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ABSTRACT

The inflessence model has recently been proposed in an attempt to explain both early inflation and present day accelerated expansion
within a single mechanism. The model has been successfully tested against the Hubble diagram of Type Ia Supernovae, the shift pa-
rameter, and the acoustic peak parameter. As a further mandatory test, we investigate here structure formation in the inflessence model
determining the evolution of matter density contrast δ ≡ δρM/ρM in the linear regime. We compare the growth factor D(a) ≡ δ/a and
the growth index f (z) ≡ dlnδ/dlna to these same quantities for the successful concordance ΛCDM model with a particular emphasis
on the role of the inflessence parameters (γ, zQ). We also evaluate the anisotropy spectrum of the cosmic microwave background
radiation (CMBR) to check whether the inflessence model may be in agreement with the observations. We find that, for large values
of (γ, zQ), structure formation proceeds in a similar way to that in the ΛCDM scenario, and it is also possible to nicely fit the CMBR
spectrum.
Key words. cosmology: theory – large scale structure of Universe – cosmology: observations

1. Introduction

It is now widely accepted that we live in a spatially flat
universe undergoing an accelerated expansion and made of
∼95% dark ingredients about which we know little. On
the one hand, observations of the CMBR anisotropy spec-
trum (see, e.g., de Bernardis et al. 2000; Hanany et al. 2000;
Spergel et al. 2003; and Page 2004 for a review) indicates that
the total energy density attains the critical one so that the uni-
verse is spatially flat. On the other hand, the SNeIa Hubble di-
agram (Riess et al. 2004; Astier et al. 2006) is a clear signature
of the cosmic speed-up of the universe expansion, hence discard-
ing with a great degree of confidence the old standard picture of
a matter-dominated universe. Finally, the matter power spectrum
and the clustering properties of galaxies observed in large galaxy
surveys (Pope et al. 2004; Cole et al. 2005) point towards the ex-
istence of dark matter suggesting that its density parameter ΩM
is of the order of 0.3, far lower than the SCDM value ΩM = 1,
thus stressing the need of a further component to achieve the
critical density. When combined together, this impressive set of
observations motivates the entrance on the scene of a new player
dominating the energy budget and driving the accelerated ex-
pansion. This elusive and mysterious component is referred to
as dark energy.

Although the need for dark energy is clear, its nature
and fundamental properties are completely unknown. The
simplest candidate is the well-known cosmological constant Λ
(Carroll et al. 1992; Sahni & Starobinski 2000), which perfectly
matches a wide range of observations (Tegmark et al. 2003;
Seljak et al. 2005), hence awarding the name of concordance
model to the scenario based on Λ and cold dark matter
(CDM). Despite this impressive success, the ΛCDM model is

plagued by serious theoretical shortcomings, thus motivating
the search for alternative schemes. This has opened the way to
an overwhelming flood of papers proposing different models
for explaining the cosmic speed-up and the CMBR anisotropy
spectrum with proposals ranging from a dynamical Λ originat-
ing from a scalar field (dubbed quintessence) rolling down its
self-interaction potential (see, e.g., Peebles & Rathra 2003 and
Padmanabhan et al. 2003 for comprehensive reviews), to unified
models of dark matter and dark energy such as the Chaplygin gas
(Kamenshchik et al. 2001; Bilić et al. 2002; Bento et al. 2003)
and the Hobbit models (Cardone et al. 2004), to braneworld
inspired scenarios (Dvali et al. 2000; Lue et al. 2004) and higher
order theories of gravity both in the metric (Capozziello 2002;
Capozziello et al. 2003; Nojiri & Odintsov 2003; Carroll et al.
2004; Capozziello et al. 2005) and the Palatini (Vollick 2003;
Meng & Wang 2003; Flanagan 2004; Allemandi et al. 2004;
Capozziello et al. 2004; Amarzguioi et al. 2005) formulations.
Although radically different in their theoretical aspects, all
of these models are equally viable from the observational
point of view, thus indicating that better quality data, higher
redshift probes, or new tests are in order to break some of the
degeneracies among different models.

It is worth noting that both current theoretical schemes and
observational evidences predict that the evolutionary history of
the universe comprises two periods of accelerated expansion,
namely the inflationary epoch and the present day dark energy
dominated phase. In both cases, the expansion is usually inter-
preted as the result of the presence of a negative pressure fluid
dominating the energy budget. It is natural to wonder whether
a single (effective) fluid may indeed be responsable for both
periods of accelerated expansion. At the same time, this fluid
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should be subdominant during the radiation and matter domi-
nated epochs so as not to interfere with baryogenesis and struc-
ture formation. While it is quite difficult to theoretically formu-
late the properties of such a fluid, it is, on the contrary, clear
what its phenomenological features are. Inspired by these con-
siderations, some of us have recently proposed the inflessence
model (Cardone et al. 2005). Based on a suitable Ansatz for the
dependence of the energy density on the scale factor a, the in-
flessence scenario has been shown to be able to fit the SNeIa
Hubble diagram, and also give correct values for the shift R
(Bond et al. 1997; Wang & Mukherejie 2004) and acoustic peak
A (Eisenstein et al. 2005) parameters. While this result gives an
observational motivation for the model, inflessence is also well
founded theoretically, since it can be interpreted both in terms of
scalar field quintessence and as an effective model coming from
fourth order theories of gravity.

