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ABSTRACT

Context. Change of sign of the LNRF-velocity gradient has been found for accretion discs orbiting rapidly rotating Kerr black holes
with spin a > 0.9953 for Keplerian discs and a > 0.99979 for marginally stable thick discs. Such a “humpy” LNRF-velocity profiles
occur just above the marginally stable circular geodesic of the black hole spacetimes.
Aims. Aschenbach (2004) has identified the maximal rate of change of the orbital velocity within the “humpy” profile with a locally
defined critical frequency of disc oscillations, but it has been done in a coordinate-dependent form that should be corrected.
Methods. We define the critical “humpy” frequency νh in general relativistic, coordinate independent form, and relate the frequency
defined in the LNRF to the distant observers. At radius of its definition, the resulting “humpy” frequency νh is compared to the radial
νr and vertical νv epicyclic frequencies and the orbital frequency of the discs. We focus our attention to Keplerian thin discs and
perfect-fluid slender tori where the approximation of oscillations with epicyclic frequencies is acceptable.
Results. In the case of Keplerian discs, we show that the epicyclic resonance radii r3:1 and r4:1 (with νv:νr = 3:1, 4:1) are located in
vicinity of the “humpy” radius rh where efficient triggering of oscillations with frequencies ∼νh could be expected. Asymptotically
(for 1 − a < 10−4) the ratio of the epicyclic and Keplerian frequencies and the humpy frequency is nearly constant, i.e., almost in-
dependent of a, being for the radial epicyclic frequency νr:νh ∼ 3:2. In the case of thick discs, the situation is more complex due to
dependence on distribution of the specific angular momentum � determining the disc properties. For � = const. tori and 1 − a < 10−6

the frequency ratios of the humpy frequency and the orbital and epicyclic frequencies are again nearly constant and independent of
both a and � being for the radial epicyclic frequency νr:νh close to 4. In the limiting case of very slender tori (� ∼ �ms) the epicyclic
resonance radius r4:1 ∼ rh for all the relevant interval of 1 − a < 2 × 10−4.
Conclusions. The hypothetical “humpy” oscillations could be related to the QPO resonant phenomena between the epicyclic oscilla-
tions in both the thin discs and marginally stable tori giving interesting predictions that have to be compared with QPO observations
in nearly extreme Kerr black hole candidate systems. Generally, more than two observable oscillations are predicted.
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1. Introduction

High frequency (kHz) twin peak quasi-periodic oscillations
(QPOs) with frequency ratios 3:2 (and sometimes 3:1) are ob-
served in microquasars (see, e.g., van der Klis 2000; McClintock
& Remillard 2004; Remillard 2005). In the Galactic Center black
hole Sgr A*, Genzel et al. (2003) measured a clear periodic-
ity of 1020 s in variability during a flaring event. This period is
in the range of Keplerian orbital periods at a few gravitational
radii from a black hole with mass M ∼ 3.6 × 106 M� esti-
mated for Sgr A* (Ghez 2004). More recently Aschenbach et al.
(2004); Aschenbach (2004, 2006) reported three QPO periodic-
ities at 692 s, 1130 s and 2178 s that correspond to frequency
ratios (1/692):(1/1130):(1/2178) ∼ 3:2:1. However, these ob-
servational data are not quite convincing, see, e.g. Abramowicz
et al. (2004). In some galactic binary black hole and neutron-
star systems, the high-frequency QPOs at νhigh are accompanied
with low-frequency QPOs at νlow. The high-frequency and low-
frequency QPOs are correlated and the ratio of the frequencies
is observed to be νhigh:νlow ∼ 13:1. It was first noticed by Psaltis
et al. (1999) that the correlation between high-frequencies and

low-frequencies exists for black-hole and neutron-star sources,
later Mauche (2002) and Warner et al. (2003) extended this cor-
relation to cataclysmic variables and showed that it is obeyed
by high-frequency quasi-coherent “dwarf nova oscillations” and
the low-frequency “horizontal branch” oscillations. At present,
there is no exact model explaining the ratio 13:1, only a qual-
itative proposal exists, based on analogy with the 9-th wave
from oceanography (Abramowicz et al. 2004). In this concept,
the high-frequency QPOs are connected to transient oscillatory
phenomena at random locations in the accretion disc and are
subject to the side band instability similar to those considered
in oceanography (Benjamin & Feir 1967). If a wave pulse con-
tains initially waves of identical length and frequency νhigh, non-
linearities can cause the waves with larger amplitude to move
faster changing their wavelength. The shorter (longer) waves
in front of (behind) the pulse cause energy to concentrate at
the center of the pulse feeding thus the instability, the result of
which is that every nth wave has a higher amplitude creating
low-frequency oscillations with frequency νlow ∼ νhigh/n. The
value of n depends on details of the hydrodynamic models and it
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Fig. 1. Profiles of the equatorial orbital velocity related to LNRF in terms of the radial Boyer-Lindquist coordinate for appropriately chosen values
of the black-hole spin a in the case of Keplerian discs (upper plots) and limiting marginally stable thick discs with � = �ms = const. specific angular
momentum distribution (lower plots). The resonant orbits r3:1 and r4:1 of the epicyclic frequencies νv:νr together with the marginally stable (dashed
line) and marginally bound (dashed-dotted line) orbits are also given.

is not fully understood in both oceanography (where n ∼ 9) and
discography (where n ∼ 12–14; Abramowicz et al. 2004).

