constrain the flags indicating the type of object so
that we select only the objects from the main galaxy sample. We
then consider galaxies in the redshift interval 10−4 ≤ z ≤ 0.3 and

Table 1. Main properties of the angular regions considered: The limits
in degrees of the cuts are chosen using the intrinsic coordinates of the
survey η and λ (in degrees). The last column Ω gives the solid angle of
three angular regions in steradians.

Region name η1 η2 λ1 λ2 Ω

R1 9.0 36.0 –47.0 8.0 0.41
R2 –33.5 –16.5 –54.0 –24.0 0.12
R3 –36.0 –26.5 2.5 43.0 0.11

with the redshift confidence parameter larger than 0.95. In addi-
tion we apply the filtering condition r < 17.77, thus taking into
account the target magnitude limit for the main galaxy sample in
the SDSS DR4. Thus we have selected 321 516 objects.

The angular coverage of the survey is not uniform but obser-
vations have been done in different sky regions. For this reason
we have considered three rectangular angular fields (named R1,
R2 and R3) in the SDSS internal angular coordinates (η, λ): in
such a way we do not have to consider the irregular boundaries of
the survey mask, as we have cut such boundaries to avoid uneven
edges of observed regions. In Table 1 we report the parameters of
the three angular regions considered. We do not use corrections
for the redshift completeness mask or for fiber collision effects.
Completeness varies most near the current survey edges which
are excluded in our samples. Fiber collisions in general do not
present a problem for measurements of galaxy correlations (see
discussion in, e.g., Strauss et al. 2002).

2.2. Construction of VL samples

To construct VL samples that are unbiased for the selection ef-
fect related to the cut in the apparent magnitude, we have applied
a standard procedure (see e.g. Zehavi et al. 2004): we compute
metric distances as

r(z) =
c

H0

∫ 1

1
1+z

dy

y · (ΩM/y + ΩΛ · y2
)1/2 , (1)

where we have used the standard cosmological parametersΩM =
0.3 and ΩΛ = 0.7 with H0 = 100 h km s−1 Mpc−1.

We use Petrosian apparent magnitudes in the r filter mr
which are corrected for galactic absorption. The absolute mag-
nitudes can be computed as

Mr = mr − 5 · log10 [r(z) · (1 + z)] − Kr(z) − 25, (2)

where Kr(z) is the K-correction. As the redshift range considered
is small from a cosmological point of view (i.e. z ≤ 0.3), to
estimate the K-corrections Kr(z) (linearly proportional to z and
thus small in this context) we have used the simple interpolating
formula

Kr(z) = (2.61 · (mg − mr) − 0.64) · z, (3)

where mg is the apparent magnitude in the g filter. This corre-
sponds to the calculated K-corrections in Blanton et al. (2001 –
see their Fig. 4). By knowing the intrinsic g − r color and the
redshift one directly estimates the K-correction term.

We have considered 4 different VL samples (named VL1,
VL2, VL3 and VL4) defined by two chosen limits in absolute
magnitude and metric distance, whose parameters are reported
in Table 2. While VL1 and VL2 contain relatively faint galax-
ies in the local universe, the VL3 sample covers a wide range
of distances, and VL4 consists of bright galaxies at distances up
to 600 Mpc/h. Considering the three different rectangular areas
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Table 2. Main properties of the obtained VL samples: rmin, rmax

(in Mpc/h) are the chosen limits for the metric distance; Mmin, Mmax de-
fine the interval for the absolute magnitude in each sample. The quan-
tity 〈Λ〉 (in Mpc/h) is the average distance between nearest-neighbor
galaxies.

VL sample rmin rmax Mmin Mmax 〈Λ〉
VL1 50 135 –19.0 –18.0 1.7
VL2 50 200 –21.0 –19.0 1.3
VL3 100 500 –23.0 –21.0 2.9
VL4 150 600 –23.0 –22.0 6

Table 3. Number of galaxies in each of the VL samples. Names are
given according to the discussion in the text. The scale Rc (in Mpc/h) is
discussed in Sect. 3.2 below.

VL Sample N Rc

R1VL1 3130 15
R1VL2 15 181 21
R1VL3 27 975 54
R1VL4 6742 65
R2VL1 790 10
R2VL2 3912 15
R2VL3 8586 38
R2VL4 1923 42
R3VL1 790 9
R3VL2 2895 12
R3VL3 7584 30
R3VL4 1503 36

(described above), we have 4 × 3 = 12 VL subsamples, whose
characteristics are reported in Table 3. The comparison between
VL samples with the same magnitude and distance cuts, in dif-
ferent sky regions, will allow us to test the statistical stationarity
of galaxy distributions in these samples and to estimate sample-
to-sample fluctuations.