Motivated by these observational and theoretical results, we
extend the analysis of the inflessence model here by investigating
structure formation in this scenario. Moreover, we also present
a preliminary analysis of the CMBR anisotropy spectrum. Both
these features are standard observables in cosmology nowadays,
and it is therefore mandatory to check whether the inflessence
model is able to survive these tests.

The structure of the paper is as follows. Section 2 briefly re-
calls the main features of the inflessence model and explains
what the roles played by its characterizing parameters are. In
Sect. 3, the evolution of matter density perturbations is studied
in the linear regime, assuming that the inflessence fluid does not
cluster on the subhorizon scale, which is indeed the case of most
dark energy models. Section 4 is dedicated to a discussion of
how the growth index depends on the inflessence parameters and
the constraints that could possibly be extracted from a precise
determination of this quantity. The CMBR anisotropy spectrum
is evaluated in Sect. 5, while a summary of the results and the
conclusions are presented in Sect. 6.

2. The inflessence model

The key ingredient is the following Ansatz for the inflessence
energy density:

ρ(a) = Na−3
(
1 +

aI

a

)β (
1 +

a
aQ

)γ
(1)

with a normalization constant N , slope parameters (β, γ), and
two scaling values of the scale factor aI � aQ. For later applica-
tions, it is convenient to rewrite Eq. (1) in terms of the redshift
z = 1/a − 1 (having set a0 = 1 with the subscript 0 denoting
henceforth quantities evaluated at the present day, i.e. z = 0):

ρ(z) = N(1 + z)3

(
1 +

1 + z
1 + zI

)β (
1 +

1 + zQ

1 + z

)γ
, (2)

having defined:

zI = 1/aI − 1, (3)

zQ = 1/aQ − 1. (4)

From Eq. (1), it is quite easy to see that the energy density of the
inflessence fluid scales like that of dust matter (ρ ∼ a−3) in the
range aI � a � aQ, so that, given typical values for (aI , aQ),
the fluid follows matter for a large part of the universe his-
tory, while it scales differently only during the very beginning

(a � aI) and the present (a � aQ) periods. Moreover, choosing
β = −3, the fluid energy density remains constant for a � aI ,
thus behaving like the usual cosmological constant Λ during the
early epoch of the universe evolution. Finally, the slope param-
eter γ determines how the fluid energy density scales with a in
the present epoch.

It is still more instructive to look at the equation of state
(EoS) w ≡ p/ρ, where p is the fluid pressure. Using the con-
tinuity equation:

ρ̇ + 3H(ρ + p) = 0, (5)

with the Hubble parameter H = ȧ/a and inserting Eq. (1) into
Eq. (5), after some algebra we get:

w =
β

3

(
1 + z

2 + z + zI

)
− γ

3

(
1 + zQ

2 + z + zQ

)
· (6)

It is worth noting that w does not depend either on γ or on zQ for
high values of z, which is to be expected looking at Eq. (6). On
the contrary, these two parameters play a key role in determining
the behavior of the EoS over the redshift range (0, 100), which
represents most of the history of the universe (in terms of time).

The role of the different quantities (β, γ, zI , zQ) is better un-
derstood considering the asymptotic limits of the EOS. We easily
get:

lim
z→∞w(z) =

β

3
, (7)

which shows that setting β = −3, the fluid EoS approaches that
of the cosmological constant, i.e., wΛ = −1, in the very early
universe. In general, if we impose the constraint β < −1, we get a
fluid having a negative pressure in the far past so that it is able to
drive the accelerated expansion occurring during the inflationary
epoch. It is therefore clear that zI controls the transition towards
the past asymptotic value, in the sense that the larger is z with
respect to zI , the smaller is the difference between w(z) and its
asymptotic limit β/3. This consideration suggests that zI has to
take quite high values (indeed, far greater than 103) since, for
z � zI , the universe is in its inflationary phase.

In the asymptotic future (i.e., z→ −1), we get:

lim
z→−1
w(z) = −γ

3
(8)

so that the slope parameter γ determines the future evolution of
the universe. For instance, for γ = 3, the universe finally ends in
a de Sitter state (as for the concordanceΛCDM model), while a
Big Rip occurs for γ > 3, as in phantom models (Caldwell 2002;
Caldwell et al. 2003).