It was proposed by Kluźniak & Abramowicz (2001) that the
high frequency twin peak QPOs are related to the parametric or
forced resonance in accretion discs (Landau & Lifshitz 1973),
possibly between the radial and vertical epicyclic oscillations
(Aliev & Galtsov 1981; Nowak & Lehr 1998) or the orbital and
one of the epicyclic oscillations. These oscillations could be re-
lated to both the thin Keplerian discs (Abramowicz et al. 2003;
Kato 2001) or the thick, toroidal accretion discs (Rezzolla et al.
2003; Kluźniak et al. 2004a). In particular, the observations of
high frequency twin peak QPOs with the 3:2 frequency ratio in
microquasars can be explained by the parametric resonance be-
tween the radial and vertical epicyclic oscillations, νv:νr ∼ 3:2.
This hypothesis, under the assumption of geodesic oscillations
(i.e., for thin discs), puts strong limit on the mass–spin relation
for the central black hole in microquasars (Török et al. 2005;
Török 2005; Török et al. 2006).

Aschenbach (2004, 2006) discovered that two changes of
sign of the radial gradient of the Keplerian orbital velocity as
measured in the locally non-rotating frame (LNRF) (Bardeen
et al. 1972) occur in the equatorial plane of Kerr black holes with
a > 0.9953. Stuchlík et al. (2005) have found that the gradient
sign change in the LNRF-velocity profiles occurs also for non-
geodesic motion with uniform distribution of the specific angular
momentum �(r, θ) = const. (i.e., in marginally stable thick discs)
around extremely rapid Kerr black holes with a > 0.999791.

1 Note that the assumption of uniform distribution of the specific an-
gular momentum can be relevant at least at the inner parts of the thick
disc and that matter in the disc follows nearly geodesic circular orbits
nearby the center of the disc and in the vicinity of its inner edge deter-
mined by the cusp of its critical equipotential surface (see, Abramowicz
et al. 1978).

The global character of the phenomenon is given in terms of
topology changes of the von Zeipel surfaces (equivalent to
equivelocity surfaces in the tori with �(r, θ) = const.). Toroidal
von Zeipel surfaces exist around the circle corresponding to the
minimum of the equatorial LNRF-velocity profile, indicating
possibility of development of some instabilities in that part of
the marginally stable disc with positive gradient of the orbital
velocity in LNRF (Stuchlík et al. 2004, 2005).

Therefore, we consider the positive radial gradient of or-
bital LNRF-velocity around black holes with a > 0.9953, see
Fig. 1, to be a physically interesting phenomenon, even if a direct
mechanism relating this phenomenon to triggering the oscilla-
tions, and subsequent linking of the oscillations to the excitation
of radial (and vertical) epicyclic oscillations, is unknown. We
present a basic study of the “humpy” oscillatory frequency and
its relation to the epicyclic and Keplerian (orbital) frequencies.
It should be stressed that recently at least two QPOs sources are
observed, in which the rotational parameter (spin) of the central
black hole is estimated nearly extreme, i.e., a > 0.99. Such black
holes are probably observed in Sgr A* (Aschenbach 2006) and
in GRS 1915+105 (McClintock et al. 2006). We plan to make
a detailed analysis of the observed frequencies and their possi-
ble relation to the LNRF-velocity hump induced frequency and
related epicyclic frequencies in the future work.

Aschenbach (2004, 2006), considering phenomena observed
in Sgr A*, has shown that in the field of the Kerr black hole
with a � 0.99616, the orbit where the critical frequency sub-
jected to the hump of the LNRF-velocity profile in such a way
that the positive rate of change of the LNRF-velocity is max-
imal, (νA

crit = ∂V(ϕ)/∂r)max, is located nearby r = r3:1, where
the vertical and radial epicyclic frequencies are in the ratio of
νv:νr = 3:1 and, moreover, the critical frequency νA

crit is nearly
equal to the radial epicyclic frequency there. Undoubtly, this is
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an interesting result. However, the critical frequency introduced
by Aschenbach is related to the rate of change of the locally mea-
sured orbital velocity in terms of the special Boyer-Lindquist
radial coordinate, so the coincidence νA

crit � νr obtained in this
case is rather unrealistic. In this paper we give the critical fre-
quency νR̃crit, related to the maximal positive radial gradient of
the LNRF-velocity in the “humpy” velocity profile, in the gen-
eral relativistic, coordinate-independent form. Further, since the
critical frequency νR̃crit is defined locally, being connected to the
LNRF, it has to be transformed into the form related to distant
stationary observers, giving observationally relevant frequency
νh = ν

R̃∞.
In Sect. 2, we briefly summarize properties of the

Aschenbach effect for Keplerian thin discs, and � = const. thick
discs. In Sect. 3, the critical frequency, connected to the LNRF-
velocity positive gradient in the humpy profiles, is given in the
physically relevant, coordinate independent form for the both
Keplerian and � = const. discs. At the radius of its definition, the
critical frequency is compared to the radial and vertical epicyclic
frequency and the orbital frequency. In Sect. 4, the results are
discussed and concluding remarks are presented.

2. LNRF-velocity profiles of discs orbiting the Kerr
black holes

In the Kerr spacetimes with the rotational parameter assumed
to be a > 0, the relevant metric coefficients in the standard
Boyer-Lindquist coordinates read:

gtt = −∆ − a2 sin2 θ

Σ
, gtϕ = −2ar sin2 θ

Σ
, (1)

gϕϕ =
A sin2 θ

Σ
, grr =

Σ

∆
, gθθ = Σ, (2)

where

∆ = r2 − 2r + a2, Σ = r2 + a2 cos2 θ, (3)

A = (r2 + a2)2 − ∆a2 sin2 θ. (4)

The geometrical units, c = G = 1, together with putting the mass
of the black hole equal to one, M = 1, are used in order to obtain
completely dimensionless formulae hereafter.

