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ABSTRACT

Tracking the origin of the accelerating expansion of the Universe remains one of the most challenging research activities today. The
final answer will depend on the precision and on the consistency of data from future surveys. The sensitivity of these surveys is
related to the control of the cosmological parameters errors. We focus on supernova surveys in the light of the figure of merit defined
by the Dark Energy Task Force. We estimate the impact of the level of systematic errors on the optimisation of SN surveys and
emphasize their importance in deriving any sensitivity estimation. We discuss the lack of information of the DETF figure of merit
to discriminate among dark energy models and compare the different representations that can help to distinguish ΛCDM from other
theoretical models. We conclude that all representations should be controlled through combined analysis and consistency checks to
avoid biases.
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1. Introduction

The discovery of the acceleration of the Universe is one of the
most intriguing questions in astrophysics today and has been the
driver of many theoretical developments trying to find an expla-
nation for this acceleration. These models introduced in general
a new component called dark energy (“the DE models”) whose
nature is unknown (see e.g. Peebles & Ratra 2003; Padmanabhan
2003; Copeland et al. 2006). Their comparison to observational
data is complex and the experimental interpretation would ben-
efit from a “model independent approach”. The strategy is not
unique today and is linked to the definition of the cosmological
parameters, in particular those that describe the properties of the
dark energy component.

Many studies concentrate on the equation of state (w = pres-
sure/density ratio) of this new component. For a cosmological
constant, w is equal to −1 but it can be different and/or can vary
with time in other DE models. A common way to introduce the
time dependence of DE models is to use a redshift dependent
parameterization such as (Linder 2003; Chevallier & Polarski
2001):

w(z) = w0 + waz/(1 + z) = w0 + (1 − a)wa (1)

a being the scale factor. The function w(z) is a good observ-
able with adequate properties (Linder 2004a; Linder & Huterer
2005).

On the theoretical side, one needs to estimate whether this
parameterization is sufficient to describe DE models whatever
the source of the acceleration is. This has been investigated by
Linder (2006a); Barger et al. (2006); Linder (2004b) who show
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that this parameterization can represent a large class of models,
even those that have no real dynamical component. Nevertheless,
there are still some potential biases when estimating the effec-
tive w0 and wa parameters from the actual theoretical phase space
(Linder 2006a; Simpson & Bridle 2006).

On the experimental side, many new probes have shown their
ability to constrain w(z). To estimate the sensitivity of an experi-
mental survey, named “a data model”, one needs to define figures
of merit (FoM), related to the statistical error of the w(z) parame-
ters. This can be used to compare and test different experimental
strategies.

The aim of this article is to compare the information pro-
vided by the various FoM calculated for Supernova (SN) sur-
veys. In particular, we distinguish FoM needed to compare data
models from FoM needed to distinguish between and separate
DE models. In Sect. 2, we define the generic SN surveys used as
data models in this article. In Sect. 3, we recall the definition of
the FoM used by the Dark Energy Task Force (DETF 2006) and
use it to compare the sensitivities of the data models. We opti-
mize the total number of SN, N, and the redshift depth, zmax, of
the survey in light of the systematic errors. In Sect. 4, we com-
pare the impact of different FoM to distinguish the source of the
cosmic acceleration among the DE models.

2. Generic supernova data models

The sensitivity of future surveys depends on several experimen-
tal parameters. One concern is to well estimate their uncertain-
ties. For this purpose, we concentrate here on Supernova sur-
veys. We define generic SN data models that are representative
of future data:

a) N = 2000 and zmax = 1: such a survey is close to what
can be reached from the ground in the near future. Using the
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DETF terminology, this will be our definition of a “stage 2”
data model;

b) N = 15 000 and zmax = 1: this is achievable from the ground
with wide coverage. We call it a “stage 3” data model or
a “wide” survey;

c) N = 2000 and zmax = 1.7: this needs an infrared coverage
which implies a space mission. This will be possible at a later
stage and we will define it as our “stage 4” or a “deep” survey;

d) N = 15 000 and zmax = 1.7: this is postponed to the future and
we will define it as a “stage 5” or a “wide and deep” survey.