Let us now consider the present day value of w that turns out
to be:

w0 =
β

3(2 + zI)
− γ

3

(
1 + zQ

2 + zQ

)
� −γ

3

(
1 + zQ

2 + zQ

)
(9)

where, in the second line, we used the fact that zI is very large.
Given that zQ > 0, to have a present day accelerated expan-
sion, w0 should be lower than −1/3 so that we get the constraint
γ > (2 + zQ)/(1 + zQ). Moreover, depending on the values of
γ and zQ, w0 could also be smaller than wΛ so that we may re-
cover phantom-like models. The parameter zQ then regulates the
transition to the dark energy-like dominated period.

In summary, the inflessence fluid with energy density and
EOS given by Eqs. (2) and (6) is able to drive the accelerated
expansion of the universe during both the inflationary epoch and
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the present day period. Therefore, such a fluid plays the role of
both the inflaton and the quintessence scalar field, hence the mo-
tivation for the name inflessence (contracting the words infla-
tionary quintessence).

A general comment is in order here. Although originally pro-
posed as a phenomenological Ansatz for the energy density, the
inflessence model could also be seen as an effective parametriza-
tion of the scale factor during the universe’s expansion, which
translates into the above scaling of ρ(z) given the known be-
havior of the matter and radiation components. This equivalent
representation is particularly interesting during the inflationary
epoch. Indeed, if the inflessence fluid plays the role of the in-
flaton field, one should wonder whether its self-interaction po-
tential is able to give rise to reheating. Discussing this issue is
outside our aims, but we stress that considering the model as a
parametrization of the scale factor rather than the energy density
makes it possible to escape problems with reheating.

It is worth noting that, since ρ scales with a as the dust matter
energy density for a long period of the universe history, the coin-
cidence problem is partially alleviated. Indeed, the dark energy
and the matter components track each other for a long period so
that their near equality today turns out to be a consequence of the
relatively recent change of the scaling of the inflessence energy
density with a. However, there is still a certain degree of fine tun-
ing since the model parameters have to be set in a suitable way
so that the transition from decelerated to accelerated expansion
takes place only recently. Moreover, although w0 < −1 is possi-
ble depending on the values of (γ, zQ), the possibility to avoid the
Big Rip still remains if γ ≤ 3, although such low values seem to
be disfavored by the fitting to the dimensionless coordinate dis-
tance of SNeIa and radiogalaxies.

As a final important remark, let us stress that, although phe-
nomenologically inspired, the inflessence model may also be
theoretically well-founded. Indeed, as shown in Cardone et al.
(2005), one could obtain Eq. (2) as a result of scalar field
quintessence with a self-interacting potential, which can be well
approximated as a simple power law with negative slope. As an
alternative explanation, the inflessence model may also be recov-
ered as the effective fluid like description of a fourth order f (R)
theory in which the Einsteinian gravity Lagrangian f (R) ∝ R
is replaced by a suitably reconstructed f (R). From a different
point of view, this also offers the possibility of considering the
inflessence scenario as an analytical parametrization for study-
ing a wide class of diverse models. As such, investigating the
growth of structures for the inflessence fluid gives indirect con-
straints on these models too. To this end, it is worth stressing that
we are assuming that the inflessence model may be recovered as
a particular case of scalar field quintessence so that the grav-
ity Lagrangian is the standard one, and we can therefore resort
to the usual perturbation theory for our analysis of the growth of
structures. Should we choose the interpretation of the inflessence
model in the framework of f (R) theories, we should adopt a dif-
ferent formalism.

3. Linear growth of fluctuations

The inflessence model has been successfully tested against the
SNeIa Hubble diagram, also taking into account the shift pa-
rameter (which essentially gives the distance to the last scatter-
ing surface) and the baryonic acoustic peak parameter. Although
successfully fitting this dataset is mandatory for any realistic
dark energy model, such a test only probes the dynamics of the
background cosmology. Indeed, dark energy also has impacts on
the evolution of density perturbations.

As is well known, the universe is homogenous and isotropic
only on the largest scales. As a consequence, while one can still
use the standard FRW description when considering the dynam-
ics of the universe on the scales of interest, smaller scale evo-
lution must take into account the inhomogeneities of the space-
time. Using the equations of motion for this perturbed metric,
one can derive the growth of density perturbations. Moreover, it
is possible to demonstrate that, because of its high sound speed,
dark energy only clusters on scales that are far larger than those
of galaxies and galaxy clusters. As a consequence, dark energy
affects the structure formation process only because of its back-
ground energy density, which concurs to determine the expan-
sion rate. This is indeed also the case for the inflessence model
we are considering here, so that we may resort to the standard
theory to investigate the growth rate of matter perturbations in
the linear regime.

