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ABSTRACT

We discuss the impact of magnetic field on the mass–temperature relation for groups and clusters of galaxies based on the derivation
of the general Magnetic Virial Theorem. The presence of a magnetic field B yields a decrease of the virial temperature T for a fixed
mass M: such a decrease in T is stronger for low-mass systems than for high-mass systems. We outline several implications of the
presence of B-field and of its mass scaling for the structure and evolution of groups and clusters.
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1. Introduction

Magnetic fields fill intracluster and interstellar space, affect the
evolution of galaxies, contribute significantly to the total pres-
sure of interstellar gas, are essential for the onset of star forma-
tion, and control the diffusion, the confinement and the evolution
of cosmic rays in the interstellar and intracluster medium (ICM).
In clusters of galaxies, magnetic fields may play also a critical
role in regulating heat conduction (e.g., Chandran et al. 1998;
Narayan & Medvedev 2001), and may also govern and trace
cluster formation and evolution.

We know that magnetic fields exist in clusters of galaxies for
several reasons. First, in many galaxy clusters we observe the
synchrotron radio-halo emission produced by relativistic elec-
trons spiraling along magnetic field lines. Second, the Faraday
rotation of linearly polarized radio emission traversing the ICM
proves directly and independently the existence of intraclus-
ter magnetic fields (see, e.g., Carilli & Taylor 2002; Govoni &
Feretti 2004 for recent reviews). The Rotation Measure (RM)
data throughout the inner (∼0.5 Mpc) cluster region support
magnetic field strengths of the order of several to tens of µG
(see Carilli & Taylor 2002; Govoni & Feretti 2004). The high
local values of B observed in the central, cool region of clus-
ters are likely related, however, to quite special conditions (such
as turbulent amplification of the local B-field driven by radio
bubbles or AGN jets, see e.g. Ensslin & Vogt 2005) and thus
are probably not representative of the overall system (see, e.g.
Carilli & Taylor 2002). Other estimates of the magnetic field
strength on the cluster wide scale come from the combination
of synchrotron radio and inverse Compton detections in the
hard X-rays (e.g., Colafrancesco et al. 2005), from the study of
cold fronts and from numerical simulations (see, e.g., Govoni
& Feretti 2004). This evidence provides indication on the wide-
scale B-field which is at the level of a few tens up to several µG
(and in some cases up to ∼10 µG, as in Coma) with the larger
values being attained by the most massive systems.

Numerical simulations (e.g., Dolag et al. 2001a) have shown
that the wide-scale magnetic fields in massive clusters produce
variations of the cluster mass at the level of ∼5−10% of their

unmagnetized value. Such mass variations induce a compara-
ble variation on the IC gas temperature T for virialized systems.
Such variations are not expected to produce strong variations in
the relative M − T relation for massive clusters.

The M−T relation predicted in a pure CDM model for B = 0
follows the self-similar scaling M ∝ T η with η = 3/2 (see,
e.g., Colafrancesco et al. 1997; Arnaud 2005). A Chandra study
(Allen et al. 2001) of five hot clusters (with kBT > 5.5 keV)
derived a M − T relation slope of η = 1.51 ± 0.27, consis-
tent with the self-similar model. However, due to the relatively
small Chandra field of view, the M − T relation was established
at R2500, i.e., about 0.3R200 (here Rδ and Mδ are the radius and
mass at which the density contrast of the system is δ). More re-
cently, the M−T relation was established down to lower density
contrasts (δ = 200) from a sample of ten nearby relaxed galaxy
clusters covering a wider temperature range, kBT ≈ 2−9 keV
(Arnaud et al. 2005). The masses were derived from mass pro-
files measured with XMM-Newton at least down to R1000 and
extrapolated beyond that radius using the NFW (Navarro et al.
1997) model. The M2500 − T for hot clusters is consistent with
the Chandra results. The slope of the M − T relation is the same
at all δ values, reflecting the self-similarity of the mass profiles.
At δ = 500 the slope of the relation for the sub-sample of hot
clusters (kBT > 3.5 keV) is η = 1.49 ± 0.15 consistent with
the standard CDM self-similar expectation. The relation, how-
ever, steepens when the whole sample of clusters is considered,
providing a slope η = 1.71 ± 0.09. The normalisation of the
M−T relation differs, at all density contrasts from the prediction
of pure gravitation based models by ∼30% (see Arnaud 2005 for
a discussion).