2.3. Nearest neighbor distribution

The NN distance probability distribution depends on the cut in
absolute magnitude of a given VL sample. We expect this func-
tion not to be dependent on the angular sky cuts if the distribu-
tion is statistically stationary in the different VL samples. As dis-
cussed in Vasilyev et al. (2006) space correlations introduce a de-
viation from the case of a pure Poisson distribution: the average
distance 〈Λ〉 between NN is expected to be smaller than for the
Poisson case in the same sample and with the same number of
points. The measurements in the data, obtained by simple pair-
counting, are shown in Figs. 1–4. When a VL sample includes
fainter galaxies (e.g. VL1,VL2) 〈Λ〉 is smaller (see Table 2) than
for the case when only brighter galaxies are inside (e.g. VL3,
VL4). This is because brighter galaxies are sparser than fainter
ones. This corresponds to the exponential decay of the galaxy
luminosity function at the bright end (see discussion in Gabrielli
et al. 2004)

Zehavi et al. (2004) have estimated that at a scale of the order
of 1 ÷ 2 Mpc/h there is a departure from a power law behavior
in the reduced correlation function. In the light of the discussion
above we stress that this change occurs over a range of scales
where NN correlations are dominant in all samples considered.
For the interpretation of this behavior one may consider the rela-
tion between the conditional density, or the reduced correlation
function, and the NN probability distribution (see Baertschiger
& Sylos Labini 2004, for a discussion of this point). In this
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Fig. 1. Nearest Neighbor distribution in the VL1 sample: different sym-
bols correspond to different angular regions. The average distance be-
tween nearest galaxies is 〈Λ〉 = 1.7 Mpc/h. For reference the solid line
represents the NN distribution for a Poisson configuration with the same
〈Λ〉: the tails of this function decay more rapidly.
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Fig. 2. As Fig. 1 but for the VL2 samples. The average distance between
galaxies is 〈Λ〉 = 1.3 Mpc/h.

respect, in the comparison of galaxy data with N-body simu-
lations, one has to be careful in that these small-scale properties
can be determined by sampling, sparseness and other more sub-
tle finite size effects related to the precision of a given N-body
simulation (Baertschiger & Sylos Labini 2004).

We have then studied the effect of the fiber collisions on the
NN statistic: about 6% of galaxies that satisfy the selection cri-
teria of the main galaxy sample are not observed because they
have a companion closer than the 55 arcsec minimum separa-
tion of spectroscopic fibers (Strauss et al. 2002). However not
all 55-arcsec pairs are affected by fiber collisions, because some
of the SDSS were observed spectroscopically more than once.
We have identified all <=55 arcsec pairs for which both galax-
ies have redshifts, and we have randomly removed one of those
redshifts in each case to make a new sample with an even more
severe fiber collision problem than the existing sample. Because
of the very small number of galaxy pairs with angular separation
<=55 arcsec (of the order of a few percent in all the volume lim-
ited samples we have considered) there is no noticeable effect of
the results. For galaxies in the main sample the average redshift
z ∼ 0.1, and hence the angular distance 55 arcsec corresponds to
the linear separation r ∼ 0.1 Mpc/h which is marginally outside
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Fig. 3. As Fig. 1 but for the VL3 samples. The average distance between
nearest galaxies is 〈Λ〉 = 2.9 Mpc/h.
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Fig. 4. As Fig. 1 but for the VL4 samples.The average distance between
nearest galaxies is 〈Λ〉 = 6 Mpc/h.

the scale interval in which we have studied the NN distribution,
i.e. r > 0.2 Mpc/h. Hence we expect that the fiber collision effect
does not influence our results as indeed we find.

2.4. Number counts in VL samples

A simple statistic a value of that can be easily computed in
VL samples is the differential number counts. This gives us
a first indication about (i) the slope of the counts; and (ii) the
nature of fluctuations (see e.g. Gabrielli et al. 2004). In general
we may write that the number of points counted from a given
point chosen as the origin (in this case the Earth) grows as

N(r) ∼ rD. (4)

This represents the radial counts in a spherical volume of ra-
dius r around the observer (or in a portion of a sphere). In the
case D = 3 the distribution is uniform and D < 3 if it is, for
example, fractal or if there is a systematic effect of depletion
of points as a function of distance. In this situation we neglect
relativistic effects, which are small in the range of redshift con-
sidered. However, as noticed by Gabrielli et al. (2004) these cor-
rections may change the slope of the counts but not the intrinsic
fluctuations.
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Fig. 5. Differential number counts as a function of distance in the
VL1 sample in different angular regions normalized to their own solid
angle.
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Fig. 6. The same as Fig. 5 but for the VL2 samples.