Comparison of the potentialities of theses data models should
describe the expected improvement on the constraints of the
DE equation of state with the characteristics of the survey.
We focus in particular on the relative importance of increas-
ing the total number of SN (N) collected against the redshift
depth (zmax). The feasibiliy of a deep or a wide survey is strongly
correlated to the experimental strategy and is a driver of future
surveys. To address this, we will keep the other parameters iden-
tical for all the data models. We use the following hypothesis for
the cosmology:

– a ΛCDM model;
– a flat universe;
– a strong Ωm prior, as expected from Planck: Ωm = 0.27 ±

0.01. The central value has been chosen to be in agreement
with the WMAP-3 year data analysis.

We add the following assumptions:

– we add a sample of nearby supernovae as expected from the
SN Factory survey (Wood-Vasey et al. 2004) corresponding
to 150 SN at z = 0.03 and 150 at 0.08. We call it the “nearby
sample” in the following;

– the intrinsic magnitude dispersion is assumed to be 0.15.
The corresponding “statistical error” of a redshift bin is
δmstat = 0.15/

√
Nbin. We have assumed redshift bins of width

∆z = 0.1.

The level of systematic errors will appear as a fundamental in-
gredient in the data model comparison (it is true for any anal-
ysis as it has been emphasized by DETF 2006; and Kim et al.
2004). We define the systematic error by an extra term δmsyst
in the magnitude. The total error on the magnitude m(z) is then
δm2 = δm2

stat + δm
2
syst. Unless otherwise specified, we use an un-

correlated error in redshift bins. We have also estimated the ef-
fects of a redshift dependent error (i.e., correlated in redshift
bins) with different amplitudes. Adding a redshift dependence
does not change our conclusions on errors. It is the amplitude of
the systematic errors, whatever the form, that has a strong impact
on the future precision (Kim et al. 2004).

We study the two cases with and without this systematic
term. Since many papers still provide analysis with statistical er-
rors only, we start with this assumption (δmsyst = 0) in our study.
We then choose a default value of δmsyst = 0.02 for the system-
atic case. This choice is an optimistic estimation of the experi-
mental systematic errors. The motivation is that using 2000 SN,
this systematic error value is already roughly of the same size as
the statistical error and is a limiting factor of the total error.

Higher systematic error values, more realistic, provide sim-
ilar conclusions when compared to the statistical case. Only the
parameter error values are different.

These two “academic” scenarios illustrate the impact of
a small systematic effect when statistical errors are at a percent
level.

To perform the simulations we adopt a standard Fisher ma-
trix approach which allows a rapid estimate of the parameter er-
rors following the procedure described in Virey et al. (2004). We
use the freely available tool “Kosmoshow”1.

The redshift distribution used in this study is based on the
SNAP prescription from Kim et al. (2004). The “stage 4” data
model has exactly this distribution. For other data models with
different N and/or zmax we have scaled the distribution, truncat-
ing it at zmax = 1 when relevant and multiplying the remaining
number of SN by the adequate factor2.

3. Supernova data model sensitivity

We study the potential of the previous four generic data models
in term of coverage and statistics, with and without systematic
errors. We examine the interpretation of the pivot redshift and
of the FoM defined by the DETF. The impact of a systematic
error on the sensitivity of these surveys is emphasized. Finally,
we give some insights to the optimization of zmax and N.

3.1. The DETF figure of merit

Recently, the DETF(DETF 2006) has proposed a FoM derived
from the definition of the pivot point. The pivot parameterization
is defined as:

w(z) = wp + (ap − a)wa = wp +
wa

1 + zp
− wa

1 + z
(2)

and is equivalent to the parameterization given in Eq. (1). The
pivot redshift zp is defined by (Hu 2005):

zp = −Cw0waσ(w0)/(σ(wa) +Cw0waσ(w0)) (3)

where Cw0wa is the correlation between w0 and wa and σ(wi) is
the error on the parameter wi.