In this Letter we will explore the effect of wide-scale mag-
netic fields on the M−T relation over a large range of masses and
temperatures by using the predictions of the magnetic virial the-
orem. We will discuss its implications for the evolution and the
scaling relations of magnetized clusters. The relevant physical
quantities are calculated using H0 = 71 km s−1 Mpc−1 and a flat,
vacuum-dominated CDM (Ωm = 0.3,ΩΛ = 0.7) cosmological
model.
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2. The magnetic virial theorem for galaxy clusters

Under the assumption of a ICM in hydrostatic equilibrium with
the potential well of a spherically-symmetric, virialized and
magnetized cluster, the general relation between the ICM tem-
perature T and the cluster virial mass M is obtained by applying
the magnetic virial theorem (MVT):

1
2

d2Iik

dt2
= 2Kik +

2
3

Uδik +

∫
V

Fikd3x +Wik, (1)

where Iik is the inertia momentum tensor, Kik is the kinetic en-
ergy tensor, U is the thermal energy of the intra-cluster gas, Fik is
the Maxwell tensor associated to the magnetic field and Wik is
the potential energy tensor. The full derivation of the MVT is re-
ported in the Appendix. For a static and isothermal galaxy cluster
the trace of Eq. (1) yields the condition

2U + UB +W = 0, (2)

where UB is the magnetic energy of the system (see Appendix
for details). For the general case of a cluster which is immersed
in a Inter Galactic Medium (IGM) or external medium which
exerts an external pressure Pext, Eq. (2) yields the formula for
the temperature of the gas in virial equilibrium
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where usually α � 1 and we defined the quantity

Mφ � 1.32 × 1013M�
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) (
rvir
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, (4)

where I(c) =
∫ c

0
(ρg(r = 0)/ρ̄(z = 0))2αx2y2α

g (x, B = 0)dx. Here
c = rvir/rs (we assume a NFW Dark Matter density profile with
scale radius rs) and yg(x, B = 0) = ρg(x)/ρg(x = 0) is the gas
density profile normalized to the central gas density (i.e. the
solution of the hydrostatic equilibrium equation in the absence
of magnetic field, see Colafrancesco & Giordano 2006a for de-
tails). The radial profile of the magnetic field has been assumed
as B(r) = B∗[ρg(r, B)/104ρ̄(z = 0)]α with α = 0.9 (see, e.g.,
Dolag et al. 2001b).

For the case B = 0, the quantity Mφ = 0 and the well-known
relation (for Pext = 0)

Tg(B = 0) = −µmpW/(3kBMvir) (5)

re-obtains (here µ = 0.63 is the mean molecular weight, corre-
sponding to a hydrogen mass fraction of 0.69, mp is the proton
mass and kB is the Boltzmann constant).

For B > 0, the quantity Mφ > 0 and the gas temperature at
fixed Mvir, as obtained from Eq. (3), is

kTg = kTg(B = 0)
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⎞⎟⎟⎟⎟⎟⎠ , (6)

and is lower than that given by Eq. (5) because the additional
magnetic field energy term UB adds to the MVT. The presence
of an external pressure Pext tends to compensate the decrease
of Tg induced by the magnetic field. For values of the tempera-
ture and density of the IGM (as estimated by the WHIM struc-
ture around large-scale overdensities, see, e.g., Fang & Bryan
2001), Pext ∼ 1.7 × 10−3 eV cm−3(nIGM/10−5 cm−3)(TIGM/2 ×
106 K). However, in the outer regions of massive clusters
(at r >∼ rvir) the external gas pressure can reach values

Fig. 1. We show the Tspectr − M200 relation at z = 0 for clusters which
contain a magnetic field B∗ in the illustrative range 0−30 µG (as la-
belled) in the case of Pext = 0.2 eV cm−3. Here M8 � 2 × 1014 M�h−1

71 .
Data are taken from Arnaud (2005).

Pext ∼ 0.2 eV cm−3(n/10−4 cm−3)(Tg/1.7× 107 K) [here we con-
sidered the mean projected temperature profile for the cluster
sample studied by Piffaretti et al. (2005, see their Fig. 4) and
a typical cluster with TX = 10 keV]. In such a case, the value
of Pext is a significant fraction ∼4% of the central ICM pressure
and ∼50% of the ICM pressure at the virial radius for a typi-
cal cluster. Thus, it cannot be neglected in the Tg estimate from
Eq. (6). A value Pext ∼ 0.2 eV cm−3, as estimated at the out-
skirts (r >∼ rvir) of rich clusters, can be considered as an upper
bound to Pext, since an exact determination of the total cluster
mass (which is subject to various systematic uncertainties, see,
e.g., Rasia et al. 2006) certainly requires to go beyond rvir. We
thus consider in the following this value of Pext as a reference
upper bound to be used in our temperature estimate from Eq. (6)
in the presence of a B-field. Lower values of Pext, down to its
value in the WHIM, have progressively minor importance.