The locally non-rotating frames (LNRF) are given by the
tetrad of 1-forms (Bardeen et al. 1972)

e(t) =

(
Σ∆

A

)1/2

dt, e(ϕ) =

(A
Σ

)1/2

sin θ (dϕ − ω dt), (5)

e(r) =

(
Σ

∆

)1/2

dr, e(θ) = Σ1/2dθ, (6)

where

ω = − gtϕ

gϕϕ
=

2ar
A

(7)

is the angular velocity of the LNRF relative to distant observers.
For matter with a 4-velocity Uµ and angular velocity profile
Ω(r, θ) orbiting the Kerr black hole, the azimuthal component
of its 3-velocity in the LNRF reads

V(ϕ) =
Uµe(ϕ)

µ

Uνe(t)
ν

=
A sin θ

Σ
√
∆

(Ω − ω). (8)

2.1. Keplerian thin discs

In thin discs matter follows nearly circular equatorial geodetical
orbits characterized by the Keplerian distributions of the angular
velocity and the specific angular momentum (in the equatorial
plane, θ = π/2)

Ω = ΩK(r; a) ≡ 1
(r3/2 + a)

, (9)

� = �K(r; a) ≡ r2 − 2ar1/2 + a2

r3/2 − 2r1/2 + a
· (10)

The azimuthal component of the Keplerian 3-velocity in the
LNRF reads

V(ϕ)
K (r; a) =

(r2 + a2)2 − a2∆ − 2ar(r3/2 + a)

r2(r3/2 + a)
√
∆

(11)

and formally diverges for r → r+ = 1 +
√

1 − a2, where the
black-hole event horizon is located. Its radial gradient is given by

∂V(ϕ)
K

∂r
= − r5 + a4(3r + 2) − 2a3r1/2(3r + 1)

2∆3/2
√

r(r3/2 + a)2

−2a2r2(2r − 5) − 2ar5/2(5r − 9)

2∆3/2
√

r(r3/2 + a)2
· (12)

As shown by Aschenbach (2004, 2006), the velocity profile has
two changes of the gradient sign (where ∂V(ϕ)

K /∂r = 0) in the
field of rapidly rotating Kerr black holes with a > ac(K) � 0.9953
(see Fig. 1).

2.2. Marginally stable tori

Perfect-fluid stationary and axisymmetric toroidal discs are char-
acterized by the 4-velocity field Uµ = (Ut, 0, 0, Uϕ) with Ut =
Ut(r, θ), Uϕ = Uϕ(r, θ), and by distribution of the specific an-
gular momentum � = −Uϕ/Ut. The angular velocity of orbiting
matter, Ω = Uϕ/Ut, is then related to � by the formula

Ω = − �gtt + gtϕ

�gtϕ + gϕϕ
· (13)

The marginally stable tori are characterized by uniform distribu-
tion of the specific angular momentum

� = �(r, θ) = const., (14)

and are fully determined by the spacetime structure through
equipotential surfaces of the potential W = W(r, θ) defined by
the relations (Abramowicz et al. 1978)

W −Win = ln
Ut

(Ut)in
, (Ut)

2 =
g2

tϕ − gttgϕϕ

gtt�2 + 2gtϕ� + gϕϕ
; (15)

the subscript “in” refers to the inner edge of the disc.
The LNRF orbital velocity of the torus is given by

V(ϕ)
T =

A(∆ − a2 sin2 θ) + 4a2r2 sin2 θ

Σ
√
∆(A − 2a�r) sin θ

�. (16)

For marginally stable tori it is enough to consider the motion in
the equatorial plane, θ = π/2. Formally, this velocity vanishes
for r → ∞ and r → r+, i.e., there must be a change of its radial
gradient for any values of the parameters a and �, contrary to
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the case of Keplerian discs. The radial gradient of the equatorial
LNRF velocity of � = const. tori reads

∂V(ϕ)
T

∂r
=

{
[∆ + (r − 1)r][r(r2 + a2) − 2a(� − a)]

[r(r2 + a2) − 2a(� − a)]2
√
∆

− r(3r2 + a2)∆

[r(r2 + a2) − 2a(� − a)]2
√
∆

}
�, (17)

so it changes its orientation at radii determined for a given � by
the condition

� = �ex(r; a) ≡ a +
r2[(r2 + a2)(r − 1) − 2r∆]

2a[∆ + r(r − 1)]
· (18)

Of course, for both thick tori and Keplerian discs we must con-
sider the limit on the disc extension given by the innermost stable
orbit. For Keplerian discs this is the marginally stable geodetical
orbit, rin ≈ rms, while for thick tori this is an unstable circular
geodesic kept stable by pressure gradients and located between
the marginally bound and the marginally stable geodetical orbits,
rmb � rin � rms, with the radius being determined by the specific
angular momentum � = const. ∈ (lms, lmb) through the equation
� = �K(r; a); �ms (�mb) denotes specific angular momentum of
the circular marginally stable (marginally bound) geodesic.

Detailed discussion of Stuchlík et al. (2005) shows that
two physically relevant changes of sign of ∂V(ϕ)

T /∂r in the
tori occur for Kerr black holes with the rotational parameter
a > ac(T) � 0.99979 (see Fig. 1). The interval of relevant val-
ues of the specific angular momentum � ∈ (�ms(a), �ex(max)(a)),
where �ex(max)(a) corresponds to the local maximum of the func-
tion (18), grows with a growing up to the critical value of
ac(mb) � 0.99998. For a > ac(mb), the interval of relevant values
of � ∈ (�ms(a), �mb(a)) is narrowing with the rotational parameter
growing up to a = 1, which corresponds to a singular case where
�ms(a = 1) = �mb(a = 1) = 2. Notice that the situation becomes
to be singular only in terms of the specific angular momentum;
it is shown (see Bardeen et al. 1972) that for a = 1 both the
total energy E and the axial angular momentum L differ at rms
and rmb, respectively, but their combination, � ≡ L/E, giving the
specific angular momentum, coincides at these radii.