Denoting the matter density contrast with δ ≡ δρM/ρM, the
perturbation equation reads:

δ̈ + 2Hδ̇ − 4πGρMδ = 0. (10)

It is convenient to change the variable from t to the scale factor
a so that Eq. (10) may finally be rewritten as:

δ′′ +
[
3
a
+

(ln E2)′

2

]
δ′ − 3ΩM

2E2a5
δ = 0, (11)

where the prime denotes the derivation with respect to the scale
factor a and we have used 4πGρM = (3/2)ΩMH2

0a−3 and de-
fined E2 = H2/H2

0. To study the evolution of perturbations in
the inflessence scenario, we have only to insert into Eq. (11) the
corresponding expression for E2, which reads:

E2(a) = H2(a)/H2
0 = Ωra

−4 + ΩMa−3 + ΩXg(a), (12)

where Ωr, ΩM, and ΩX are the present day values of the
density parameters for radiation, dust matter, and inflessence,
respectively, and:

g(a) = a−3

(
1 + aI/a
1 + aI

)β (1 + a/aQ

1 + 1/aQ

)γ
. (13)

Note that, consistent with the position of the first peak in the
CMBR anisotropy spectrum, we have assumed a spatially flat
universe so that Ωr + ΩM + ΩX = 1, although some slight devi-
ations from spatial flatness are still allowed by the data when a
time-varying dark energy equation of state is used.

Since for a matter-only universe δ ∝ a, it is useful for study-
ing the effect of dark energy to divide this behavior out and
switch to the growth variable D ≡ δ/a. Starting from Eq. (11), it
is quite easy to determine the equation governing the evolution
of this latter quantity1:

D′′ +
[
5
a
+

(ln E2)′

2

]
D′

+

[
3
a

(
1 − ΩM

2E2a3

)
+

(ln E2)′

2

]
D
a
= 0. (14)

Equation (14) may be solved analytically only in very special
cases (see, e.g., Percival 2005 and references therein), while,
for our model (and indeed for most of dark energy models),
we have to resort to numerical integration using the bound-
ary conditions Ḋ = 0 and D = 1 as a → 0. Actually, it

1 Actually, one may also use ln a instead of a as expansion variable.
See Linder (2005) for different equivalent equations to determine D(a).
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Fig. 1. ∆D vs. a for models with γ from 3.5 to 8.5 (in steps of 1) from
the top left to the bottom right panel, and zQ from 1.0 to 5.0 (in steps
of 1) from the uppermost to the lowermost curve. The other parameters
are set as explained in the text.

is not necessary to integrate from a = 0, but one may set
a = aLS = (1 + zLS)−1 as the initial condition, zLS being
the redshift of the last scattering surface that we compute us-
ing the approximated relation in Hu & Sugyiama (1996). To
this end, we set ωb = Ωbh2 = 0.0214 in accordance with
the nucleosynthesis constraints (Kirkman et al. 2003) and h =
0.664 consistent with the Hubble diagram of low redshift SNeIa
(Daly & Djorgovki 2004).

Rather than looking at D(a) directly, it is more interesting to
consider the quantity ∆D ≡ 1−D/DΛ, which represents the per-
centage deviation of the growth factor for the inflessence model
with respect to that for the concordance ΛCDM one. Figure 1
shows ∆D (multiplied by 100 for sake of clarity) as a function
of the scale factor a for different combinations of the inflessence
parameters (γ, zQ), having set (ΩM,Ωr) = (0.28, 9.89×10−5) (for
both the inflessence and the ΛCDM model) and fixed (β, zI) to
their fiducial values (−3, 3454) (Cardone et al. 2005). Note that
these latter parameters play a negligible role in our analysis since
they mainly affect the evolution of the fluid in the very early in-
flationary epoch. It is worth stressing that setting zI = 3454 does
not at all mean that we are assuming that inflation took place for
z near this value. On the contrary, as could be easily checked,
the universe undergoes inflation only for z � zI so that the ex-
act value of this latter parameter does not set the end of any
inflationary period, which could lead to possible problems with
nucleosynthesis.

Not surprisingly, the evolution of the growth factor highly
depends on the values of the parameters (γ, zQ), and both nega-
tive and positive deviations from the growth factor in theΛCDM
model may be obtained. Nevertheless, some general results may
be inferred. First, we note that, although deviations as large as
20% may be obtained, for most of the parameter space (γ, zQ)
the growth factor of the inflessence model is comfortably simi-
lar to the ΛCDM one over the range 0.5 ≤ a ≤ 1, i.e., 0 ≤ z ≤ 2,
where structure formation mainly occurs. Although detailed nu-
merical simulations should be performed, this preliminary result
makes us confident that the assembly of galaxies and clusters of
galaxies should have taken place in a way that is quite similar to
the one in the ΛCDM model.
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Fig. 2. Level contours for ∆D in the plane (γ, zQ) at z = 0 (top left),
0.15 (top right), 0.35 (bottom left), and 1.0 (bottom right). Contours
are plotted for ∆D = (±0.5%,±1%,±5%) with short-dashed, solid and
long-dashed lines, respectively. Note that, for z = 1.0, the deviations are
so small that the contour line at ∆D = 5% lies outside the plot.

