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ABSTRACT

Aims. We show how to construct 2-dimensional models of rapidly rotating stars in hydrostatic equilibrium for any Ω(r, θ), given the
density ρm(r) along any one angle θm. If the hydrogen abundance Xm(r) is given on θm then the adiabatic exponent Γ1(r, θ) can by
determined, yielding a self consistent acoustic model that can be used to investigate the oscillation properties of rapidly rotating stars.
Methods. The system of equations governing the hydrostatic structure is solved by iteration using the method of characteristics and
spectral expansion, subject to the condition that ρ(r, θ) = ρm(r) on θ = θm. Γ1(r, θ) is calculated from the equation of state under the
assumption that X(r, θm) = Xm(r) and is constant on surfaces of constant entropy. Alternatively Γ1 can be approximated by taking
X constant in the equation of state and equal to the surface value.
Results. Results are presented for an evolved main sequence star of 2 M� with the angular velocity a function only of radius Ω = Ω(r),
evolved to a central hydrogen abundance of Xc = 0.35. The model is first calculated using a spherically averaged stellar evolution
code, where the averaged centrifugal force 2Ω2r/3 is added to gravity. The resulting ρm(r), Xm(r) are then used as input to determine
the 2-dimensional model.
Conclusions. The procedure described here gives self consistent hydrostatic and acoustic models of rapidly rotating stars for
any Ω(r, θ).
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1. Introduction

One of the major problems inhibiting the use of stellar oscilla-
tions to diagnose the internal structure of stars, and thereby to
test and develop our understanding of stellar evolution, is the
effect of rapid rotation. Recent work by Lignières et al. (2006)
and Reese et al. (2006) on the oscillation of polytropic models
of uniformly rotating stars, has shown that perturbation analysis
breaks down and full 2-dimensional studies are needed for mod-
erate rotation velocities (v ∼ 50 km s−1), and that a major effect
on the oscillation frequencies is the geometrical (and acousti-
cal) oblateness of the star. Most stars of spectral type F and ear-
lier have rotation velocities in excess of 50 km s−1 so we need to
have realistic 2-dimensional models of rotating stars to analyse
their oscillation properties, and to develop techniques to utilise
the data from high precision asteroseismology missions such as
COROT (Baglin et al. 2002), to map, or constrain, models of
stellar structure and evolution.

In a previous paper (Roxburgh 2004) we presented self-
consistent 2-dimensional models of homogeneous main se-
quence stars where the angular velocity Ω = const. But to in-
terpret and use observational data on the oscillations of stars we
need realistic 2-dimensional models of rapidly rotating stars with
different rotation profiles Ω(r, θ), and in different stages of evo-
lution. By studying the oscillation properties of such models we
can hope to interpret observational data and develop techniques
that will enable us to use such data to diagnose the internal struc-
ture and dynamics of rotating stars. We here present an algorithm
to construct such models.

The adiabatic oscillations of a spherical star are governed
solely by the acoustic structure of the star, that is the hydrostatic
structure: density ρ(r), pressure P(r) and gravity g(r); together
with the adiabatic exponent Γ1(r). The oscillation properties do
not depend on whether or not the star is in thermal equilibrium,
only that it is in hydrostatic equilibrium with known Γ1(r). The
hydrostatic structure of a star is completely determined by the
density density profile ρ(r) and surface value of the pressure Ps;
g(r) is given by Poisson’s equation and P(r) by hydrostatic sup-
port. The interior structure is insensitive to the value of Ps. The
adiabatic exponent Γ1 can be determined from P(r), ρ(r) and the
composition X j(r) through the equation of state; for hydrogen
burning stars it is sufficient to have just the hydrogen abundance
X(r). Note that in the fully ionised interior of most stars Γ1 ≈ 5/3
for any X, whereas in the outer layers X retains its initial value,
so Γ1(r) could be adequately approximated by taking the sur-
face value of X in the equation of state for all P, ρ. For stars
other than the Sun we can only expect to detect oscillations of
modes of low degree, which have very similar properties in the
outer layers of a star, so we can only hope to probe the interior
structure of a star with such data; taking Γ1 = 5/3 is then often
adequate for the development of diagnostic and inversion tech-
niques that constrain or map the internal hydrostatic structure of
stars (cf. Roxburgh & Vorontsov 2003).