It should be stressed that in the Kerr spacetimes with a >
ac(T), the “humpy” profile ofV(ϕ)

T (r; a) occurs closely above the
center of relevant toroidal discs, at radii corresponding to stable
circular geodesics of the spacetime, where the radial and vertical
epicyclic frequencies are also well defined.

A physically reasonable way of defining a global quantity
characterizing rotating fluid configurations in terms of the LNRF
orbital velocity is to introduce, so-called, von Zeipel radius de-
fined by the relation

R ≡ �

V(ϕ)
LNRF

= (1 − ω�)�̃, (19)

which generalizes in another way as compared with
(Abramowicz et al. 1995) the Schwarzschildian definition
of the gyration radius �̃ (Abramowicz et al. 1993). Note that,
except for the Schwarzschild case a = 0, the von Zeipel
surfaces, defined as the surfaces of R(r, θ; a, �) = const., do not
coincide with those introduced by Kozlowski et al. (1978) as the
surfaces of constant �/Ω.2

In the case of marginally stable tori the von Zeipel sur-
faces R = const. coincide with the equivelocity surfaces

2 For more details see Stuchlík et al. (2005).
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Fig. 2. Von Zeipel surfaces (meridional sections). For a > ac(T) and
� appropriately chosen, two surfaces with a cusp, or one surface with
both the cusps, together with closed (toroidal) surfaces, exist, being lo-
cated always inside the ergosphere (dashed surface) of a given space-
time. Both the outer cusp and the central ring of closed surfaces are
located inside the toroidal equilibrium configurations corresponding
to marginally stable thick discs (light-gray region; its shape is deter-
mined by the critical self-crossing equipotential surface of the poten-
tial W(r, θ). The cross (+) denotes the center of the torus. Dark re-
gion corresponds to the black hole. Figures illustrating all possible
configurations of the von Zeipel surfaces are presented in Stuchlík
et al. (2005). Here we present the figure plotted for the parameters
a = 0.99998, � = 2.0065. Critical value of the von Zeipel radius cor-
responding to the inner and the outer self-crossing surface is Rc(in) �
3.429 and Rc(out) � 3.804, respectively, the central ring of toroidal sur-
faces corresponds to the value Rcenter � 3.817. Interesting region con-
taining both the cusps and the toroidal surfaces is plotted in detail at
the left lower figure. Right lower figure shows the behaviour of the von
Zeipel radius in the equatorial plane.

V(ϕ)(r, θ; a, �) = V(ϕ)
T = const. Topology of the von Zeipel

surfaces can be directly determined by the behaviour of the von
Zeipel radius in the equatorial plane

R(r, θ = π/2; a, �) =
r(r2 + a2) − 2a(� − a)

r
√
∆

· (20)

The local minima of the function (20) determine loci of the cusps
of the von Zeipel surfaces, while its local maximum (if it ex-
ists) determines a circle around which closed toroidally shaped
von Zeipel surfaces are concentrated (see Fig. 2). Notice that the
minima (maximum) of R(r, θ = π/2; a, �) correspond(s) to the
maxima (minimum) of V(ϕ)

T (r, θ = π/2; a, �), therefore, the in-
ner cusp is always physically irrelevant being located outside of
the toroidal configuration of perfect fluid. Behaviour of the von
Zeipel surfaces nearby the center and the inner edge of the thick
discs orbiting Kerr black holes with a > ac(T) � 0.99979, i.e.,
the existence of the von Zeipel surface with an outer cusp or the
surfaces with toroidal topology, suggests possible generation of
instabilities in both the vertical and radial direction.
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2.3. Velocity profiles with a hump

Behavior of V(ϕ)
T (r; a, �) and V(ϕ)

K (r; a) is illustrated in Fig. 1.
With a growing in the region of a ∈ (ac(T), 1) (a ∈ (ac(K), 1)),
the difference ∆V(ϕ)

T ≡ V(ϕ)
T(max) − V(ϕ)

T(min) (∆V(ϕ)
K ≡ V(ϕ)

K(max) −
V(ϕ)

K(min)) grows (Fig. 3) as well as the difference of radii, ∆rT ≡
rT(max) − rT(min) (∆rK ≡ rK(max) − rK(min)), where the local extrema
ofV(ϕ)

T (V(ϕ)
K ) occur, see Fig. 4.

In terms of the redefined rotational parameter (1 − a), the
“humpy” profile of the LNRF orbital velocity of marginally sta-
ble thick discs occurs for discs orbiting Kerr black holes with
(1 − a) < 1 − ac(T) � 2.1 × 10−4, which is more than one order
lower than the value 1−ac(K) � 4.7×10−3 found by Aschenbach
(2004) for the Keplerian thin discs. Moreover, in the thick discs,
the velocity difference ∆V(ϕ)

T is smaller but comparable with
those in the thin discs (see Fig. 3). In fact, we can see that for
a → 1, the velocity difference in the thick discs ∆V(ϕ)

(T) ≈ 0.02,

while for the Keplerian discs it goes even up to ∆V(ϕ)
(K) ≈ 0.07.

3. Humpy frequency and its relation to epicyclic
frequencies

In Kerr spacetimes, the frequencies of the radial and latitudinal
(vertical) epicyclic oscillations related to an equatorial Keplerian
circular orbit at a given r are determined by the formulae (e.g.,
Aliev & Galtsov 1981; Nowak & Lehr 1998)

ν2r = ν
2
K(1 − 6r−1 + 8ar−3/2 − 3a2r−2), (21)

ν2v ≡ ν2θ = ν2K(1 − 4ar−3/2 + 3a2r−2), (22)

where νK = ΩK/2π. A detailed analysis of properties of
the epicyclic frequencies can be found in Török & Stuchlík
(2005a,b). The epicyclic oscillations with the frequencies νr, νv
can be related to both the thin Keplerian discs (Abramowicz &
Kluźniak 2000; Kato 2005) and thick, toroidal discs (Rezzolla
et al. 2003; Kluźniak et al. 2004b).