Figure 1 also shows that, for a fixed a, the behavior of ∆D
with zQ depends on what the value of γ is. For instance, a bet-
ter agreement with the ΛCDM model prediction is achieved for
higher zQ if γ ≤ 4.5, while the opposite is true for γ ≥ 7.5.
Actually, ∆D turns out to depend only weakly on zQ for γ > 4.5
so that it is this latter parameter that mainly determines the be-
havior of the growth factor D with a in such a regime. To better
investigate how ∆D depends on (γ, zQ), it is therefore interesting
to look at the contours of equal∆D in the (γ, zQ) plane, which are
plotted in Fig. 2 for some representative values of the redshift z.
Consider, for instance, the results for z = 0.15 (top right panel
in Fig. 2). To have |∆D| ≤ 5%, larger values of zQ are markedly
preferred only if coupled with low values of γ, while zQ ∼ 3 is
allowed, provided that γ stays in the range (3.7, 4.7). As a gen-
eral rule, the lower the value of zQ is, the γ higher must be to
still have |∆D| ≤ 5%. With this caveat in mind, we note, how-
ever, that, unless one chooses zQ > 5 (which is rejected by the
SNeIa fit), γ ≤ 3 is disfavored by the requirement that the evo-
lution of density perturbations in the inflessence model mimicks
that in the ΛCDM one within 5% over the range 0 ≤ z ≤ 1. In
particular, remembering Eq. (8), we argue that models in which
the universe ends with a Big Rip are preferred.

It is interesting to note that fitting the SNeIa Hubble di-
agram with priors on the shift and acoustic peak parameters
gives 3.17 ≤ γ ≤ 5.86 and zQ ≤ 5.3 at the 95% confi-
dence level (Cardone et al. 2005). Although the best fit values
(γ, zQ) = (3.73, 0.1) are likely to be excluded because of the
large values of ∆D, it is nevertheless possible to find values of
(γ, zQ) that make it possible both to fit the kinematic data and
give rise to an evolution of the structure as similar as possible to
that in the concordance ΛCDM model.

It is worth noting that the above results could be qualitatively
explained considering the properties of the inflessence fluid. As
explained in the previous section, the energy density tracks that
of matter (i.e., ρ ∝ a−3) for zQ � z � zI , while, for z � zQ,
ρ ∝ (1 + z)3−γ. A large value of zQ means that the tracking of
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Fig. 3. Same as Fig. 1, but now D is normalized to DΛ at the present
day and the curves in each panel refer to zQ from 1.0 to 5.0, from the
lowermost to the uppermost.

matter is achieved only at high redshift when the dark energy
density has become negligible with respect to that of matter. For
this same reason, high values of γ are preferred since it allows ρX
to increase with z at a slower rate with respect to ρM. As a gen-
eral rule, the preferred values of (γ, zQ) are those that render the
inflessence energy density negligible with respect to the matter
density during the structure formation epoch. This is the same
mechanism achieved in the concordanceΛCDM model, thus ex-
plaining the shape of the contours of equal ∆D in the (γ, zQ)
plane.

The growth factor D could also be normalized to the present
day value for the ΛCDM model, i.e., by setting D(1) = DΛ(1).
Such an approach may be motivated considering that structure
formation is in remarkably good agreement with the observa-
tions on the low redshift large-scale structure of the universe.
By normalizing to this model at present, we may better investi-
gate how the growth factor deviates from the ΛCDM one in the
past. Figure 3 shows ∆D (as defined above) as a function of a
for different values of the model parameters (γ, zQ). Comparing
Figs. 1 and 3, we immediately see that now ∆D is positive (i.e.,
D(a) < DΛ) over the full range explored, whatever the values
adopted for (γ, zQ) are. Moreover, ∆D is an increasing function
of both γ and zQ for a given a, although the dependence on zQ

turns out to be quite weak for larger values of γ. To better in-
vestigate how ∆D depends on the model parameters, we plot the
contours of equal ∆D in Fig. 4 for some representative values
of the redshift z. As expected, at low redshift, the deviations are
so small that a large part of the parameter space gives rise to
a growth factor consistent (to well within ∼5%) with the one
for the ΛCDM model, so that it is likely that structure forma-
tion takes place in the same way. Not surprisingly, such a region
shrinks as the redshift increases as ∆D gets higher. Nevertheless,
at z = 1000, ∆D < 15% over almost the full parameter space
considered.

Although an analytical solution of Eq. (14) is not available
and numerical integration is straightforward, we believe it is use-
ful to have an approximate expression for D(a) to be used in data
fitting. To this aim, we have integrated Eq. (14) for aLS ≤ a ≤ 1,
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Fig. 4. Level contours for ∆D in the plane (γ, zQ) at z = 0.15 (top left),
0.35 (top right), 1.0 (bottom left), and 1000 (bottom right). Contours
are plotted for ∆D = (1%, 2%, 3%) with short-dashed, solid, and
long-dashed lines, respectively, in the first three panels, while ∆D =
(5%, 10%, 15%) are used for z = 1000.

Table 1. Values of the fitting parameters in Eq. (15) for some represen-
tative sets of (ΩM, γ, zQ). The first row refers to the best fit to SNeIa
fit, while the remaining rows refer to models providing a good fit to the
CMBR anisotropy spectrum.