As shown below a similar situation applies to rotating stars;
the 2-dimensional hydrostatic structure ρ(r, θ), P(r, θ) and grav-
itational potential Φ(r, θ) are determined solely by the angular
velocity Ω(r, θ), the density ρm(r) = ρ(r, θm) and the surface
pressure Ps along any one angle θm. The adiabatic exponent

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20065109

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20065109


884 I. W. Roxburgh: 2-dimensional models of rapidly rotating stars. II.

Γ1(r, θ) is determined from P(r, θ), ρ(r, θ) and the 2-dimensional
hydrogen profile X(r, θ). If we have some model of the mixing
processes inside a rotating star, e.g. X constant on surfaces of
constant entropy, then it is sufficient to have Xm(r) along θm.
Again reasonable values of Γ1 can be estimated from P, ρ and
the surface value of X. Again there is no requirement that ther-
mal equilibrium be satisfied. Acoustic models of rapidly rotating
stars with any Ω(r, θ) can therefore be generated by prescribing
the radial density and hydrogen profiles ρm(r), Xm(r) along an
angle θm, and the oscillation properties of such models investi-
gated to advance our understanding of the effects of rotation on
oscillations, and to develop diagnostic and inversion techniques
for use with observational data. For such models to be realistic
the input values ρm(r), Xm(r) should, at least approximately, cor-
respond to our expectations as to the run of these variables in
models of evolved stars.

Stellar evolutionary models that include rotation are almost
always spherically averaged models where the angular velocity
is taken to vary with radius Ω = Ω(r) (cf. Maeder 2003). The
argument for such shellular rotation being that, as there is no
stabilising effect of buoyancy on surfaces of constant entropy,
horizontal mixing is efficient in maintainingΩ and the chemical
composition constant on such surfaces (cf. Zahn 1992). In these
models the centrifugal force averaged over a sphere, 2Ω2r/3, is
added to gravity, and mild turbulence, generated by shear and
circulation currents, contributes to thermal balance, produces
some mixing of chemical composition and maintains the Ω pro-
file, Such models give the spherically averaged values of density
ρm(r), and hydrogen abundance Xm(r). With Ω = Ω(r) pertur-
bation analysis gives these averaged values as those along the
root of the second Legendre polynomial θm = cos−1(1/

√
3) (cf.

Roxburgh 1964; Faulkner et al. 1968).
We can extend such spherically averaged models to

give 2-dimensional hydrostatic models by requiring that the
2-d model has the 1-d ρm(r) along the angle θm. Thermal balance
does not enter into this calculation but is implicitly assumed to be
maintained by mild turbulence and circulation currents as in the
spherically averaged model. If further X(r, θ) is taken to be con-
stant along surfaces of constant entropy then, through the equa-
tion of state, P(r, θ), ρ(r, θ) and Xm(r) give X(r, θ) and Γ1(r, θ).
Hence given a spherically averaged model of an evolved star
we can construct self consistent 2-dimensional hydrostatic and
acoustic models of rapidly rotating stars which can be used for
studying their oscillation properties.

2. The hydrostatic structure for Ω = Ω(r, θ)

The equations governing the hydrostatic structure of a rotating
star are

∇P
ρ
= −∇Φ + Ω2� (1)

∇2Φ = 4πGρ (2)

where P(r, θ), ρ(r, θ), Φ(r, θ) are the pressure, density and grav-
itational potential, Ω(r, θ) is the angular velocity, (r, θ, φ) are
spherical polar coordinates and � = (r sin θ, r cos θ, 0) is the
vectorial distance from the rotation axis. The inertia of any cir-
culation or turbulence, and viscous effects, are neglected.