It has been shown (Martin & Albrecht 2006) that the (w0,
wa) and (wp, wa) contours are mathematically equivalent. In fact,
wp is directly related to w0 and wa through a linear transforma-
tion: wp = w(zp) = w0 + wazp/(1 + zp). Consequently, any vol-
ume in phase space is conserved. This change of definition is
convenient to determine the mathematical redshift zp where the
function w(z) has the smallest statistical error since parameters
are decorrelated (this corresponds to the so-called “sweet-spot”,
see e.g. Huterer & Turner 2001). Note that zp has been shown
to be analysis dependent and has then no real physical meaning
(Linder 2006b; Martin & Albrecht 2006). Note also that the er-
ror on wp is equivalent to the one obtained on w when we fix
a constant w (as often done in previous work in the literature)
since wp and wa are decorrelated.

The DETF FoM is defined as [σ(wp)×σ(wa)]−1 (DETF 2006)
and is proportional to the inverse of the area of the error ellipse
enclosing the 95%CL in the w0–wa plane. In the following, we
use this DETF FoM or a ratio of it, where the normalization can
change from case to case. We study and show how this FoM can
compare data models. We then examine how this FoM can help
to discriminate DE models (see also Linder 2006b).

1 “Kosmoshow” is available at http://marwww.in2p3.fr/renoir/
Kosmoshow.html

2 For example, for “stage 2”, we take the initial distribution (N =
2000 SN up to zmax = 1.7) up to zmax = 1, this selects 1171 SN then we
multiply the number of SN in each redshift bin by 2000/1171 to obtain
the desired N = 2000 total number of SN. Then, we get the stage 3(5)
distribution by multiplying by 7.5 the number of SN of the stage 2(4)
distribution.
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Fig. 1. Evolution of zp for the data models with (bullets) and without
(stars) systematic errors.

3.2. Evolution of zp

Figure 1 gives the evolution of zp for the four data models un-
der consideration, with and without systematic errors. zp ranges
from 0.14 to 0.27 and is sensitive to the systematic errors and the
data model. We have also studied the variation of zp when chang-
ing the SN nearby sample, the Ωm prior or the fiducial cosmol-
ogy. We find, for instance, that the statistics of the SN nearby
sample or the Ωm prior have a stronger impact on the zp value
than the variation of zmax. We conclude that zp varies in the range
0 to 0.5 and the variations are neither physical nor intuitive. This
study has confirmed that this parameter is not representative of
any physical characteristic of a survey (or of the DE dynamics)
and should not be used for any comparison.
wp then can be ambiguous as corresponding to different

redshift values for each data model. The contours in a plane
where wp is one of the two variables (e.g. the (wp, wa) or
(Ωm, wp) planes) will be more difficult to interpret and should be
taken with caution when comparing surveys with different char-
acteristics. However, there is no ambiguity with the DETF FoM,
as it corresponds to the area of the error ellipses which is iden-
tical in the planes (wp, wa) and (w0, wa) (DETF 2006). Similarly,
wp can be used to exclude a cosmological constant when com-
pared to −1 (but other observables are maybe more efficient, see
Sect. 4).

3.3. The DETF figure of merit for the SN data models

The DETF FoM for the four data models are shown in Fig. 2.
Stars correspond to calculations with statistical errors only and
bullets when a systematic error of 0.02 is included.

The strong impact of the systematic error term appears very
clearly in Fig. 2. First, we observe a strong reduction of the
FoM value when systematic errors are included. Secondly, we
see different variations of the two cases, when increasing the size
of the survey (N) or the survey depth (zmax).
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Fig. 2. DETF figure of merit with (bullets) and without (stars) system-
atic errors.

With statistical errors only, a large statistical sample yields
a better FoM than a deep survey as can be seen in the stages 3
and 4. The relative improvement of stage 3 to stage 2 is of the
order of 2.0, whereas it is only 1.3 for stage 4 relative to stage 2.
In other words, a stage 3 (wide survey) provides a sensitivity
55% better than a stage 4 (deep survey). This indicates that it is
better to increase N rather than zmax after stage 2.

Concerning the stage 5 data model, there is also a strong
improvement of the FoM. It increases by 30% (100%) compared
to the stage 3 (4) data model.

With systematic errors, the conclusion is reversed and stage 4
has a far better potential than stage 3. We see in Fig. 2 an im-
provement of the order of 56% for stage 4 relative to stage 3.