Aschenbach (2004, 2006) defined the characteristic (crit-
ical) frequency of any related mechanism possibly exciting
the disc oscillations in the region of positive gradient of its
LNRF-velocityV(ϕ) by the maximum positive slope ofV(ϕ):

νA
crit =

∂V(ϕ)
K

∂r

∣∣∣∣∣∣∣
max

· (23)
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Fig. 4. Positions of local extrema of V(ϕ) (in B-L coordinates) for
Keplerian discs a) and marginally stable discs with � = �ms b) together
with the locations of resonant orbits r3:1 and r4:1 (where the resonance
between the vertical and radial epicyclic oscillations takes place) in de-
pendence on the rotational parameter a of the black hole. Dashed curve
corresponds to the maximum positive values of the LNRF orbital ve-
locity gradient in terms of the proper radial distance where the critical
frequency νR̃crit is defined, boundaries of shaded regions correspond to
orbits where the velocity gradient giving the characteristic frequency,
∂V(ϕ)/∂R̃, reaches a) 99%, 90%, 80% and b) 99%, 95%, 90% of its
maximum.

This frequency has to be determined numerically and we have
done it for both the Keplerian discs and the marginally stable
discs with � = �ms = const., see Fig. 5 and Table 1.

Although there is no detailed idea on the mechanism gen-
erating the “hump-induced” oscillations, it is clear that the
Aschenbach proposal of defining the characteristic frequency
deserves attention. It should be stressed, however, that a detailed
analysis of the instability could reveal a difference between the
characteristic frequency and the actual observable one, as the lat-
ter should be associated with the fastest growing unstable mode3.
Moreover the frequency νA

crit, defined by Eq. (23), represents an
upper limit on the frequencies of the hump-induced oscillations,
as it is given by maximum of the LNRF-velocity gradient in the
humpy part of the velocity profile.

In the following we assume that the characteristic (critical)
frequency is a typical frequency of oscillations induced by the
conjectured “humpy instability”, and that the humpy oscillations
could excite oscillations with the epicyclic frequencies or some
combinational frequencies, if appropriate conditions for a forced

3 We thank to the referee for pointing out this possibility.
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crit defined in terms of the B–L coordinate radius (Aschenbach 2004) and the physically correct (coordinate independent)

critical frequency νR̃crit defined in terms of the proper radial distance, as a function of the rotational parameter a of the black hole.

Table 1. Characteristic frequencies in units of (M/M�)−1 Hz (M/M� is the mass of the Kerr black hole in units of mass of the Sun), corresponding
to critical frequencies νA

crit, ν
A
∞, νR̃crit, ν

R̃
∞ defined in the text, are given for appropriate values of the black-hole spin. Maximal values of the frequencies

related to the stationary observer at infinity are bold-faced. Note that only the frequencies νR̃∞ have physical meaning for direct comparison with
the frequencies of orbital oscillations νorb, νr, νv related to the observers at infinity.

Keplerian discs Fluid tori
1 − a νA

crit νA
∞ νR̃crit νR̃∞ νA

crit νA
∞ νR̃crit νR̃∞

4.5 × 10−3 356 86 121 29
4 × 10−3 1303 303 432 102
3 × 10−3 3617 767 1130 248 undefined
1 × 10−3 12 179 1849 3061 536
5 × 10−4 17 132 2126 3789 592
2 × 10−4 22 982 2203 4352 607 296 34 57 7
1 × 10−4 26 857 2126 4579 603 3160 315 555 61
1 × 10−5 36 593 1565 4816 590 10 940 657 1447 135
1 × 10−6 42 556 1001 4841 588 16 271 589 1718 147
1 × 10−9 49 250 201 4844 588 23 277 185 1807 150

resonance are satisfied in vicinity of the radius where the humpy
oscillations occur.

In situations where the general relativity is crucial, it is nec-
essary to consider ∂V(ϕ)/∂R̃, where R̃ is the physically relevant
(coordinate-independent) proper radial distance, as this is an ap-
propriate way for estimating the characteristic frequencies re-
lated to local physics in the disc. Then correct general relativis-
tic definition of the critical frequency for possible excitation of
oscillations in the disc is given by the relations

νR̃crit =
∂V(ϕ)

∂R̃

∣∣∣∣∣∣
max

, dR̃ =
√
grrdr =

√
Σ

∆
dr, (24)

where V(ϕ) = V(ϕ)
K (r; a) in thin Keplerian discs, and V(ϕ) =

V(ϕ)
T (r; l, a) in marginally stable thick discs. Of course, such a

locally defined frequency, confined naturally to the observers or-
biting the black hole with the LNRF, should be further related
to distant stationary observers by the formula (taken at the B–L
coordinate r corresponding to (∂V(ϕ)/∂R̃)max)

νh = ν
R̃
∞ =

√
−(gtt + 2ωgtϕ + ω2gϕϕ) νR̃crit. (25)

We suggest to call such a coordinate-independent and, in prin-
ciple, observable frequency the “humpy frequency”, as it is re-
lated to the humpy profile of V(ϕ), and denote it νh. Again, the
physically relevant humpy frequency νh = νR̃∞, connected to ob-
servations by distant observers and exactly defined by Eqs. (24)
and (25), represents an upper limit on characteristic frequencies

of oscillations induced by the hump of the LNRF-velocity pro-
file, and the realistic humpy frequencies, as observed by distant
observers, can be expected close to but smaller than νR̃∞. Further,
we denote rh the B-L radius of definition of the humpy oscilla-
tions frequency, where ∂V(ϕ)/∂R̃ = (∂V(ϕ)/∂R̃)max. Of course,
in realistic situations the hump-induced oscillation mechanism
could work at the vicinity of rh, with slightly different frequen-
cies; we should take into account that the shift of the radius,
where the mechanism works, shifts both the locally measured
(LNRF) frequency (Eq. (24)) and the frequency related to dis-
tant observers (Eq. (25)). The zones of radii, where the critical
frequency νR̃crit differs up to 1%, 10% and 20% of its maximal
value (given by (∂V(ϕ)/∂R̃)max) for thin (Keplerian) discs or 1%,
5% and 10% of its maximum for marginally stable discs with
� = �ms, are given in Fig. 4.