Eliminating P by taking the curl (rot) of Eq. (1) gives

curl
(
ρ
[
∇Φ − Ω2�

])
= 0. (3)

Equations (2) and (3) constitute a 3rd order boundary value prob-
lem which determines ρ(r, θ) given the value of ρ(r, θm) = ρm(r)

on one angle θm, and thatΦmatches onto a solution of Laplace’s
equation outside the star.

The pressure P(r, θ) is then given by Eq. (1) subject to a sur-
face boundary condition on P. Note that the value of P along θm
will not be exactly the same as the value in the spherically av-
eraged model since the 2-dimensional value of the gravitational
field along θm will not be exactly the same as that in the spher-
ically averaged model, nor will the mass of the distorted model
be exactly the same as that of the spherical input model; the dif-
ferences come from neglecting the distortion factors in rotating
stars in the spherically averaged model (cf. Roxburgh 2004). One
could scale the density of the input model to give the same total
mass if desired.

For slow rotation we can eliminate ρ between Eqs. (2)
and (3) and solve the resulting 3rd order system by perturba-
tion analysis (cf. Roxburgh 2001). For rapid rotation we solve
the equations by successive iteration as follows:

1. take as an initial guess ρ(r, θ) = ρm(r);
2. solve Poisson’s Eq. (2) for Φ(r, θ) given ρ(r, θ);
3. solve Eq. (3) for ρ(r, θ) given Φ(r, θ) subject to the condition
ρ(r, θm) = ρm(r) the input density on θm;

4. goto 2 and repeat until the solution has converged.

For a given Φ Eq. (3) is a first order linear PDE which can be
solved by the method of characteristics; for given ρ Eq. (2) is
second order linear and can be solved by spectral analysis.

3. Details of the solution

The solution is represented by the values of ρi j, Pi j, Φi j on a
spherical polar coordinate mesh (ri, θ j) where i = 0,Ni, and
j = 0,Nj. The radial mesh of the input model is i = 0,N and
i = N + 1,Ni is an extension of this mesh into the surrounding
space, large enough to contain all regions of the 2-dimensional
model. The θ j are uniformly distributed, θ j = (π/2) ( j/Nj). For
convenience the angle θm on which the input model is given is
taken to be on the mesh θ j.

3.1. Solution for ρ given Φ

Defining

F = ∇Φ −Ω2� (4)

we can write Eq. (3) as

Fθ
∂ρ

∂r
− Fr

1
r
∂ρ

∂θ
= −ρ curl(F) = ρ curl

(
Ω2�

)
. (5)

The characteristics are the curves r = r(θ) given by

dr
dθ
= −r

Fθ
Fr
= −

(
∂Φ/∂θ −Ω2r2 sin θ cos θ

)
(
∂Φ/∂r − Ω2r sin2 θ

) (6)

and along the characteristics r = r(θ), ρ is given by

1
ρ

dρ
dθ
= −r

curl
(
Ω2�

)
(
∂Φ/∂r − Ω2r sin2 θ

) · (7)

Describing the characteristic through the point rm on the refer-
ence angle θm as r = rm gm(θ), then gm satisfies the ordinary
differential equation

dgm

dθ
= − 1

rm

(
∂Φ/∂θ −Ω2r2 sin θ cos θ

)
(
∂Φ/∂r −Ω2r sin2 θ

) · (8)
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With Φ, ∂Φ/∂r, ∂Φ/∂θ known on the mesh (ri, θ j) we integrate
Eq. (8) on the mesh j, interpolating in r on this mesh for values
of ∂Φ/∂r, ∂Φ/∂θ at r = rmg(θ). The boundary condition is that
gm = 1 at (rm, θm). This gives the characteristics of Eq. (3).

Since

curl
(
Ω2�

)
=

1
r

[
∂

∂r

(
Ω2r2 sin θ cos θ

)
− ∂
∂θ

(
Ω2r sin2 θ

)]
(9)

Eq. (7) can be integrated along the characteristics r = rm gm(θ),
to give ρ along these characteristics. The solution can then be
transferred onto the mesh (ri, θ j) by cubic interpolation.