The relative improvement of stage 3 to stage 2 is now only
of the order of 1.15 compared to 1.75 for stage 4 to stage 2,
showing it is now preferable to increase zmax rather than N after
stage 2.

Concerning stage 5, the improvement relative to stage 4 is
only of 18% which is moderate compared to the technical com-
plexity of such surveys.

For other values of systematic errors, these results are
confirmed:

– with systematic errors higher than δmsyst = 0.02, the differ-
ence between stages 3 and 4 steepens (i.e., the FoM ratio
increases) which reinforces the need for a deep survey;

– stages 3 and 4 are equivalent, if both have some systematic
errors of the order of 0.006. Below this value a wide survey
(stage 3) is better, and above it a deep survey (stage 4) is
preferable;

– if we keep δmsyst = 0.02 for stage 4, then the system-
atic errors of stage 3 should be controlled at a better level
than 0.012 to be more efficient than stage 4;

– using a redshift dependence for the error gives similar con-
clusions, only the various quoted values will slightly change;



840 J.-M. Virey and A. Ealet: Sensitivity and figures of merit for dark energy supernova surveys

– the relative merit of stage 5 compared to stage 4 or stage 3 is
very dependent on the level of systematic errors assumed in
the analysis.

The latest SN data from Riess et al. (2006) can be interpreted as
an improvement of the FoM of the order of 5. Then a stage 2 or
3 survey with a level of systematic δmsyst = 0.05 will not im-
prove the current result and may be considered as useless. Only
an improvement of the systematic level can help. The limitation
of stage 4 and 5 is a systematic error of 8%.

Consequently, the control of the level of systematic errors
is the key parameter to discriminate between future wide and
deep SN surveys. This is understandable since the statistical er-
ror soon will be dominated by these systematic errors. Our con-
clusions are valid to quantify the impact of systematic errors but
give no estimate on the methods needed to derive such a level of
control. A large sample should help in understanding systematic
errors and its size will depend essentially on the SN properties.
In the next section, we perform a more detailed analysis of the
optimisation between N, zmax and the systematic errors.

3.4. Optimization of the survey depth

Linder & Huterer (2003) have emphasized that “the required sur-
vey depth depends on the rigor of our scientific investigation”.
They show that it is mandatory to have z > 1.5 to reduce cosmo-
logical and DE models degeneracies when systematic error are
included to avoid wrong precision and biased results.

In this section, we optimize the depth zmax using the figure of
merit on data models that have a fixed number of SN but a dif-
ferent zmax. We move zmax by steps of size 0.1 equivalent to the
redshift bin size of our SN distribution.

For each adjacent model, we compute the ratio of the FoM
defined for the model at zmax to the one at an adjacent redshift
bin of zmax − 0.1:

R =
FoMzmax

FoMzmax−0.1
=

(σ(wa)σ(wp))zmax−0.1

(σ(wa)σ(wp))zmax
· (4)

In Fig. 3, we plot this ratio for the two statistics N = 2000 and
N = 15 000, with and without systematic errors. If adding a new
redshift bin does not improve the errors, the ratio is close to one.
The gain is defined by the difference to 1.

The four curves of Fig. 3 show the same behaviour and
a large improvement is seen when increasing zmax, up to a plateau
where the gain start to be small. If we take a 5% gain (the hor-
izontal line in Fig. 3) as the minimal improvement we can ac-
cept for an increase of the survey, we can estimate an optimum
for zmax:

– with systematic errors of 0.02 and N = 15 000 (plain curve)
zmax = 1.7 (the vertical line corresponds to zmax = 1.7);

– with systematic errors of 0.02 and N = 2000 (dash-dotted
curve) the change is small and zmax ≈ 1.65;

– with statistical errors only and N = 15 000 (dashed curve)
zmax is strongly reduced at 1.15;

– with statistical errors only and N = 2000 (dotted curve) one
gets zmax ≈ 1.25.

Surprisingly, the statistical case has a relatively small depen-
dence on N. This comes from cancellations in the zmax evolution
of the wa and wp constraints, which exhibits strong variations
with N but in opposite directions.