An analogical relation to Eq. (25) can be written also for
the Aschenbach critical frequency νAcrit, giving the Aschenbach
frequency related to distant observers νA∞. Because the velocity
gradient related to the proper distance R̃ is suppressed in com-
parison with that related to the Boyer-Lindquist coordinate dis-
tance r, there is νR̃crit < ν

A
crit. The situation is illustrated in Fig. 5.

Moreover, Fig. 6 shows mutual behaviour of the “coordinate”
and “proper” radial gradient ∂V(ϕ)/∂r and ∂V(ϕ)/∂R̃ in the re-
gion between the local minimum and the outer local maximum
of the orbital velocity V(ϕ) of � = �ms = const. discs for an ap-
propriately chosen value of the rotational parameter a. It is inter-
esting to compare the Aschenbach frequencies (defined in terms
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(a) (b)

Fig. 6. Determination of the critical “humpy” frequency. a) Positive parts of the “coordinate” and “proper” radial gradient ∂V(ϕ)/∂r and ∂V(ϕ)/∂R̃
for a given value of the rotational parameter a in the Keplerian disc. b) Proper radial distance of the loci of (∂V(ϕ)/∂R̃)max measured from the
marginally bound orbit for both the Keplerian discs (R̃K

crit) and � = �ms perfect-fluid tori (R̃�ms
crit ). Proper radial distance to the marginally stable orbit

(R̃ms) is also shown.
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Fig. 7. Spin dependence of the ratio of the radial epicyclic frequency
and the “humpy frequency” related to distant observers. The ratio is
given in the radius of definition of the humpy frequency rh. In the in-
terval of 1 − a ∈ (1.7 × 10−3, 10−4), the ratio rapidly falls down, to
the asymptotic value of 3:2 starting at a ∼ 10−4. Then an exact 1/M
scaling holds with frequencies depicted in the figure. Notice that at the
Aschenbach’s value of a � 0.99616, for which the resonant orbit with
νv:νr ∼ 3:1 is close to rh, there is νr/νh ∼ 12, analogous to the ratio of
high and low frequency QPOs.

of the B-L coordinate r) with the critical frequencies defined in
terms of the proper radial distance R̃. Characteristic frequencies
νAcrit, ν

A∞, νR̃crit, ν
R̃∞ are given in Table 1 for some typical values of

the rotational parameter a for both Keplerian discs and limiting
� = const. tori with � = �ms.

The physically and observationally relevant frequency con-
nected to the LNRF-velocity gradient sign change is given by the
frequency νh = νR̃∞ corresponding to the locally “hump-induced”
oscillations taken from the point of view of distant stationary
observers. In order to obtain an intuitive insight into a possi-
ble observational relevance of νh, it is useful to compare it with
the frequencies of the radial and vertical epicyclic oscillations,
νr and νv, and the orbital frequency of the disc, νorb = Ω/2π,
where Ω is given for both thin and thick discs by Eq. (13) and
the appropriate distribution of the specific angular momentum �.
The most interesting and crucial phenomenon is the spin inde-
pendence of the frequency ratios for extremely rapid Kerr black
holes. The results are given in Figs. 7–10. Further we can see
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Fig. 8. Spin dependence of the ratios of the radial (νr) and vertical (νv)
epicyclic frequencies, and the Keplerian frequency (νK) to the thin-
disc humpy frequency related to distant observers (νh). Further the ra-
tio of the epicyclic frequencies is given at the radius of definition of
the humpy frequency. All the frequency ratios are asymptotically (for
1 − a < 10−4) constant. There si νK:νv:νr:νh ∼ 46:11:3:2. Therefore, we
can expect some resonant phenomena on the ratio of νr:νh ∼ 3:2, and
νK:νv ∼ 4 that could be both correlated.

(Figs. 4) that the resonant epicyclic frequencies radii r3:1 and
r4:1 are located within the zone of the hump-induced oscillation
mechanism in both thin discs and marginally stable tori.

We would like to call attention to the fact that in Keplerian
discs the sign changes of the radial gradient of the orbital veloc-
ity in LNRF occur nearby the r = r3:1 orbit (with νv:νr = 3:1),
while in the vicinity of the r = r3:2 orbit (with νv:νr = 3:2),
∂V(ϕ)/∂r < 0 for all values of a for both Keplerian discs and
marginally stable tori with all allowed values of �. The para-
metric resonance, which is the strongest one for the ratio of the
epicyclic frequencies νv:νr = 3:2, can occur at the r = r3:2 or-
bit, while its effect is much smaller at the radius r = r3:1, as
noticed by Abramowicz et al. (2003). Nevertheless, the forced
resonance may take place at the r3:1 orbit. Notice that the forced
resonance at r = r3:1 can generally result in observed QPOs fre-
quencies with 3:2 ratio due to the beat frequencies allowed for
the forced resonance as shown in Abramowicz et al. (2004). But
the forced resonance at r3:1 between the epicyclic frequencies,
induced by the humpy profile of V(ϕ), seems to be irrelevant
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in the case of microquasars, since all observed frequencies lead
to the values of the rotational parameter a < ac(K), as shown
by Török et al. (2005). On the other hand, the LNRF-velocity
hump could induce the forced resonance between another (non-
epicyclic) frequencies as well, and thus being relevant also for
microquasars like the nearly extreme Kerr black hole candidate
GRS 1915+105 (McClintock et al. 2006).