3.2. Solution for Φ given ρ

Given ρ(r, θ) on the reference mesh (ri, θ j) we solve the Poisson
Eq. (2) for Φ using the algorithm described in Roxburgh (2004).
ρ and Φ are represented by finite sums of Legendre polynomials

ρ(r, θ) =
Nk∑
0

ck(r)P2k(cos θ) (10)

Φ(r, θ) =
Nk∑
0

fk(r)P2k(cos θ) (11)

where the fk satisfy the equations

1
r2

d
dr

(
r2 d fk

dr

)
− 2k(2k + 1)

r2
fk = 4πGck (12)

subject to the boundary conditions fk(0) = 0, k � 0, and

(2k + 1) fk + r
d fk
dr
= 0 at r = Rs (13)

where Rs = r(Ni) is a spherical surface outside the star.
The decomposition of the density was done algebraically by

simply demanding that (at each radius ri) Eqs. (10) be satisfied
at the angles θk, k = 0,Nk, (where the θk are a subset of θ j), and
solving the resulting matrix equations to give

ck = W−1
kn ρn, Wkn = P2k(cos θn), k, n = 0,Nk. (14)

This simple algorithm worked remarkably well, much better
than seeking to determine the ck by integrating ρ(r, θ)P2k(cos θ)
over sphere using a much finer mesh in angle.

Having determined the ck the coefficients fk were determined
from an integral representation of the solution of Eqs. (12), (13)
namely

fk = r2k
∫ r

Rs

4πG
r4k+2

[∫ r

0
ck(r) r2k+2dr

]
dr − λkr2k (15)

where

λk =
4πG

(4k + 1)R4k+1
s

∫ Rs

0
ck(r)r2k+2dr. (16)

Provided one sets ck = 0 when it is sufficiently small (e.g.
|ck | < 10−10ρc) this simple algorithm works well. Detailed tests
of this and the density decomposition algorithm were reported
in Paper I (Roxburgh 2004).

3.3. Solution for P given ρ and Φ

The characteristics of Eq. (3) are simply the surfaces P = const.
This can be seen from the fact that Eq. (6) is simply dr · F = 0
which from Eq. (1) gives dr · ∇P = 0 so that the characteristics
are orthogonal to ∇P and hence along surface P = const.

Since we have already determined the characteristics r =
rm gm(θ) all we need is the value of P along a radius vector at
any one angle θ, P(r, θ) is then constant along the characteristic.
Taking the angle as θm we therefore integrate

∂P
∂r
= −ρ

(
∂Φ

∂r
−Ω2 r sin2 θm

)
(17)

subject to the surface boundary condition that P(Ro, θm) is equal
to the value in the input model. As mentioned above the resulting
values for P(r, θm) will not be exactly the same as the values in
the input model, since ∂Φ/∂r for the converged model will not
be exactly the same as that in the input model.

3.4. Iteration to convergence

To start the iteration we take the initial guess at the density ρ(r, θ)
as the spherically symmetric density ρm(r) of the spherically av-
eraged input model, setting ρ = 0 r > Ro where Ro = r(N) is
the radius of the input model. We then successively repeat the
calculations described in Sects. 3.1 and 3.2 until the solution has
converged – convergence being defined as when the fractional
change in polar and equatorial radii between successive itera-
tions is less 10−9.

3.5. Structure of the surface layers

In general, for arbitrary Ω, the surfaces P = const. and ρ =
const. do not coincide. Hence the solution can have ρ = 0 on
surfaces P > 0. For the solution to be well behaved at the surface
we need curl (Ω2�) = 0, or Ω = Ω(�) in the surface layers
(� = r sin θ), so that ρ is constant on surfaces of constant P. We
force this to be the case in the example given below by taking
Ω = const. in the outer layers of the star.

The structure of the surface layers of a rotating star is a prob-
lem still waiting for a solution. Meridional circulation driven by
the rotation can become very large in regions of low density and
pressure, so that neglect of the momentum of such circulation
in the hydrostatic condition may become invalid; moreover the
circulation may be shear unstable producing small scale turbu-
lence. The time scale of the circulation is very small in these
layers so that transport of angular momentum is rapid and we
may anticipate that the system reaches a steady state. One possi-
ble steady state is where there is no circulation and the rotation
departs only very slightly from a constant value (cf. Roxburgh
1964; Osaki 1966), so that taking Ω = const. in the outer layers
is a reasonable approximation.