Given that a VL sample is defined by two cuts in distance we
compute

n(r) =
dN(r)

dr
∼ rD−1, (5)

i.e. the differential number counts in shells. We expect the expo-
nent in Eq. (5) to be 2 when the distribution is uniform; in this
case we also expect to see small (normalized) fluctuations gener-
ally decaying with volume or faster for super-homogeneous case
(i.e. for standard cosmological density fields – see discussion in
Gabrielli et al. 2004)

Results in the samples considered are shown in Figs. 5–8,
where for each sample we have normalized the counts to the
solid angle of the corresponding angular region. The best fit ex-
ponent (reported in the figures) fluctuates, and in several cases
it is larger than 2. This means that there are large fluctuations
as revealed by the non-smooth behaviors of n(r) in the different
samples. Similar evidence for the effect of large scale structures
in these samples on other statistical quantities has been pointed
out by Nichol et al. (2006).

This is a first rough indication that the question of uniformity
at scales of order 100 Mpc/h is not simple to resolve in these
samples. These large fluctuations in slope and amplitude corre-
spond to the presence of large scale galaxy structures extending
up to the boundaries of the various samples considered. We do
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Fig. 7. The same as Fig. 5 but for the VL3 samples.
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Fig. 8. The same as Fig. 5 but for the VL4 samples.

not present a more quantitative discussion of these behaviors as
the statistics are rather weak.

3. Correlation properties of galaxy distributions

We now study the behavior of the conditional average density in
the various VL samples discussed in the previous section. We
use the full-shell estimator, discussed extensively in Gabrielli
et al. (2004) and in Vasilyev et al. (2006). This estimator has the
advantage of making no assumptions in the treatment of bound-
ary conditions and it is the most conservative among estimators
of two-pint correlations (see discussion in Kerscher 1999). The
conditional density in spheres 〈n(r)∗〉p is defined for an ensemble
of realizations of a given point process, as

〈n(r)∗〉p = 〈N(r)〉p
V(r)

· (6)

This quantity measures the average number of points 〈N(r)〉p
contained in a sphere of volume V(r) = 4

3πr
3 with the condition

that the center of the sphere lies on an occupied point of the dis-
tribution (and 〈...〉p denotes the conditional ensemble average).
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Fig. 9. Conditional density in spheres in the VL1 sample in the angular
region R1, R2, R3. Here and in Figs. 10–12 we report, for each sam-
ple, a vertical line corresponding to the distance scale Rc discussed in
Sect. 3.2 and shown in Table 4 (solid-line for R1, dotted-line for R2 and
dashed-line for R3).

Such a quantity can be estimated1 in a finite sample by a volume
average (supposing ergodicity of the point distribution)

〈n(r)∗〉p = 1
Nc(r)

Nc(r)∑
i=1

Ni(r)
V(r)

, (7)

where Nc(r) – the number of points chosen as centers of a sphere
of radius r fully contained in the sample volume – averaging
by the sample points. (The estimation of the conditional density
in shells 〈n(r)〉p proceeds in the same way, except we consider
spherical shells instead of spheres centered on the points – see
e.g. Vasilyev et al. 2006).

This full-shell estimator has an important constraint: it is
measured only in spherical volumes fully included in the sam-
ple volume. In this situation the number of centers Nc(r) over
which the average Eq. (7) is performed becomes strongly depen-
dent on the scale r when r → Rs, Rs being the sample size. In
this context such a length scale can be defined as the radius of
the largest sphere fully included in the sample volume: the center
of such a sphere lies in the middle of the sample volume.

Thus, when approaching the scale Rs there are two sources
of fluctuations which increase the variance of the measurements.
On the one hand the number of points over which the average is
performed decreases very rapidly and on the other hand the re-
maining points are concentrated toward the center of the sample.
In such a way systematic fluctuations may affect the estimation,
given that these are not averaged out by the volume average.
An estimation of the scale beyond which systematic effects be-
come strong is thus important.

The following subsection discusses the measurements of
〈n(r)∗〉p in the different VL samples, while Sect. 3.2 is devoted
to the problem of the determination of the maximum scale up to
which the volume average is properly performed, and thus be-
yond which systematic unaveraged fluctuations may affect the
behavior of the conditional density.

1 For simplicity we use the same symbol for the ensemble average
and for the estimator of all statistical quantities defined in this section.
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Fig. 10. As for Fig. 9 but for the VL2 samples.

3.1. Estimation of the conditional density

The results of the measurements in redshift space of the condi-
tional density by the full-shell estimator, in VL samples with the
same cuts in absolute magnitude and distance but in different an-
gular regions, are reported in Figs. 9–12. The formal statistical
error, reported in the figures, for the determination of 〈n(r)∗〉p at
each scale, can be derived from the dispersion of the average

Σ2(r) =
1

Nc(r)

Nc(r)−1∑
i=1

(
n(r)∗i − 〈n(r)∗〉p

)2
Nc(r) − 1

, (8)

where n(r)∗i represents the determination from the ith point. Such
an error is very small, except for the last few points. However,
as discussed below, when r → Rs systematic fluctuations can be
more important than statistical ones.