ΩM, γ, zQ α d1 d2 d3

0.28, 3.7, 0.1 0.1355 −0.5725 −0.0471 −0.0124
0.24, 5.0, 4.0 0.3371 −0.6510 −0.0878 −0.0367
0.24, 5.5, 5.0 0.3474 −0.6275 −0.0814 −0.0377
0.24, 6.0, 7.0 0.3513 −0.5983 −0.0731 −0.0372

and found that a very good approximation is given by the fitting
formula:

D(a) � d0eαη
(
1 + d1η + d2η

2 + d3η
3
)
, (15)

with η = ln a, d0 = D(a = 1), and (α, d1, d2, d3) constant param-
eters depending on (ΩM, γ, zQ). Equation (15) works very well
with an rms error smaller than 2% up to z � 400 and less than
8% at z = 1100. Unfortunately, we have not been able to find
satisfactory approximated formulae for (α, d1, d2, d3) in terms of
(ΩM, γ, zQ), although we have generated tables (available on re-
quest to the authors) for 0.05 ≤ ΩM ≤ 0.55, 2.5 ≤ γ ≤ 7.5
and 0.1 ≤ zQ ≤ 7.1, which may be easily interpolated to get the
corresponding fitting parameters. As an example, we report their
values in Table 1 for some interesting cases.

4. Growth index

A quantity that can be measured by the galaxy correlation func-
tion or the peculiar velocities is the so-called growth index
defined as:

f ≡ d ln δ
d ln a

=
a
δ

dδ
da
· (16)

From a theoretical point of view, to estimate f for a given dark
energy model, one may solve Eq. (11) to get δ = δ(a) and then
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Fig. 5. ∆ f vs. z for models with γ = 3.5 (top left), 4.5 (top right), 5.5
(bottom right), and 6.5 (bottom right) and zQ from 1.0 to 5.0 (in steps of
1) from the uppermost to the lowermost curves. The other parameters
are set as explained in the text.

straightforwardly compute f . However, since we often have to
deal with numerical integration, it is better to directly solve an
equation for f , to avoid propagating the numerical errors. To
this end, one should simply use definition (16) of f and multi-
ply Eq. (11) by a/δ to finally get the evolution equation for the
growth index:

f ′ +
f 2

a
+

[
2
a
+

(ln E2)′

2

]
f − 3ΩM

2E2a4
= 0. (17)

Not surprisingly, Eq. (17) must be integrated numerically, using
f (aLS) = 1 as the initial condition, and Eqs. (12) and (13) for
the particular case of the inflessence model.

The 2dFGRS collaboration measured the position and the
redshift of over 220 000 galaxies and, from the analysis of the
correlation function, determined the redshift distortion parame-
ter f /b with the bias parameter b quantifying the difference be-
tween the galaxies and dark haloes distributions. Using the es-
timated f /b and the two different methods employed by Verde
et al. (2001) and Lahav et al. (2002) to determine the bias b, one
may estimate f = 0.51 ± 0.1 or f = 0.58 ± 0.11 at the survey
effective depth z = 0.15.

Both of these estimates are in very good agreement with
what is predicted by the ΛCDM model, so that it is interesting to
compare the behaviour of f predicted by the inflessence model
with that of the concordance scenario. To this end, we define
∆ f = 1 − f / fΛ, which gives the percentage difference between
the predictions of the two models. This is shown in Fig. 5, multi-
plied by 100 for the sake of clarity, considering different values
of γ and zQ and setting the other parameters as in Sect. 3. It is
worth noting that ∆ f is always negative, i.e. the growth index
f of the inflessence model is larger than the ΛCDM one over
the whole parameter space (γ, zQ). It is therefore mandatory to
directly compare f (z = 0.15) with the observed value (which is
in good agreement with the concordance model predictions) to
check whether the overestimate of f may be troublesome thus
allowing us to put constraints on the parameter space.

As in the case of ∆D, the dependence of ∆ f on the model
parameters (γ, zQ) is particularly involved, so that it is better to
look at the contours of equal ∆ f in the plane (γ, zQ). These are
shown in Fig. 6, where we have set z = 0.15 to compare with the
observed value of f measured by the SDSS survey. It is worth
noting that such a plot could be used to constrain (γ, zQ) by re-
quiring that ∆ f (z = 0.15) be lower than a given threshold dic-
tated by the estimated f . It is clear that such a method has the
potential to severely narrow the region of the parameter space
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Fig. 6. Level contours for ∆ f at z = 0.15 in the plane (γ, zQ). Contours
are plotted for ∆ f (z = 0.15) = −5% (short-dashed), −10% (solid), and
−15% (long-dashed). Models lying to the left of the dotted line have
w0 ≥ −1, while the ones to the right behave today as phantoms, i.e.,
w0 < −1.