For reasonable values of B∗ >∼ a few µG, the quantity Mφ >
4πr4

vir

αG Pext and the main effect is a reduction of the cluster tem-
perature which is more pronounced for less massive systems
where Mφ becomes comparable to Mvir. The effect of the mag-
netic field and of the external pressure are larger for low-M clus-
ters (see Fig. 2).

3. The magnetized M – T relation

The T − M relation for magnetized clusters is shown in Fig. 1.
We use here the relation M200 � 0.77 Mvir and we adopt the
scaling kBTspectr � 1.8kBTg to compare our predictions with
the available data. This last scaling, kBTspectr � 1.8kBTg, is re-
quired to recover the normalization of the M − T relation in-
dicated by the available data and is, nonetheless, valid in the
inner regions of the clusters (see, e.g., Pratt & Arnaud 2005).
Small variations of temperatures with respect to their unmag-
netized values are found for massive clusters since the quantity
Mφ � Mvir in this mass range and the value of Pext has little or
negligible effect (see Fig. 2). This is in agreement with the re-
sults of numerical simulations (Dolag et al. 2001a). However,
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Fig. 2. Same as Fig. 1 but for a Pext = 0 with B∗ = 0 (solid curves) and
B∗ = 20 µG (long-dashes curves) and Pext = 0.2 eV cm−3 for the same
values of B∗ = 0 (short-dashes curves) and B∗ = 20 µG (dotted curves)
The evolution of the Tspectr − M200 relation for magnetized clusters is
shown at z = 0 (black), z = 0.5 (red) and z = 1 (green).

when Mφ becomes comparable to Mvir, the IC gas tempera-
ture becomes lower than its unmagnetized value and the T − M
relation steepens in the range of less massive systems like groups
and poor clusters. The temperature Tg formally tends to zero

when Mφ → Mvir(1 + Pext/Pvir), where Pvir ≡
(

4π
αG

r4
vir

M2
vir

)−1
.

However, this limit is unphysical since it corresponds to an un-
stable system in which the magnetic pressure overcomes the
gravitational pull. Thus, any physical configuration of magne-
tized virialized structures must have Mφ < Mvir(1 + Pext/Pvir).
The effect of Pext counterbalances the effect of the B-field on
the T − M relation, increases for low-M systems and decreases
with increasing redshift (see Fig. 2) because Pvir increases with
increasing redshift.

4. Discussion and conclusions

We have derived here, for the first time, a relation between the
temperature of the IC gas from the general MVT in the pres-
ence of magnetic field and external pressure. The result of the
MVT for clusters bring relevant modifications to the gas temper-
ature for virialized and magnetized clusters. As a consequence,
the observed T − M relation is steeper than the simple predic-
tions of a ΛCDM structure formation scenario and its effective
slope increases in the low-M region. However, since the masses
of the observed clusters have been derived under the assumption
of absence of B field, the slope indicated by the data of the ob-
served T − M relation could be not completely representative.
In this context we also stress that the T − M relation might be
affected by other systematic uncertainties in the mass derived by
X-ray observations (e.g., Rasia et al. 2006) which would change
the slope of the T − M relation especially in the low-M range.
A robust analysis of the cluster mass estimate should require the
use of a detailed hydrostatic equilibrium condition in combina-
tion with reliable temperature profiles. In both these aspects the
effect of the B-field is relevant and should be taken into account.
Furthermore, the predictions at low-T , where the effects of the

B-field are stronger, are rendered uncertain by the absence of
a clear definition of a spectroscopic temperature (e.g., Mazzotta
et al. 2004). Thus, a complete analysis of the T − M relation re-
lies on a very detailed understanding of the physical properties
of the IC gas in the presence of B-field with the input of a precise
total mass reconstruction and temperature determination.