One may note the following behaviors:

– In the three VL1 samples the signal is approximately the
same up to 10 Mpc/h, where the conditional density has
a power-law behavior

〈n(r)∗〉p ∼ r−γ (9)

with exponent γ = 1.0 ± 0.1. The sample R3VL1 has an Rs
of the order of 10 Mpc/h, while the sample R1VL1 about
25 Mpc/h and R2VL1 about 15 Mpc/h. In the two for-
mer samples the signal is different in the range of scale
10–20 Mpc/h and is clearly affected by large systematic
fluctuations.

– For the three VL2 samples the situation is similar to the pre-
vious one. There is a difference in the amplitude of R1VL2
and R2VL2 of about a factor of 2. Nevertheless the power-
index is very similar in all three samples and γ = 1.0 ± 0.1.
All samples present a deviation from a power-law at their re-
spective Rs = 35, 20, 15 Mpc/h. These deviations are again
a sign of finite size effects, reflecting systematic unaveraged
fluctuations, as they occur at different scales in the three sam-
ples, but always at scales comparable to the sample size.

– For the case of VL3 samples the behavior of the conditional
density is smoother at small scales: up to 30 Mpc/h all the
three samples present the same power-law correlation with
an index γ = 1.0 ± 0.1. Thus the exponent is the same
as in VL1 and VL2, but, given that Rs for these samples
is larger than for VL1 and VL2, it extends to larger scales.
The amplitude of the conditional density is almost the same
in the three samples up to ∼30 ÷ 40 Mpc/h. Beyond such
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Fig. 11. As for Fig. 9 but for the VL3 samples.
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Fig. 12. As for Fig. 9 but for the VL4 samples.

a scale R1VL3 shows a flattened behavior, similar to the
case R2VL3 although in this case there is a deviation at large
scales (from about 40 Mpc/h). The sample size for R3VL3
is about 30 Mpc/h and thus does not give any information on
the larger scales. In the following section we present several
tests to clarify whether the crossover to homogeneity which
seems to be clear in the sample R1VL3 is stable in different
samples and whether systematic fluctuations are negligible.

– The sample VL4 is the deepest one and the behavior mea-
sured is similar to VL3 although there is a clear differ-
ence at large scales and fluctuations are more evident. Up
to 30 Mpc/h the exponent is again γ = 1.0 ± 0.1, i.e. like
VL1 and VL2 at smaller scales, and VL3 at the same scales.

The difference in amplitude of the conditional density in the dif-
ferent samples VL1, VL2 and VL3 is simply explained by con-
sidering the effect of the luminosity function in the selection of
the galaxies (see Gabrielli et al. 2004, for a detailed treatment of
this point).

Thus the correlation properties are independent of galaxy
luminosity and they are characterized by a power-law index in
the behavior of the conditional density γ = 1.0 ± 0.1 up to
30 Mpc/h. At larger scales, as shown for example in the two sam-
ples R1VL4 and R2VL4 the situation is less clear: fluctuations
are more important because they are not smoothed out by the
volume average. In the next subsection we define the range
where the volume average is properly performed.
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Table 4. Main properties of the different subsamples considered in the
R1 region. The angular limits of the cuts in the intrinsic coordinates of
the survey η and λ (in degrees). The last column gives the number of
points in the sample.

Region name η1 η2 λ1 λ2 N
R1_1VL1 9.0 22.5 –47.0 8.0 1585
R1_2VL1 22.5 36.0 –47.0 8.0 1545
R1_1VL2 9.0 22.5 –47.0 8.0 7684
R1_2VL2 22.5 36.0 –47.0 8.0 7497
R1_1VL3 9.0 22.5 –47.0 8.0 13982
R1_2VL3 22.5 36.0 –47.0 8.0 13993
R1_1VL4 9.0 22.5 –47.0 8.0 3343
R1_2VL4 22.5 36.0 –47.0 8.0 3399
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Fig. 13. Conditional density in spheres in the R1VL1 sample and in the
2 subsamples defined by the angular cut performed as discussed in the
text. The lines labeled with Nc represent the behavior of the number of
centers used in the average (Eq. (7)) arbitrarily normalized.
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Fig. 14. As Fig. 13 but for the R1VL2 sample.

3.2. Finite volume effects

In order to quantify the finite volume effects previously men-
tioned, we have divided each of the VL samples of the R1 field
into two non-overlapping contiguous angular regions, and we
have recomputed the conditional density in each of the 2 ×
4 samples. The properties of these subsamples are listed in
Table 4. In Figs. 13–16 we show the results.