(γ, zQ) in agreement with the observations. Moreover, a compar-
ison of Fig. 6 with the projected likelihood contours from the
SNeIa Hubble diagram fitting shows that they are orthogonal, so
that a combined analysis may place strong constraints on the in-
flessence model parameters. Unfortunately, this method is still
not applicable at the moment because the estimated f is still af-
fected by a large percentage error (∼20%), which makes the test
useless, since, as Fig. 6 shows, ∆ f ≤ 15% over a wide region of
the (γ, zQ) plane. This is essentially due to the low redshift tested
(z = 0.15), but extending the measurement to higher z (also with
the same percentage error) could significantly improve the effi-
ciency of such an analysis. Nevertheless, it is worth noting that
the allowed region of the parameter space (γ, zQ) lies to the left
of the w = −1 line so that phantom like models are excluded.
Such a result is nicely consistent with the constraints from the
SNeIa fit that also point towards this conclusion.

Using the definitions of D and f , one easily gets:

f = D

(
1 +

1
D

d ln D
d ln a

)
(18)

so that f not only depends on how density perturbations evolve,
but also on their logarithmic rate of evolution. As such, f is a
more subtle quantity depending on both the expansion history
and the structure evolution. As a general remark, we note that
∆ f approaches null values more quickly than ∆D as a conse-
quence of its logarithmic nature. It is nevertheless interesting
to compare the contours of equal ∆D with those of equal ∆ f
to see whether narrower constraints on the model parameters
(γ, zQ) may be obtained by imposing the same threshold on both
quantities. Indeed, although the contours turn out to be paral-
lel, they are also shifted towards each other so that the over-
lapping region is significantly narrower than those selected by
the constraint on ∆ f alone. Should we have an observationally
motivated constraint on ∆D (as that on ∆ f ) to the 5% level of
precision, we could thus efficiently constrain the inflessence
parameters (γ, zQ).

Indeed, it is likely that future measurements (using a larger
redshift survey observing more galaxies) should lessen the error
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on the observed f (z = 0.15) to the 5% level. In such a case, it
would be useful to have an approximated formula for f (z = 0.15)
as a function of the inflessence model parameters. This is given
as:

f (z = 0.15) � f0Ω
f1+ f2 ln γ+ f3 ln zQ

M (19)

with:

( f0, f1, f2, f3) = (0.8778, 0.4614,−0.1839,−0.0323),

which works quite well (with an rms error less than 1.5%) for
0.2 ≤ ΩM ≤ 0.4, 3 ≤ γ ≤ 6 and 1 ≤ zQ ≤ 7. It is
worth noting that, for the ΛCDM model, one has the approxi-

mated formula fΛ(z) �
[
ΩM(1 + z)3

]0.55
(Silveira & Waga 1994;

Wang & Steinhardt 1998; Lokas et al. 2004). For the inflessence
model, we find a similar formula, but the value of the exponent is
determined by the model parameters (γ, zQ). Note, however, that
Eq. (19) only holds for z = 0.15. Although we have not explicitly
checked it, it is likely that the same formal expression holds over
a large range in z, provided that the parameters ( f0, f1, f2, f3) are
suitably changed.

5. CMBR anisotropy spectrum

Since its discovery by Penzias & Wilson (1965), the CMBR has
played a fundamental role in cosmology. The recent precise mea-
surement of its anisotropy spectrum by the WMAP collabora-
tion (Spergel et al. 2003) has further increased the importance of
such an observable in assessing the viability of any cosmological
model. Unfortunately, the large number of parameters entering
the determination of the anisotropy spectrum makes it quite dif-
ficult to extract constraints on a given model’s parameters from a
time-expensive likelihood analysis (typically based on a Monte
Carlo Markov Chain exploration of the wide parameter space).
This is also the case for the inflessence model, so that we will
only investigate how the spectrum changes as a function of the
main model parameters, i.e., (γ, zQ). In the following analysis,
we therefore set the following values for the other parameters
involved in the computation:

ωb = 0.04, ΩM = 0.24, h = 0.70, τ = 0.17, n = 1

with the optical depth τ and the spectral index (assum-
ing no running) n. The remaining inflessence parameters
(β, zI) are set to their fiducial values (−3, 3454). To com-
pute the CMBR anisotropy spectrum, we use CMBFAST
(Seljak & Zaldarriaga 1996), obtaining the results plotted in
Figs. 7 and 8, where the inflessence parameters (γ, zQ) has been
chosen with the main aim of highlighting the dependence on
these parameters rather than providing a good fit to the data.

As in the case of the growth factor D, large values of both γ
and zQ are needed to get satisfactory results. Indeed, while the
position of the peaks is essentially independent on the param-
eters (γ, zQ), their amplitude is an incresing function of these
two quantities. Moreover, at the low multipoles (l ≤ 10), the
spectrum is significantly overestimated for small values of the
inflessence parameters. It is worth stressing, however, that very
good fits may be achieved by suitably tuning the parameters
(γ, zQ). Some nice examples are shown in Fig. 9.

