Erratum

Resonantly damped oscillations of longitudinally stratified coronal loops

M. V. Dymova and M. S. Ruderman

Department of Applied Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

e-mail: M.S.Ruderman@sheffield.ac.uk

Key words. waves – plasmas – magnetohydrodynamics (MHD) – errata, addenda

The following corrections should be introduced in the paper:

1. In Sect. 6.1, the third paragraph up to Eq. (71) has to be: “Now we are in a position to prove the a priori assumption made in Sect. 3 that \(\Lambda_1^2 > 0 \). We will prove that the fundamental mode of the magnetic tube oscillations is non-leaky. When the equilibrium is symmetric with respect to the apex point, i.e. \(\rho_i(-z) = \rho_i(z) \), the first overtone is also non-leaky. Let us consider the fundamental mode of tube oscillations and take \(\omega_r = \omega_{01} \) in Eq. (24). Since \(\omega_{01}^2 \) is an eigenvalue of the Sturm-Liouville problem (12) with the corresponding eigenfunction \(q_{W_1} \) when \(r = r_c \), we can use Eq. (12) to express \(\omega_{01}^2 \) in terms of \(W_1 \).”

2. The quantities \(W_1 \) and \(\omega_{01} \) have to be substituted for \(W_n \) and \(\omega_{0n} \) respectively in Eqs. (71)–(73) and in the text in between these equations.

3. The text starting after Eq. (73) and up to the end of Sect. 6.1 has to be: “In accordance with the general theory of the Sturm-Liouville problem both \(W_1 \) and \(G_1 \) have simple zeros at \(z = \pm L \) and do not have zeros in the interval \((-L, L)\). This implies that the function \(G_1/W_1 \) is regular in \([-L, L]\). Since \(\chi < f_c \), this equation implies that \(\Lambda_1^2 > 0 \), i.e. the fundamental mode is non-leaky.

When the equilibrium is symmetric with respect to the apex point, \(\rho_i(-z) = \rho_i(z) \), \(W_0(z) \) is even for odd \(n \) and the same is true for \(G_n(z) \). This implies that, for the first overtone, the expansion (25) contains only terms with even numbers. Therefore the first overtone is non-leaky if \(\Lambda_2^2 > 0 \). In the same way as in the case of the fundamental mode we obtain Eq. (73) however with \(W_2 \), \(G_2 \) and \(\Lambda_2 \) substituted for \(W_1 \), \(G_1 \) and \(\Lambda_1 \). Function \(W_2(z) \) has a simple zero at \(z = 0 \). Since \(G_2 \) is an odd function, \(G_2(0) = 0 \) and \(G_2/W_2 \) is a regular function in \([-L, L]\). Hence, the obtained equation can be integrated form \(-L\) to \(L \). As a result we obtain Eq. (74) however with \(W_2 \), \(G_2 \) and \(\Lambda_2 \) substituted for \(W_1 \), \(G_1 \) and \(\Lambda_1 \). This equation shows that \(\Lambda_2^2 > 0 \), so that the first overtone is non-leaky.

As for higher overtones as well as the first overtone when the equilibrium is non-symmetric, it seems that they can be leaky even when \(\rho_i > \rho_e \) for any \(z \). However this problem needs further investigation.”

Integrating Eq. (73) from \(-L\) to \(L \) and using integration by parts we obtain

\[
\Lambda_1^2 \int_{-L}^{L} G_1^2 = \left(1 - \frac{\chi}{f_c} \right) \int_{-L}^{L} \left(\frac{dG_1}{dz} \right)^2 dz + \frac{\chi}{f_c} \int_{-L}^{L} W_1 \left(\frac{d}{dz} \left(\frac{G_1}{W_1} \right) \right)^2 dz. \tag{74}
\]