As already mentioned the average computed by Eq. (7) is
made by changing, at each scale r, the number Nc(r) of points
which contribute. This scale-dependency follows from the re-
quirement that only those points are chosen for which, when
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Fig. 15. As Fig. 13 but for the R1VL3 sample.
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Fig. 16. As Fig. 13 but for the R1VL4 sample.

chosen as centers of a sphere of radius r, the volume does not
overlap or intersect the boundaries of the sample. In this way,
in a sample of size Rs, when r 	 Rs almost all points will con-
tribute to the average, while when r → Rs only those points
lying close to the center of the volume will be taken into account
in the average. Hence at large scales the average is performed
on a number of points that exponentially decay when r → Rs. In
Figs. 13–16 we show the behavior of the number of centers Nc(r)
as a function of scale, normalized to an arbitrary factor. The nor-
malization is simple because at small scales Nc(r) = N where N
is the number of points contained in a given VL sample: at such
small scales all points contribute to the statistics. At a scale com-
parable with, but smaller than, the sample size there is an abrupt
decay of this quantity: this means that only few points contribute
to the average at large scales.

That systematic fluctuations are more important than statisti-
cal ones can be noticed from the behavior of the conditional den-
sity in Figs. 13–16 by comparing the behaviors in the original
sample (e.g. R1VL1) and in the two separate subsamples (e.g.
R1_1VL1 and R1_2VL1). When the distance scale approaches
the boundaries of the samples there are systematic variations that
are larger than the (small) error bars derived from Eq. (8). As al-
ready mentioned, in some cases there is evidence for a more flat-
ter behavior while in other cases instead the conditional density
show a decay up to the sample boundaries which is slower than at
smaller scales. This situation suggests caution in the interpreta-
tion of the large scale tail of the conditional density. The question
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Fig. 17. Conditional density in spheres in the R1VL3 and R1VL4 sam-
ples, normalized to have the same amplitude at 1 Mpc/h. The large scale
behavior (r > 30 Mpc/h) is different due to the effect of systematic
fluctuations.

is how to quantify the regime where systematic fluctuations are
important and may affect the behavior of the conditional density.

One may define a criterion for the statistical robustness of
the volume average by imposing for example that Nc(r) must be
larger than a certain value. While this can certainly give a useful
indication, the problem of the volume average is more subtle.
In fact when r → Rs there can be sufficient points for Nc(r) to
be larger than a given pre-defined value: however it may happen
that all these points lie, for example, in a cluster located close
to the sample center. In this situation the volume average is not
properly performed, in the sense that all points “see” almost the
same volume.

A way to clarify such a situation has been proposed by Joyce
et al. (1999). One may compute the average distance between
the Nc(r) centers at the scale r:

Rc(r) =
1

Nc(r)(Nc(r) − 1)

Nc(r)∑
i, j=1

|ri − r j| (10)

where ri and r j are two of the Nc(r) points. A criterion for
statistical validity of the volume average is then

Rc ≥ 2 × r (11)

which implies that the average distance between sphere centers
is larger than twice the scale at which the conditional density is
computed, assuring in this way the independence of the different
terms in the average. The values of Rc for the different samples
is reported in Table 3 and this length-scale is indicated as a ver-
tical line in Figs. 9–12. In practice all samples show an Rc of
less than 40 Mpc/h with the exception of R1VL3 and R1VL4 for
which Rc = 54 and 65; Mpc/h respectively. However, in these
two samples the conditional density does behave differently at
large scales (see Fig. 17), in the sense that the change of slope
occurs at different scales and thus at a different average den-
sity value. Thus it is very hard to conclude about the correlation
properties at such large scales.

However we note that there is enough evidence that the
signal is smoother on scales >40 Mpc/h and that sample-to-
sample fluctuations or the variations in radial counts (discussed
in Sect. 2) are smaller, thus indicating a tendency toward a more
uniform distribution. However these data do not unambiguously
support a clear evidence in favor of homogeneity at scales of the
order of 70 Mpc/h, as Hogg et al. (2005) found by analyzing the
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Fig. 18. Conditional density for the four samples of points selected
in the simulation: the original dark matter (DM) field, all “galaxies”
(ALL), blue galaxies (BLUE) and red galaxies (RED). The conditional
density for dark matter particles (DM) has been normalized arbitrarily.
The reference dashed-dotted line has a slope γ = 1.7. The dashed line
with γ = 1, corresponding to the slope measured in the galaxy samples
is also reported.

LRG sample, because the change in correlation properties oc-
curs at scales comparable to the scales Rs and Rc. We conclude
that these data support a change of slope, with a clear tendency
for γ < 1, but with an undefined value.

These tests indicate that the availability of larger samples,
provided, for example, by DR5, will allow one to understand
these systematic variations. To study scales of the order of
100 Mpc/h, samples with Rs ≈ 300 Mpc/h are needed. However
the full SDSS data will provide us with such large and complete
catalogs.