The results we derived here have a broad range of impli-
cations on cluster structure and evolution: flattening of the en-
tropy – temperature relation and higher entropies in cluster cores
are expected in the presence of magnetic fields. Further effects
on the X-ray luminosity – temperature relation are also expected
as well as modifications of the thermal Sunyaev-Zel’dovich ef-
fect. Since these studies are far beyond the scope of this pa-
per, we refer the interested reader to much more detailed anal-
ysis which are presented elsewhere (Colafrancesco & Giordano
2006a,b).

To conclude, we notice that a full description of the struc-
ture and evolution of the population of groups and clusters of
galaxies which considers also the role of magnetic fields will
definitely shed light on several, still unclear aspects of the inter-
ference between gravitational and non-gravitational mechanisms
in the evolution of these systems, and calls for a more refined
physical description to use galaxy clusters as appropriate cos-
mological probes.
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Appendix A: The MVT for galaxy clusters

Let us introduce the following quantities:

ϕ(r) = −G
∫

V

ρ(x′j)

|x j − x j′ |d
3x′ (A.1)

W = −1
2

G
∫

V

∫
V

ρ(x j)ρ(x′j)

|x j − x j′ | d3xd3x′ (A.2)

Fi j =
B2

8π
δi j − BiB j

4π
(A.3)

where ϕ is the gravitational potential, W is the gravitational en-
ergy and Fi j is the Maxwell tensor associated to the magnetic
field. Then, the equation of motion for the systems given by the
Euler equation writes as

ρ

(
∂

∂t
+ (u · ∇)

)
vi = − ∂p

∂xi
− ∂Fi j

∂xi
− ρ ∂ϕ
∂xi

(A.4)

where vi is the ith component of the velocity and p is the pres-
sure (we consider a fluid with no viscosity for which Pi j =
p δi j). Multiplying by xk and integrating over the cluster volume
we obtain:∫

V
xk
∂

∂t
(ρvi)d

3x

+

∫
V

xk
∂

∂x j
(ρviv j)d

3x = −
∫

V
xk
∂p
∂xi

d3x (A.5)

−
∫

V
xkρ
∂ϕ

∂xi
d3x −

∫
V

xk
∂Fi j

∂x j
d3x.

Using the continuity equation and the standard integral theo-
rems, we convert the first member of this equation in the form∫

V
xk
∂

∂t
(ρvi)d3x +

∫
V

xk
∂

∂x j
(ρviv j)d3x (A.6)

=
d
dt

∫
V
ρviv jd

3x − 2Kik +

∮
xkρviv jdSj
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where Ki j = 1/2
∫
ρviv jd3x indicates the kinetic energy tensor

and U = 3/2
∫

p d3x is the IC gas thermal energy. The second
member of Eq. (A.5) writes as

−
∫

V
xk
∂p
∂xi

d3x =
2
3

Uδik −
∮

dSjxk p (A.7)

−
∫

V
xk
∂Fi j

∂x j
d3x =

∫
V

Fikd3x −
∮

dSjFi jxk (A.8)

and one can show that

−
∫

V
xkρ
∂φ

∂xi
d3x =

1
2

Wik. (A.9)

Neglecting (in our case) the surface integrals (these physical
quantities are negligible when the integration surface is chosen
far from the cluster center) one obtains:

1
2

d2Iik

dt2
= 2Kik +

2
3

Uδik +

∫
V

Fikd3x +Wik, (A.10)

where Ii j is defined as

Ii j =

∫
V
ρxi x jd

3x. (A.11)

Using the trace of Eq. (A.10), we obtain the equation:

1
2

d2I
dt2
= 2K + 2U + UB +W (A.12)

where UB ≡ F, and F ≡ ∫
B2(r)
2µ0

d3x. For a cluster in a static
configuration (quite a good approximation for real systems) one
has

1
2

d2I
dt2
= K = 0, (A.13)

from which Eq. (2) derives.
The magnetic energy writes as

UB −
∮

xkFi jdSj =
φ2

r
, (A.14)

where φ ≡ π(B∗/µG)r2
vir is the magnetic flux through the equa-

torial section of the system. The trace of Eq. (A.7) writes as

Pext

∮
(r · dS) = Pext4πr3

vir, (A.15)

and is usually considered in the analysis of the standard Virial
Theorem without the influence of a B-field (see, e.g., Carlberg
et al. 1997). In the case of isothermal systems:

2U = 3
∫

V
p d3x = 3

∫
V

c2
sρd

3x � 3c2
s M (A.16)

where

c2
s =

kBTg

µmp
· (A.17)

Using Eqs. (2), (A.14), (A.15) and Eq. (A.16), the Eq. (3) can be
derived.
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