4. Acoustic models

In order to use such models in studies of the oscillation of rapidly
rotating stars we also need the value of the adiabatic expo-
nent Γ1(r, θ). Since P(r, θ), ρ(r, θ) are known, if we knew the
2-dimensional distribution of chemical composition X(r, θ) then
Γ1 could be determined from the equation of state. If all we are
given is the distribution of Xm(r) along the input radius at θm, and
we assume that X is constant on surfaces of constant entropy, we
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Fig. 1. Variation of ω = Ω/Ωs with radius in the spherically averaged
evolved model of a 2 M� star.

can determine the equation of adiabats r = rm h(θ), along which
X is constant, by solving the equations (∇P − Γ1∇ρ).dr = 0 or

dh
dθ
= − 1

rm

(∂P/∂θ − Γ1∂ρ/∂θ)
(∂P/∂r − Γ1∂ρ/∂r)

(18)

with Γ1 = Γ1(P, ρ, Xm) given by the equation of state this gives
Γ1 along the adiabatic surfaces r = rm h(θ). The values of Γ1 can
then be transferred to the mesh (ri, θ j) or to the characteristic
surfaces r = rm g(θ) by cubic interpolation.

This method is not satisfactory in convective zones where the
whole region is very nearly adiabatic but, since the composition
will be constant in such zones, Γ1 can be computed directly from
the known distribution of P and ρ and the known constant value
of X.

However, in the fully ionised interior of most stars where,
due to evolution, the values of X differ from the initial value X0,
the values of Γ1 are only weakly dependent on X. In the outer
layers, where Γ1 can vary considerably, the abundance X is un-
changed from its initial value X0. Given the uncertainties at-
tached to modelling the chemical evolution in rotating stars one
could determine approximate values of Γ1 by taking X constant
on characteristic surfaces (P = const.), thus avoiding the cal-
culation described in the preceding paragraphs. This will yield
acoustic models suitable for studying the effects of rapid rota-
tion on stellar oscillations.

5. An example, M = 2 M�, Xc = 0.35, Ω = Ω(r)

As an illustrative example we take Ω = Ωs ω(x) as a function
only of radius x = r/Ro, where ω(x), shown in Fig. 1, decreases
from a value of 3 in a central core to 1 in the outer envelope,
and has continuous derivatives. As mentioned in Sect. 3.5, with
Ω constant in the outer layers the solution is well behaved at
the surface. For the spherically averaged model we took a star
of M = 2 M� with an initial composition X = 0.72, Z = 0.02,
evolved to the stage where Xc = 0.35. The average centrifu-
gal force 2Ω2r/3 was added to the hydrostatic equation, the
remaining equations being those of spherical star. The dimen-
sionless angular velocity ω(x) was taken as fixed throughout
the evolution and Ωs determined by requiring conservation of
angular momentum for the star as a whole. The initial model
had radius R ≈ 2.5 R� and Ωs = 4.3 × 10−5 rad s−1 corre-
sponding to an equatorial velocity of ≈80 km s−1. The star was
evolved to a central hydrogen abundance Xc = 0.35, at which
stage Ωs = 1.296 × 10−4 rad s−1. The evolutionary track in
the H-R diagram is shown in Fig. 2, where we also show the

Fig. 2. HR diagram for M = 2 M� star with Ω = Ω(r) and with Ω = 0.
The initial conditions were X = 0.72, Z = 0.02, R = 2.5 R�, Ωs =
4.3 × 10−5 rad s−1.

Fig. 3. Characteristic surfaces (P = const.) in the 2-dimensional model
for x = r/Ro = 0, 1 in steps of 0.1 along the fitting angle θm =
cos−1(1/

√
3) denoted by the radial line.

evolutionary track for a non-rotating star with the same initial
conditions. Note the large effect of rapid rotation on the evolu-
tionary tracks.