4. Correlation properties of cosmological N-body
simulations

Gravitational clustering in the regime of strong fluctuations is
usually studied through gravitational N-body simulations. The
particles are not meant to describe galaxies but collisionless
dark-matter mass tracers. During gravitational evolution com-
plex non-linear dynamics make non-linear structures at small
scales, while at large scales a linear amplification occurs ac-
cording to linear perturbation theory. Thus, while on large scales
correlation properties do not change from the beginning – ex-
cept a simple linear scaling of amplitudes – at small scales non-
linear correlations occur. Typically in these simulations non-
linear clustering is formed up to scales of the order of a few Mpc.

At late times one can identify subsamples of points that trace
the high density regions, and these would represent the sites
for galaxy formation, whose statistical properties are ultimately
compared with the ones found in galaxy samples.

In order to study this problem we consider the GIF galaxy
catalog (Kauffmann et al. 1999) constructed from a ΛCDM sim-
ulation run by the Virgo consortium (Jenkins et al. 1998). This is
done firstly identifying the halos, which represent almost spher-
ical structures with a power-law density profile from their cen-
ter. The number of galaxies belonging to each halo is set pro-
portional to the total number of points belonging to the halo to
a certain power. This procedure identifies points lying in high
density regions of the dark-matter particles. One may assign to
each point a luminosity and a color on the basis of a certain
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Fig. 19. Nearest neighbors probability distribution for three point sets
selected in the simulation (see discussion in the text): all “galaxies”
(ALL), blue galaxies (BLUE) and red galaxies (RED).

criterion which is not relevant for what follows (see Sheth et al.
2001, and reference therein). The resulting catalog is divided
into two subsamples based on “galaxy” color B − I as in Sheth
et al. (2001): (brighter) red galaxies (for which B − I is redder
than 1.8) and (fainter) blue galaxies (B − I bluer than 1.8).

In summary four samples of points may be considered: (i) the
original dark matter particles with N = 2563 particles; (ii) all
galaxies with N = 15 445; (iii) blue galaxies with N = 11 023;
and (iv) red galaxies with N = 4422.

In order to understand the correlation properties in the
sampled point distributions it is useful to study the behavior
of the conditional density which, as already discussed, has a
straightforward interpretation in terms of correlations; results are
shown in Fig. 18. The red galaxies are responsible for the strong
correlations observed in the full sample as the conditional den-
sity is almost the same as for all galaxies at small scales. At large
scales there is instead a fast decrease as the sample average of red
galaxies is smaller than the one of all galaxies (there are fewer
objects). For red galaxies the sampling is local, i.e. their con-
ditional density is (almost) invariant at small scales. Clearly, as
there are globally less objects, the sample density of red galaxies
is smaller than that of all galaxies. On the other hand blue galax-
ies present only some residual correlations at small scales, and
they are more numerous than red galaxies.

The small scale properties of these distributions can be stud-
ied by analyzing the NN probability distribution (see Fig. 19).
Blue galaxies have a bell-shaped distribution, typical of the case
where correlation are very weak. Instead red and all galaxies
present almost the same function, with a long small-scale tail,
which is a typical feature indicating the presence of strong two-
point correlations (see discussion in Baertschiger & Sylos Labini
2002). This situation is different from the one detected in the
samples of DR4 as shown in Figs. 1–4, where the NN probabil-
ity distribution has the same shape for all samples considered.

The main points are the following:

– The slope of the conditional density in all the artificial sam-
ples considered here is different from γ = 1.0± 0.1 measured
in the real galaxy data. In particular for those mock samples
(red galaxies, all galaxies and dark matter particles) where
correlations are power-law, the slope is γ = 1.7 ± 0.1 in the
range [0.01, 5] Mpc/h while a clear transition toward homo-
geneity occurs at scales of the order of 10 Mpc/h. These dif-
ferent slopes can be explained by the fact that we compare

a measure in redshift space, in the case of real data, which
can be affected by redshift distortions, with the mock cata-
logs where the conditional density has been measured in real
space. We will examine this point in more detail in a forth-
coming paper.

– Small scale properties, as detected by the NN probability dis-
tribution, are different in the real and artificial samples.

– The conditional densities of mock blue and red galaxies
are different at all scales and blue galaxies show almost no
correlations.

– Both mock red and blue galaxies show a well-defined tran-
sition to homogeneity at a scale of the order of 10 Mpc/h.
As we have already mentioned, this is not the behavior
observed in the data. Particularly the range of non-linear
structures seem to be much wider in the real data than in
the simulations.