It is worth noting that such large values of (γ, zQ) stay at the
upper end of the confidence ranges obtained from the likelihood
analysis performed in Cardone et al. (2005). Nevertheless, they
are not excluded, so that we are confident that a combined anal-
ysis of the whole parameter space (thus also changing the mat-
ter density parameter ΩM that we have held fixed up to now, the
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Fig. 7. The CMBR anisotropy spectrum for the inflessence model with
zQ = 0.1 and γ = 3, 4, 5, 6, 7 (from bottom to top). Other parameters are
set as explained in the text. Data points are the WMAP measurements.
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Fig. 8. The CMBR anisotropy spectrum for the inflessence model with
γ = 3.73 and zQ = 0.1, 0.5, 1, 3, 5 (from bottom to top). Other param-
eters are set as explained in the text. Data points are the WMAP mea-
surements.

10 100 1000
l

0

1000

2000

3000

4000

5000

6000

l(
l+

1)
C

 l / 
2π

µΚ
2

Fig. 9. The CMBR anisotropy spectrum for the inflessence model with
(γ, zQ) = (6, 7), (5.5, 5), and (5, 4), from top to bottom. Other pa-
rameters are set as explained in the text. Data points are the WMAP
measurements.
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spectral index n, and the optical depth τ) could pinpoint a narrow
region in the parameter space giving a satisfactory fit to SNeIa
Hubble diagram, growth index, and CMBR anisotropy spectrum.

6. Conclusions

The inflessence model has been proposed as a possible mecha-
nism to explain both the inflationary epoch in the early universe
and the present day cosmic speed up. According to this scenario,
a single fluid with the energy density given by Eq. (1) is added
to radiation and dust matter, thus working as the inflaton field
at very low a (i.e., for z � zI) and as dark energy on the scale
a ∼ 1 (namely, for z ≤ zQ). Since this model has been shown to
be able to nicely fit the SNeIa Hubble diagram, while also giv-
ing correct values for the shift and acoustic peak parameters, it
is worth wondering how structure formation takes place.

To this end, we have investigated the evolution of density
perturbations in the linear regime, comparing both the growth
factor D(a) and the growth index f (z) to these same quantities
in the ΛCDM model. In particular, we have concentrated our
attention on the two inflessence parameters γ and zQ, which de-
termine, respectively, the asymptotic value of the eos (and hence
the final fate of the universe) and the transition from the matter
like to the quintessence like scaling of the energy density with a.
Moreover, since γ and zQ also set the present day value of the
EoS, one can easily understand that they play a leading role in
determining both D(a) and f (z). As a further test, we have also
computed the CMBR anisotropy spectrum for fixed values of the
other parameters (especially the optical depth τ and the spectral
index n).

As a general result, we have found that, using large values
of γ and zQ, it is possible to work out scenarios in which struc-
ture formation takes place in quite similar ways in both the inf-
lessence and the ΛCDM models. Moreover, for these same val-
ues, the predicted CMBR anisotropy spectrum also nicely agrees
with the WMAP data. Such large values seem to be disfavored by
the fitting to the SNeIa Hubble diagram, so that some tension be-
tween these two different probes is present. However, it is worth
noting that the constraints coming from SNeIa are rather weak
so that it is indeed possible that such a conflict is not particularly
worrisome.

It is also worth noting that a precise determination of the
growth index f (at the 5−10% level) at the low redshift typi-
cal of present day galaxy surveys or a measurement of f at a
higher redshift have the potential to severely constrain the pa-
rameters (γ, zQ). Moreover, such constraints are orthogonal to
those coming from SNeIa, so that a joint analysis could defini-
tively assess the viability of the inflessence model and pinpoint a
narrow range in the parameter space (ΩM, γ, zQ). One could also
include the CMBR anisotropy spectrum in a fully comprehen-
sive likelihood test. However, such an approach is likely to be
affected by strong degeneracies among the five inflessence pa-
rameters (ΩM, β, γ, zI , zQ) and the other CMBR parameters such
as the optical depth τ, the baryon content ωb, and the spectral
index n (and its eventual running dn/d ln k). To probe such a
large parameter space, a Monte Carlo Markov Chain approach
is mandatory and is left for future works.

Actually, having determined the growth factor D(a), for
which we have also found an analytical approximation, we may
further explore the issue of structure formation in the inflessence
model. To this aim, one could use the estimated D(a) to estimate
the critical overdensity for collapse at the present day, and as a
function of time, hence determining the mass function through

the Press & Schechter formalism (Press & Schechter 1974) for
the spherical collapse of perturbations, or its generalization to
elliptical collapse worked out by Sheth and Tormen (1999). The
mass function is the key ingredient to predicting cluster num-
ber counts, which are known to be a powerful test of dark en-
ergy models (see, e.g., Haiman et al. 2001). In many observa-
tional applications, it is also interesting to check whether the
collapsed perturbation is virialized or not. As has been pointed
out in Percival (2005), dark energy also plays a role in this pro-
cess, and hence it is interesting to investigate how the inflessence
model affects this important process. Most of these problems
will be addressed in a forthcoming paper.
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