This can be better understood by plotting directly the FoM
(not the ratio). Figure 4 shows that the FoM increases with zmax
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Fig. 4. The DETF figure of merit (unnormalized) as a function of zmax

with the same labels as Fig. 3.

and also with N. With systematic errors, the FoM is not strongly
dependent on N whereas with statistical errors only, the varia-
tions due to N are stronger than the ones due to zmax. For exam-
ple, one has the same FoM (90) for N = 2000 with zmax = 1.7
and for N = 15 000 with zmax = 0.7.
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We deduce from this study:

– when the systematic errors are neglected, N is the fundamen-
tal parameter and zmax around 1 is sufficient to derive strong
constraints on the dark energy equation of state;

– if systematic errors are of the order of δmsyst = 0.02,
a SN sample at z > 1 is mandatory to increase the con-
straints that can be reached from the ground (e.g. stages 2
and 3) whatever the statistical size;

– beyond z > 1.7, the improvement is marginal (less than 5%
by redshift bin of size 0.1). This result is weakly dependent
on N but dependent on δmsyst;

– a survey with a higher level of systematic errors requires
a higher zmax and has a reduced dependency on N;

– if we introduce systematic errors with a redshift dependency
(a correlation between bins), the conclusion is identical to
the constant case and the optimal zmax depend on the larger
systematic error value.

Thus, we see that for any realistic surveys, it will be more im-
portant to have a coverage beyond z = 1 to be able to control
the precision than to increase the statistics. This is an important
driver for any future SN survey.

4. Comparing dark energy models

We want to address not only the statistical sensitivity of the
SN surveys but also their capability to separate Dark Energy
models. More precisely, we would like to know if a particu-
lar DE model is in agreement with the standard ΛCDM model.
Then we need to test the compatibility of the two models. The
DETF FoM is only one number and does not allow us to answer
this question. For example, Linder has shown (Linder 2006b)
that the key discriminant for thawing (freezing) models (see
Caldwell & Linder 2005, for model definitions) is the long
(short) axis of the (w0, wa) ellipse.

Consequently, contour plots should provide more informa-
tion than the DETF FoM and/or the pivot point to interpret data.
We have looked in more detail at the different information to
estimate the most useful FoM when we compare DE models.

The information is contained in the following FoM: σ(w0),
σ(wa),σ(wp),σ(w0)×σ(wa),σ(wp)×σ(wa), the two-dimensional
(w0, wa) contours and the redshift function w(z) with its error
shape σ(w(z)). We do not consider contours with wp since they
are mathematically equivalent to the contours with w0 instead
(Martin & Albrecht 2006), and multiple wp contours are difficult
to interpret (see Sect. 3.2).

The study of the variations of the different errors, as we have
done in the previous section for the DETF FoM, is particularly
interesting in comparing data models. The individual variations
of w0, wa and wp do not provide any supplementary information
to that given by the DETF FoM. The behaviours of σ(w0), σ(wa)
and the DETF FoM are very similar. Only σ(wp) behaves very
differently as it has a very weak dependence on data models,
in particular it has almost no dependence on zmax (see Fig. 3 of
Linder & Huterer 2003).

To compare DE models, in addition to the errors we also
need the central values of the cosmological parameters. We focus
now on two different FoM: contour plots in the (w0, wa) plane
and some representation of w(z) with error shape variations with
the redshift.

Figure 5 gives the 95% CL contours in the (w0, wa) plane for
the four data models with systematic errors. We see two sets of
contours, the larger ones with the data models with zmax < 1 and

Fig. 5. 95% CL contours in the (w0, wa) plane for the four data models
with systematic errors. The labels of the DE models are given on the
plot (with a small shift of model D for clarity). Stage number for the
data models are given on each contour.

Table 1. Definition and properties of the DE models taken for illustra-
tion. The “parameters” (“z-region”) column gives the cosmological pa-
rameters (the redshift region) which are the most efficient to distinguish
the DE model from a cosmological constant.