While the comparison between correlation properties of real
galaxies and mock galaxy catalogs constructed from points se-
lected in N-body simulations is usually performed by the analy-
sis of the reduced two-point correlation function, here we have
presented the comparison of the conditional density and of the
NN probability distributions. We find that some important dis-
agreements between data and simulations are evident when the
behavior of these statistical quantities are considered. This is not
the same conclusion that one may reach by analyzing the re-
duced correlation function ξ(r): the reason is that in the estima-
tion of ξ(r) one uses the estimation of the sample average, which
introduces a finite-size effect which may affect both the ampli-
tude and slope of this function (see e.g. Gabrielli et al. 2004, for
a detailed discussion of this point). The estimation of the con-
ditional density is less affected by finite-volume effects and the
comparison between different sample is straightforward.

Note that the data are analyzed in redshift space and the sim-
ulations in real space. However given that velocities are typically
smaller than 500 km s−1 the difference between real and redshift
space cannot be accounted by the effects of peculiar velocities
on scales larger than 5 Mpc/h. The problem of the relation be-
tween real and redshift space, considering the finite size effects
present when strong correlations characterize the data, has been
discussed in Vasilyev et al. (2006).

5. Discussion and conclusions

Our main results are the following:

(i) In all VL samples we find that in the range of scales 0.5 ≤
r <∼ 30 Mpc/h the conditional density shows a power-law
correlation with a power-law index γ = 1.0 ± 0.1. This
result is in good agreement with the behavior found in other
smaller samples by Sylos Labini et al. (1998), Joyce et al.
(1999) and in the SDSS LRG sample by Hogg et al. (2005),
and with the correlation properties measured by Vasilyev
et al. (2006) in the 2dFGRS.
We do not confirm the results of Zehavi et al. (2004) who
found a departure from a power-law in the galaxy corre-
lation function at a scale of the order of 1 Mpc/h: their
analysis was performed in real space while ours is in red-
shift space. In this range of scale nearest-neighbor correla-
tions dominate the behavior of the conditional density and
thus also of the reduced correlation function and for a de-
tailed understanding of this regime a study of the nearest-
neighbor is necessary.
We do not find a luminosity or color dependence of the
galaxy the conditional density in the regime of strongly
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non-linear correlations. In this respect Zehavi et al. (2005)
have considered the behavior of the reduced two-point cor-
relation function, and concluded that there is a color (lu-
minosity) dependence of galaxy correlations. This appar-
ent disagreement can be understood by considering that the
reduced two-point correlation function can be strongly af-
fected by finite-size effects in the regime where the condi-
tional density presents power-law correlations (see discus-
sion, e.g., in Joyce et al. 2005). Moreover results by Zehavi
et al. (2005) have been obtained in real space: in Vasilyev
et al. (2006) we discussed the kind of finite size effects
which perturb the estimation of ξ(r) when the conditional
density has power-law correlations.

(ii) In the range 30 <∼ r <∼ 100 Mpc/h the situation is less clear:
as we discussed, finite volume effects are important in this
range of scales and systematic unaveraged fluctuations may
affect the results. We have presented several tests to show
the role of finite volume effects and to determine the range
of scales where they perturb the estimation of the condi-
tional density, finding that in all but two samples the vol-
ume average is properly performed up to Rc ≈ 40 Mpc/h.
In the remaining two samples we have shown that system-
atic fluctuations persist up to their boundaries Rs.
Thus in the range 30 <∼ r <∼ 100 Mpc/h we find evidence
for a more uniform distribution and hence a smaller power
law index (γ < 1) in the conditional density. This is a stable
result in all samples considered. However a detailed analy-
sis of the behavior of the conditional density in all samples
does not allow us to conclude either that there is defini-
tive crossover to homogeneity at a scales of order 70 Mpc/h
as Hogg et al. (2005) have concluded by considering the
LRG sample, or that there is a change of power-law index
beyond 30 Mpc/h which remains stable up to the samples
limit, i.e. up to 100 Mpc/h. Both possibilities are still open
and will be clarified by forthcoming data releases of SDSS
as the solid angle will increase.

(iii) The comparison of mock galaxy catalogs constructed from
particle distributions extracted from cosmological N-body
simulations with real galaxy data reveals a problematic sit-
uation. On the one hand we have discussed the fact that
the slope of the conditional density is different from the
one measured in real catalogs. On the other hand we have
also stressed that when constructing artificial galaxy sam-
ples from dark matter particles in N-body simulations, there
are different behaviors in the conditional density according
to the different selection criteria used, and thus on the differ-
ent way to assign “luminosity” and “color” to the artificial
galaxies. This behavior is not in agreement with the data,
as in all samples analyzed here, the same slope in the con-
ditional density is measured. The same situation is present
when the NN probability distribution is considered. Then
in N-body simulations, structures are smaller than in real
data, as shown by the definitive crossover to homogeneity
at about 10 Mpc/h found in the N-body particle distribu-
tion, contrary to the galaxy case where the crossover may
happen on much larger scales of the order of 100 Mpc/h.