The models were produced using the starox evolution code
(cf. Roxburgh 2005) with the OPAL2001 equation of state
(Rogers & Nayfonov 2002), OPAL GN93 (Iglesias & Rogers
1996) and Alexander & Ferguson (1994) opacities, NACRE
(Angulo et al. 1999) nuclear reaction rates, and a radial mesh
in mass with N = 2000 points.

The spherically averaged model was taken to represent the
2-dimensional model along the angle θm = cos−1(1/

√
3), and

the procedure described in Sect. 3 followed to produce the
2-d model. The angular mesh had Nj = 240 points and the mesh
for solving Poisson’s equation had Nk = 8 points. The character-
istic surfaces (P = const.) are shown in Fig. 3, the ratio of equa-
torial to polar radius of the model Re/Rp = 1.2841, the equatorial
rotational velocity Ve = 272.3 km s−1, and the ratio of centrifu-
gal force to gravity at the surface equator Ω2

s R3
e/GM = 0.587.

In Fig. 4 we show the variation of density along selected
characteristics which pass through the points with r/Ro =
0.4, 0.5, 0.6, 0.7 along the fitting angle θm. δρ/ρ = 0 for θ > θm
along the characteristic through r/Ro = 0.7 since this part of the
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Fig. 4. Variation of δρ/ρ along the characteristics through x = r/Ro =
0.4, 0.5.0, 6, 0.7 along the fitting angle θm.

Fig. 5. Variation of the Γ1 along the characteristics through x = r/Ro =
0.4, 0.5.0, 6, 0.7 along the fitting angle θm.

characteristic is in the uniformly rotating region where ρ, P are
constant along total potential surfacesΨ = Φ−Ω2�2/2 = const.
The other characteristics are in the differentially rotating region
where ρ is not constant on surfaces P = const. and δρ/ρ varies
by up to 25%, the maximum variation being on the characteristic
through x = 0.6.

In Fig. 5 we show the variation of Γ1 along these same char-
actersistics. δΓ1 = 0 along the characteristic with r/Ro = 0.7 for
θ > θm since this is in the uniformly rotating zone where both ρ
and X are constant on surfaces P = const. ρ is not constant on the
other characteristics so neither is Γ1. Again the largest variation
is on the characteristic through x = 0.6.

The mass of the spherically averaged input model was 2 M�.
As pointed out above the mass of the rapidly rotating model is
slightly changed from this due to the two dimensional redistri-
bution of density; the mass of the 2-d model being = 1.9995 M�.

6. Discussion

The aim of this paper was to show how one can construct mod-
erately realistic hydrostatic and acoustic 2-dimensional models
of rapidly rotating evolved stars with any Ω(r, θ), given the run
of density ρm(r) and hydrogen profile Xm(r) along any one an-
gle θm(r), given by some spherically averaged model of evolved
rotating stars. It should be noted that in calculating the hydro-
static structure we do not require that the star be in thermal

equilibrium; the oscillation properties of a star do not depend
on whether or not the star is in thermal equilibrium, only that it
be in hydrostatic equilibrium with known Γ1. The thermal equi-
librium of a rotating star depends on the contribution from the
transport of energy by circulation currents and by weak turbu-
lence generated by instabilities driven by the circulation and dif-
ferential rotation. There is considerable uncertainty in modelling
these processes and further work is needed in this area (see e.g.
Mathis & Zahn 2004, 2005). The assumptions that go into cal-
culating the structure of the 1-dimensional spherically averaged
model are simply carried over into the 2-dimensional models.

The model calculated here takes the 1-d spherically averaged
model to represent the 2-dimensional model along the angle
θm = cos−1(1/

√
3). For shellular rotation Ω = Ω(r) this is what

is assumed in the 1-d models when adding the averaged cen-
trifugal force, 2Ω2r/3, to gravity in the equation of hydrostatic
support. It also is the case for slow rotation where, with Ω(r), all
variables V can be expressed as V(r, θ) = V0(r)+V2(r) P2(cos θ)
where P2 is the second Legendre polynomial. The average over
a sphere is then the value at the root of P2(cos θ), namely θm =
cos−1(1/

√
3). For a general rotation law Ω = Ω(r, θ) this is no

longer the case. The mean value of Ω2r2 sin2 θ averaged over a
sphere is not equal 2Ω2r/3 and the angle θm along which the 1-d
model represents the spherically averaged model depends on the
particular Ω(r, θ). Such more general 1-d spherically averaged
models have yet to be calculated.