DE model w0 wa Parameters z-region
A −0.82 −0.2 wp zp

B −1.27 1.15 w0, wa low-z & high-z
C −0.85 −1 wa high-z
D −0.75 −0.95 w0 low-z

the smaller ones with zmax > 1, a result already obtained from
the DETF FoM. (Adding in this figure the curves corresponding
to the pure statistical cases for the four data models allows us to
recover the results of Sect. 3.3, however the resulting figure is
not easily readable.)

The advantage of the (w0, wa) contour representation is the
possibility to “directly” define some classes of DE models in
this plane. Several recent works have been devoted to this sub-
ject (Barger et al. 2006; Linder 2006a; see also Caldwell &
Linder 2005; Scherrer 2006; Chiba 2006, for DE model trajec-
tories/locations in the (w, w′ = dw/dln a) plane). Consequently,
in Fig. 5 we can represent the different classes of models and
study their compatibility with ΛCDM in each data model. In
this way, Linder has shown (Linder 2006b) that to increase the
constraints on “thawing” (“freezing”) models we need to reduce
the long (short) axis of the ellipse. However, to optimize such
constraints we need to know which parameters control the long
and short axis (and their directions) of the contour. To under-
stand what is important in a survey to improve the discrimination
among DE models, we introduce four phenomenological models
defined by their (w0, wa) pair of values (see Table 1) and which
are at the boundary of the 95% CL of the stage 4 data model. We
study the variation of the constraints for these DE models for the
four data models.

Model A is close to the border of the thawing region and,
from Fig. 5, we see it will be difficult to exclude this model even
at stage 5. On the other hand, the exclusion of models B, C and D
is improved with better surveys.

It appears that the sensitivity to the data models is higher
along the larger axis. Consequently, the optimization of future
SN surveys are able to reduce the degeneracy among w0 and wa
which is represented by a reduction of the long axis, whereas it
has almost no impact on the short axis. This conclusion should
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Fig. 6. Reconstructed w(z) and the associated errors for the four data
models with systematic errors. The errors correspond in increasing or-
der to stage 5, 4, 3 and 2. The dotted curves give the equation of state
for the models A–D and are labelled on the plot.

be tempered. Indeed, if all the ellipses for the data models meet
in two points (model A being one of them) this is mainly due to
two assumptions: we have taken the same SN distributions (in-
cluding the same nearby sample) and the same systematic errors
(δmsyst = 0.02). An important effect of these assumptions con-
cerns the orientation of the ellipses but realistic survey charac-
teristics allow only small rotations of the contours. The strongest
effect, as mentioned in the previous section, comes from the as-
sumed level of systematic errors which is the fundamental limi-
tation of the size of the constraints. Then to go beyond, a better
understanding of the systematic errors is mandatory.

It is possible to represent the result in a different way which
can be easier for theoreticians. The error on w(z), within the
Fisher matrix approximation, is given by:

σ2(w(z)) = σ2(w0) + σ2(wa)
z2

(1 + z)2

+2Cw0waσ(w0)σ(wa)
z

(1 + z)
· (5)

Figure 6 represents the equation of state w(z) for the different
DE models with the error shapes obtained for the various data
models.

In this figure, we represent the expected error at 2σ of
each survey for a ΛCDM fiducial model compared with the
true w(z) of each DE models (A–D). This representation is com-
plete and explicitly gives the z dependence of the constraints.
The four DE models are described with the same parameteriza-
tion and show behaviours outside the 2σ limit of the error shape
of the ΛCDM model for stages 4 and 5. They are excluded for
different reasons:

– model A is excluded by the best constraints at the pivot red-
shift, i.e., the best observable to exclude A is wp;

– model B is excluded by the low z and high z constraints;
– model C is excluded by the high z (i.e., wa) behaviour;
– model D is excluded by the low z (i.e., w0) behaviour.

The w(z) vs. z representation has the advantage to visualise the
existence of the sweet-spot at the pivot point and its impact on
the result. Anyway, it shows also that it is not possible to use wp
only. For example, model A is excluded by the wp constraints
at z = zp and not thanks to the SN discovered at this redshift.
This is an example of the difficulty of using this information
as physical. Then, even if this representation is convenient its
should be taken with some caution. The error shapes given by
Eq. (4) are strongly parameterization dependent. Consequently,
some bias may be present if the chosen parameterization (w(z) =
w0+waz/(1+z) in this study) is far from reality. In addition, there
are strong correlations among the cosmological parameters and
among the redshift bins, and the error shapes of w(z) may have
some artefacts if not used in a realistic redshift range (i.e., the
range probed by data).