We have used a very conservative statistical analysis which in-
troduces important constraints on the way we treat the data. For
example if the distribution would have been uniform on scales
smaller than the actual sample sizes, the conditional density es-
timation could done for all points in the sample, even on large
scales, not just the points near the center of the sample, because
it can be assumed that the volume outside the survey region is

statistically similar to the volume inside. This is the standard
approach with conventional two-point statistics in the literature.
On the other hand we have used, for example, periodic boundary
conditions in the analysis of artificial simulations, as in this case
the distribution is periodic beyond the simulation box, by con-
struction. However, as we do not know whether this is the case
for the galaxy distribution, and because we would like to test this
point, we have used more conservative statistics to analyze the
real data. This, instead of being a limitation, allows us to derive
results about galaxy correlation properties that are unbiased by
finite size effects. Indeed, when using less conservative methods,
one is implicitly making the assumption that finite size effects,
induced by long-range correlations in the galaxy distribution, are
negligible. Here we instead test that this is the case in the data
we consider and we find evidence that, because of the long-range
nature of galaxy correlations, there are subtle finite size effects
which should then be a serious warning to the use of less conser-
vative statistical methods. Having used more conservative statis-
tics we are able to obtain results that are less biased by finite size
effects (which ultimately appear from the presence of large fluc-
tuations represented by large scale structures) than the ones de-
rived by a statistical analysis which makes use of some untested
assumptions to derive its results. For example we find that the
exponent of the conditional density is −1 instead of −1.7 as de-
rived with a more “relaxed” analysis, at the same scales. The
measurements of the conditional density has been performed in
real space in the mock catalogs and in redshift space in the real
samples, and this can be the origin of the different values of the
correlation exponents. Whether this is case, or a finite size effect
plays a crucial role will be studied in a forthcoming paper.

We discuss our results in relation to theoretical models of
fluctuations in standard cosmologies. It has been shown (see e.g.
Gabrielli et al. 2004) that the only feature of the primordial cor-
relations, defined in theoretical models like the cold dark matter
(CDM) one, that can be detected in galaxy data is represented by
the large scale tail of the reduced correlation function. In terms
of correlation function ξ(r), CDM models presents the following
behavior: it is positive at small scales, it crosses zero at a cer-
tain scale and then it is negative approaching zero with a tail
which goes as r−4 in the region corresponding to P(k) ∼ k (see
e.g. Gabrielli et al. 2004). The super-homogeneity (or Harrison-
Zeldovich) condition says that the volume integral over all space
of the correlation function is zero∫ ∞

0
d3rξ(r) = 0. (12)

This means that there is a fine balance between small-scale pos-
itive correlations and large-scale negative anti-correlations. This
is the behavior that one would like to detect in the data in order
to confirm inflationary models. Up to now this search has been
done through the analysis of the galaxy power spectrum (PS)
which should scale as P(k) ∼ k at small k (large scales). No ob-
servational test of this behavior has been provided yet. However
for this case one should consider an additional complication.

In standard models of structure formation, galaxies result
from a sampling of the underlying CDM density field: for in-
stance one selects only the highest fluctuations of the field that
would represent the locations where a galaxy will eventually
form. It has been shown that sampling a super-homogeneous
fluctuation field changes the nature of the correlations (Durrer
et al. 2003). The reason for this can be found in the property
of super-homogeneity of such a distribution: the sampling nec-
essarily destroys the surface nature of the fluctuations, as it in-
troduces a volume (Poisson-like) term in the mass fluctuations,
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giving rise to a Poisson-like PS on large scales P(k) ∼ const. The
“primordial” form of the PS is thus not apparent in that which
one would expect to measure from objects selected in this way.
This conclusion should hold for any generic model of bias and
its size has to be established in any given model (Durrer et al.
2003).

On the other hand, one may show (Durrer et al. 2003) that
the negative r−4 tail in the correlation function does not change
with sampling: on large enough scales, where in these mod-
els (anti) correlations are small enough, the biased fluctuation
field has a correlation function that is linearly amplified with
respect to the underlying dark matter correlation function. For
this reason the detection of such a negative tail would be the
main confirmation of models of a primordial density field. This
will be possible if firstly a clear determination of the homogene-
ity scale is obtained, and then if the data are statistically robust
enough to allow the determination of the correlation when it is
ξ(r) 	 1. While Eiseinstein et al. (2005) claimed to have mea-
sured that ξ(r) ≈ 0.01 at scales of order 100 Mpc/h in a sample
of SDSS LRG galaxies, here we cannot confirm these results
as our analysis does not extend to such large scales with ro-
bust statistics. However from the large fluctuations observed, for
example in the behavior of the radial counts and in sample-to-
sample variations of the conditional density at such large scales,
we conclude that this result needs more studies, and perhaps
much larger samples, to be confirmed.
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