The marginally stable tori have a structure that depends on
the value of the specific angular momentum � ∈ (�ms, �mb). The
oscillations of slender tori (� ≈ �ms) have frequencies equal to
the epicyclic frequencies relevant for test particle motion, but
the frequencies of non-slender tori are different, as shown for
pseudo-Newtonian tori (Šrámková 2005; Blaes et al. 2006) and
expected for tori in the strong gravitational field of Kerr black
holes. Therefore, comparison of the humpy frequencies and the
epicyclic frequencies is relevant for the slender tori only.

The humpy frequency is defined for all a > 0.99979
and all � ∈ (�ms, �mb), see Fig. 9. It is important that in
the field of Kerr black holes with 1 − a < 10−8, there is
νh(a, �) � 150 Hz (M/M�)−1 independently of a and �. Further,
it is shown that physically important case of tori admitting evo-
lution of toroidal von Zeipel surfaces with the critical surface
self-crossing in both the inner and the outer cusps is allowed at
� = �crit, where �crit � �ms only slightly differs from �ms, i.e.,
such tori can be slender, see Fig. 9. The ratios of νr/νh, νv/νh
and νo/νh are given for the tori with � ≈ �ms in Fig. 10. Their
asymptotical values, valid for 1 − a < 10−6, are independent of
both a and �.

4. Concluding remarks

The equality of νAcrit and νr for the Kerr black holes with a �
0.99616, indicating direct relation of the Aschenbach character-
istic frequency and the radial epicyclic frequency (Aschenbach
2004, 2006), is rather only an accidental coincidence, be-
cause νAcrit is defined in a coordinate-dependent way. The phys-

ically relevant frequency νh = νR̃∞ cannot be directly related to
the radial epicyclic frequency in Keplerian discs, as νR̃∞ < νr for
all relevant values of a ∈ (ac(K), 1). Nevertheless, the behaviour
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Fig. 10. Spin dependence of the ratios of the radial (νr) and vertical (νv)
epicyclic frequencies, and the orbital frequency (νo) of the marginally
stable � = �ms disc to the thick-disc humpy frequency related to distant
observers (νh). All the frequency ratios are asymptotically (for 1 − a <
10−6) almost constant.

of the ratio νr/νR̃∞ indicates some interesting consequences (see
Fig. 7).

First, for thin (Keplerian) discs around the Kerr black holes
with a � 0.99616, when the ratio of epicyclic frequencies
νv:νr ∼ 3:1 at the radius of definition of νR̃∞, we find νr:νR̃∞ ∼ (11–
13):1, i.e., in such a situation the frequency induced by the pos-
itive gradient of the LNRF-velocity profile could be related to
the low-frequency oscillations. However, such explanation is re-
stricted to extremely rapidly rotating black holes and, contrary
to the idea of the 13th wave (Abramowicz et al. 2004), cannot
be extended to other black-hole, neutron-star, and white-dwarf
systems. Therefore, this has to be taken as a kind of curiosity
working for a very special class of black-hole systems only.

Second, for thin (Keplerian) discs around the Kerr black
holes with a > 0.9999, there is the ratio of νr:νR̃∞ ∼ 3:2, and
νv:νR̃∞ ∼ 11:2, independently of a. Assuming that the oscillations
at the humpy frequency νh = νR̃∞ could be really directly detected
by distant observers, for such black holes with 1 − a < 10−4

the high-frequency twin peak QPOs with 3:2 ratio could be ex-
plained independently of the standard resonant phenomena, if
we focus on the asymptotic behaviour of νr:νR̃∞ ∼ 3:2. Moreover,
for such extremely rapid Kerr black holes with 1 − a < 10−4,
we could consider triples of frequencies taken in rational ratios
νv:νr:νR̃∞ ∼ 11:3:2, if the epicyclic oscillations are excited by
the LNRF-velocity hump. Such frequency ratios could be ob-
served mainly in disc systems around supermassive black holes
in galactic nuclei that are expected to be extremely fast rotating;
especially Sgr A* should be tested very carefully for this possi-
bility. For Kerr black holes with the spin parameter 1−a > 10−4,
the frequency ratio is different and depends strongly on the spin a
(see Figs. 7 and 8).

Considering also the Keplerian frequency we find the ratio
of νK:νR̃∞ having a local minimum for a � 0.99965 and a nearly
constant value for 1 − a < 10−5, where νK:νR̃∞ ∼ 23. In the
field of Kerr black holes with 1 − a < 10−5, the frequency ra-
tios νK:νv:νr:νR̃∞ ∼ 46:11:3:2 are almost independent of a. Thus
for the extremely rapid Kerr black holes the 1/M scaling of con-
sidered frequencies is quite exact. Note that in such a case there
is νr:νh ∼ 3:2 and the ratio νK:νv is close to the ratio 4:1 at
the radius of definition of the humpy frequency. This indicates
a possibility of “doubled” resonant phenomena with the special
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frequency ratios in Keplerian discs orbiting extremely rapid Kerr
black holes (1 − a < 10−5).