Nevertheless, beside the above difficulties this representa-
tion may be useful for consistency checks. This representation is
also sensitive to the systematic errors and whatever the param-
eterization is, one can express the constraints and make some
data model comparisons. We emphasize that it is also possible
to provide some results in this plane that are independent of any
choice of parameterization to describe the DE dynamics, like the
so-called “kinematical” approach (see e.g. Daly & Djorgovski
2003, 2004). This kind of analysis has also some problems of
interpretation: errors are in general difficult to estimate and more
noisy, and it does not avoid the correlation in redshift bins of the
results. However, these various approaches are complementary
and may be confronted in this plane.

Thus, excluding particular DE models from a cosmologi-
cal constant, require the use of the (w0, wa) plane and/or of the
w(z) vs. z representation. This is far better than simply comparing
wp with −1. In order to obtain more subtle details, like the con-
nection to a particular class of DE models or the z dependence
of the constraints, both representations are useful. For instance,
the expression of the redshift dependence has some advantages
in breaking the degeneracy line present in the (w0, wa) plane.
Models along this line may be discriminated from a cosmolog-
ical constant by the measurement of the low and high redshift
behaviour of the equation of state, as encoded in the w0 and
wa parameters. But DE models that are orthogonal to the degen-
eracy line may be excluded by the constraints at the pivot red-
shift, whose expected precision depends weakly on the SN sur-
vey configuration but more on the control of systematic errors.

The expected interpretation is then very dependent on all the
details of the design of the SN surveys, and in particular very
dependent on the level of systematic errors. This strategy is also
dependent on the chosen parameterization, whose effect should
also be carefully estimated.

5. Conclusions

We have studied, using the DETF figure of merit, the optimisa-
tion and interpretation of future supernova surveys compared to
the forthcoming ground precision.

We find that the DETF figure of merit is a good approach for
testing the optimisation of a survey.

We test this approach by looking at the sensitivity of the sur-
veys in term of the number of SN and on the depth of the sur-
vey with particular attention to the effects of systematic errors.
The DETF figure of merit is very powerful to show the differ-
ence in sensitivities of surveys with large statistics compared to
deep surveys with smaller statistics. We show, for example, that
adding 1 or 2% of systematic errors changes drastically the op-
timisation and push to increase the depth rather than the number
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of objects. This conclusion is very strong when not only sta-
tistical errors are considered, and is not dependant on the kind
of systematic errors we can consider (e.g. correlated in redshift
or not).

More precisely, for 2% of uncorrelated systematic errors, we
show that there will be no extra information for the cosmology
with more than 2000 SN and that the gain will mainly come from
an increase of the depth of the survey up to a redshift of 1.7.

The drawback of the DETF method is the lack of information
to estimate the discriminating power among DE models, as the
central values of the parameters are not used.

Contour plots in the (w0, wa) plane give a better understand-
ing and a good discrimination since classes of DE models can
be placed in this plane. Comparing data models we find that
some degeneracies among cosmological models remain even for
the most ambitious project. Complementary information is con-
tained in a representation of w(z) with its error shape. This al-
lows us to understand the compatibility of the model with the
different observables, and in particular, to represent the redshift
dependence of the error. However, the results remain in general
parameterization dependent and the interpretation is challeng-
ing. This redshift plane may be useful for consistency checks
and data model compatibility and comparison.

A solution to improve the sensitivity of the SN analysis is to
combine SN data with other probe information. This is certainly
powerful as emphasized by the DETF but this should be manip-
ulated with some caution as systematic errors will dominate the
future analyses and will introduce even stronger bias in a combi-
nation. The best test will be to check the compatibility between
probes when dominated by systematic errors, in a coherent way
(same theoretical assumptions, same framework, same treatment
of systematic errors). Combination of probes two by two will

then help to control systematic effects. This will be also a good
cross check of the internal hypothesis and a control of results.
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