However we can still construct consistent 2-dimensional
acoustic models that can be used to investigate the oscillation
properties of stars with arbitraryΩ(r, θ). To construct such mod-
els all we require is the distribution of Ω(r, θ) and the run of
ρ(r), X(r) along any one angle θn, these do not even need to be
the output of a particular 1-d model of the evolution of rotating
stars, nor does θn have to be the angle corresponding to a spher-
ical average. Models with given ρ(r), X(r) constructed with dif-
ferent fitting angles θn will differ, but they will nevertheless all
be self consistent 2-d acoustic models. This is important since it
provides a recipe for generating a wide range of acoustic models
that can be used to study the effects of rotation and internal struc-
ture on the oscillation properties of stars, and hence to develop
diagnostic tools for probing the rotation and structure of stars us-
ing observational data on frequencies obtained from ground and
space experiments.

For example, were we to take the spherically averaged model
with Ω = Ω(r) as being the 2-d model along the pole (θ = 0),
our algorithm would still yield a fully self consistent 2-d acoustic
model. It would not be the same model as that obtained by taking
the fitting angle as cos−1(1/

√
3), but it would still be a consistent

acoustic model.

If the angular velocity Ω = const. throughout the star the al-
gorithm presented here reduces to that for uniform rotation pre-
sented in Paper I (Roxburgh 2004). The characteristics are the
surfaces P = const., from Eq. (7) ρ is constant on these surfaces,
which are therefore total potential surfaces Ψ = Φ − Ω2�2/2 =
const. Eq. (8) gives the shape of these surfaces, the algorithm
for determing Φ in Sect. 3.2 is the same as that in Paper I, and
Eq. (17) for P is equivalent to dP/dΨ = −ρ. However in Paper I
we calculated the full 2-dimensional structure of the rotating star
which gave the solution along any angle not just along the angle
θm = cos−1(1/

√
3). Thus we can take as input to the algorithm

presented in this paper the values of ρ(r, θn) at any angle θn;
the solutions obtained for different θn should be, and are, all the
same, since the input model is the solution of 2-d equations.
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From the results given in Paper I we can test the ac-
curacy of taking a 1-d spherically averaged model along
θm = cos−1(1/

√
3). In Table 6 of Paper I the last entry for Nk = 1

corresponds to the spherically averaged approximation with any
variable V(r, θ) = V0(r) + V2(r) P2(cos θ). For uniform rotation
the error in using the spherical average approximation is ≤10−4

for Ω ≤ 0.83Ωcrit where Ωcrit is the maximum permitted value
of Ω when centrifugal force balances gravity at the equator.

The example given in this paper has the angular velocity
varying only with radius Ω = Ω(r); this makes the calcula-
tion relative simple. But it can be argued that a more realis-
tic model would have the angular velocity constant along adi-
abats S = const. and therefore Ω = Ω(S ); since the adiabats
are not spheres this implies Ω = Ω(r, θ). The method of con-
structing acoustic models described here is for a general, but pre-
scribed, distribution Ω(r, θ); to generate models with Ω = Ω(S )
requires another level of iteration for the distribution of Ω. One
can see how such models could be produced. Starting with the
same input of ρm(r),Ω(r), Xm(r) along a specified angle θm,
one constructs a 2-d model as described above. This gives the
P(r, θ), ρ(r, θ), X(r, θ) and the surfaces of constant entropy (or
adiabats). Taking Ω constant along adiabats gives a new distri-
bution of Ω(r, θ) with which a new model is determined. This
process is then iterated to convergence. Implementation of this
procedure is the subject of future investigations.
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