Third, the hump-induced oscillations with frequencies νh �
νR̃∞ could be generated in a zone around rh (νh = νR̃∞ at rh),
where the resonant phenomena between the radial and verti-
cal epicyclic oscillations could enter the game, namely at the
ratios of νv:νr = 3:1 and 4:1. Interesting resonant phenomena
could be then expected when the νr:νh corresponds to the ratio
of small integer numbers. Especially the case of νr:νh ∼ 3:2 in
spacetimes with 1 − a < 10−4 is worth of attention. In general,
observationally relevant should be the resonances represented
by frequency ratios in small integer numbers p:q. As shown in
Landau & Lifshitz (1973), the relevance of resonant phenom-
ena depends on the order of resonance n = max (p, q), and falls
steeply (in powers) with increasing value of n; in fact they argue
that relevant resonant phenomena could be expected for n ≤ 4.
Therefore, the frequency ratios such as 23:1, 11:2, 11:3 appear
to be quite irrelevant in realistic resonance models.

Recall that there is a well known Thorne limit giving the
maximum spin of the Kerr black hole in systems with thin ac-
cretion discs, amax � 0.998, determined by the back-reaction of
photons radiated from the disc and captured by the black hole
(Page & Thorne 1974; Thorne 1974). If the hump-induced os-
cillations and related epicyclic frequencies will be observed in
ratios corresponding to the asymptotic region of a > 0.9999
for Keplerian discs, the Thorne model should be corrected,
e.g., by effect of an occultation of the disc. In the case for
which the Thorne limit turns out to be realistic, the hump-
induced oscillations have to be restricted on the spin interval
a ∈ (0.9953, 0.998). We expect the Thorne limit being relevant
for smooth thin discs, while the overcoming of amax could be
expected in highly turbulent discs with toroidal internal parts.

For thick discs the situation is much more complex, being de-
pendent on both the rotational parameter (spin) a and the specific
angular momentum �. The range of maximal humpy frequencies
for a given spin a is plotted in Fig. 9 and is determined by their
evaluation in limiting values of the specific angular momentum �
relevant for the “humpy” effect in marginally stable thick accre-
tion discs (see the discussion in Sect. 2.2). The minimal value
corresponds to �ms(a) while the maximal value, in dependence
of a, corresponds to �ex(max)(a) (for 0.99979 ≤ a ≤ 0.99998)
or �mb(a) (for 0.99998 ≤ a ≤ 1). Notice that asymptotically
(for 1 − a < 10−8) both νh(ms) and νh(mb) coincide on the line of
150 Hz (M/M�)−1. Clearly, the same is true for the humpy fre-
quencies related to discs with any relevant � ∈ (�ms, �mb). The
spin-dependence of the ratio of the humpy frequency and the
epicyclic and orbital frequencies (taken at the radius of definition
of the humpy frequency) for the case of limiting � = �ms discs is
given in Fig. 10. Again we obtain asymptotically constant (spin-
independent) ratios for black holes with 1 − a < 10−6, where
νr:νh(ms) ∼ 15:4, νv:νr � 4.39, νv:νh(ms) � 16.54, νorb:νr � 25.4,
and νorb:νh � 95.4. It should be stressed that for the holes with
1 − a < 10−6 the same ratios with the humpy frequencies are
obtained for the discs with any � ∈ (�ms, �mb), as �mb → �ms → 2
for a → 1. The asymptotically constant values of the fre-
quency ratios correspond to the rational value only in the case
of νr:νh ∼ 15:4. Of course, we could find some rational ra-
tios for any ones, if 1 − a > 10−6. On the other hand, we di-
rectly see (Fig. 4b) that for the very slender marginally stable
tori (� ≈ �ms) the resonant phenomena on epicyclic frequencies
with νv:νr = 4:1 ratio appear in very close vicinity of the humpy
radius rh, making thus a very special prediction on the QPOs fre-
quencies observed in such hypothetical systems with Kerr black

holes having 1−a < 2×10−4. In the marginally stable slender tori
the resonant phenomena between the radial epicyclic and humpy
oscillations, taking place at the humpy radius rh, and between the
vertical and radial epicyclic oscillations near the humpy radius,
both with the ratio ∼4:1, could be observationally relevant only,
but their relevance is expected to be lower than that of the fre-
quency ratios 3:2 and 3:1 in Keplerian discs.

Finally, it should be stressed that at present no direct mech-
anism triggering the LNRF velocity hump excited oscillations is
known, being a challenge for investigation, since the existence
of the toroidal von Zeipel surfaces (see Figs. 2, 9) brings some
indication of possible triggering of instabilities in both radial and
vertical directions leading to oscillations in accretion discs. The
predictions for the ratio of the humpy and epicyclic or Keplerian
(orbital) frequencies presented here for both thin discs and slen-
der tori have to be compared with observations made in nearly
extreme Kerr black hole systems. In the case of the humpy oscil-
lations excited systems we could observe more than two QPOs
with frequencies in rational ratio. It seems that in the X-ray vari-
able binary system (microquasar) with the nearly extreme Kerr
black hole candidate GRS 1915+105 four oscillations with re-
lated frequencies have been observed, what brings a large field
for testing the predictions of the “LNRF-velocity hump excited
oscillations” model. The tests have to be done in a close con-
nection to both the related resonance model and the results of
the spectral analysis of the X-ray continuum, as observed in
GRS 1915+105 (Remillard 2005; McClintock et al. 2006)4. We
believe that a synergy effect of such studies could lead to deeper
understanding of X-ray binary systems, namely microquasars.
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Kluźniak, W., Abramowicz, M. A., & Lee, W. H. 2004b, in X-Ray Timing 2003:
Rossi and Beyond, ed. P. Kaaret, F. K. Lamb, & J. H. Swank (Melville, NY:
AIP) [arXiv:astro-ph/0402013]

Kozlowski, M., Jaroszynski, M., & Abramowicz, M. A. 1978, A&A, 63, 209
Landau, L. D., & Lifshitz, J. M. 1973, Teoretičeskaja fizika, Vol. I, Mechanika,
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