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ABSTRACT

We present the spectrophotometric properties of a sample of 141 emission-line galaxies at redshifts in the range 0.2 < z < 1.0 with a peak
around z ∈ [0.2, 0.4]. The analysis is based on medium resolution (Rs = 500−600), optical spectra obtained at VLT and Keck. The targets are
mostly “Canada-France Redshift Survey” emission-line galaxies, with the addition of field galaxies randomly selected behind lensing clusters.
We complement this sample with galaxy spectra from the “Gemini Deep Deep Survey” public data release. We have computed absolute
magnitudes of the galaxies and measured the line fluxes and equivalent widths of the main emission/absorption lines. The last two have been
measured after careful subtraction of the fitted stellar continuum using the platefit software originally developed for the SDSS and adapted
to our data. We present a careful comparison of this software with the results of manual measurements. The pipeline has also been tested on
lower resolution spectra, typical of the “VIMOS/VLT Deep Survey” (Rs = 250), by resampling our medium resolution spectra. We show that
we can successfully deblend the most important strong emission lines. These data are primarily used to perform a spectral classification of the
galaxies in order to distinguish star-forming galaxies from AGNs. Among the initial sample of 141 emission-line galaxies, we find 7 Seyfert 2
(narrow-line AGN), 115 star-forming galaxies and 16 “candidate” star-forming galaxies. Scientific analysis of these data, in terms of chemical
abundances, stellar populations, etc., will be presented in subsequent papers of this serie.
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1. Introduction

Understanding the major steps in the evolution of galaxies still
remains a great challenge to modern astrophysics. While the
general theoretical framework of the hierarchical growth of
structures in the universe including the build up of galaxies is
well in place, this picture remains largely unconstrained by ob-
servations, especially at high redshifts. Statistically significant
samples of galaxies, from the local Universe to the highest red-
shifts, are crucial to constrain the models of galaxy formation

� Based on observations collected at the Very Large
Telescope, European Southern Observatory, Paranal, Chile (ESO
Programs 64.O-0439, 65.O-0367, 67.B-0255, 69.A-0358, and
72.A-0603).
�� Tables 6–9 are only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/448/893

and evolution. Indeed, comparing the physical properties (star
formation rate, extinction, chemical abundances, kinematics,
mass, stellar populations, etc.) of galaxies at different epochs
will allow us to study the evolution with redshift of funda-
mental scaling relations such as the Luminosity-Metallicity or
the Tully-Fisher relations and hence put strong constraints on
galaxy formation and evolution models.

Thanks to recent massive surveys (“Sloan Digital Sky
Survey” SDSS, Abazajian et al. 2003, 2004; “2degree Field
Galaxy Redshift Survey” 2dFGRS, Colless et al. 2001), large
spectroscopic samples of galaxies are now available in the
local universe, giving access to the detailed physical proper-
ties of galaxies as a function of their environment for more
than ∼100 000 of them. Similar massive spectroscopic sur-
veys are being carried out on the largest ground-based tele-
scopes to explore the high-redshift (0.2 < z < 4) universe
(e.g. “VIMOS/VLT Deep Survey” VVDS, Le Fèvre et al. 2003;
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“Deep Extragalactic Evolutionary Probe” DEEP, Koo &
DEEP Team 2002; etc...). The main goal of these surveys is
to study the evolution of galaxies, large-scale structures, and
Active Galactic Nuclei (AGN) over more than 90% of the cur-
rent age of the universe (e.g. Le Fèvre et al. 2004). Most previ-
ous studies of intermediate-redshift (z ∼ 0.2−1) galaxies have
been driven by the “Canada-France Redshift Survey” (CFRS,
Lilly et al. 1995) which produced a unique sample of 591 field
galaxies with IAB < 22.5 in the range 0 < z < 1.4 with
a median redshift of ∼0.56 (Lilly et al. 1995). Deep multi-
color (B,V, I and K) photometry is available for most galaxies
and several objects have been observed with the Hubble Space
Telescope (HST, Brinchmann et al. 1998) providing useful
complementary informations on the morphology (Lilly et al.
1998; Schade et al. 1999) and the level of interactions (Le Fèvre
et al. 2000) of galaxies up to z ∼ 1. This survey has been, for
some years, a unique tool for statistical studies of the evolu-
tion of field galaxies as a function of redshift. However, be-
cause of the low spectral resolution (∆λ ∼ 40 Å) and limited
signal-to-noise ratio (hereafter SNR) of original CFRS spec-
tra, no reliable estimate of crucial physical properties, such
as chemical abundances and reddening, have been determined
from these data.

Subsequent spectrophotometric studies of intermediate-
redshift galaxies have been performed by various authors on
smaller samples (e.g. Guzman et al. 1997; Kobulnicky &
Zaritsky 1999; Hammer et al. 2001; Contini et al. 2002; Lilly
et al. 2003; Kobulnicky et al. 2003; Liang et al. 2004a,b; Maier
et al. 2004). Most of these studies were focused on galaxies
with either a peculiar morphology (e.g. compact and lumi-
nous galaxies; Guzman et al. 1997; Hammer et al. 2001) or
selected in a special wavelength domain: UV-bright (Contini
et al. 2002), infrared-bright (Liang et al. 2004a), or narrow-
band selected galaxies (Maier et al. 2004).

Thanks to the new class of multi-object spectrograph and
to the associated large and deep surveys (VVDS, DEEP, etc.),
a large amount of spectrophotometric data will now become
available. One of the goals of this paper is to review all the
technical issues that can be involved in the reduction and anal-
ysis process of these large datasets, together with the scientific
results that can be drawn from these studies. This will allow
us to define a standard pipeline with particular care taken to
optimise it for the VVDS.

This paper builds up on previous work dedicated to the
spectrophotometric analysis of SDSS data (e.g. Tremonti et al.
2004; Brinchmann et al. 2004), in which a large part of the
pipeline has been described already. In this paper, we describe
how we adapt the existing pipeline to the study of intermediate-
redshift galaxies observed at a lower spectral resolution and
SNR than the SDSS galaxies. In order to do that, we defined
a sample of ∼140 galaxies at intermediate redshifts (0.2 <
z < 1.0) showing a large range of physical properties. Using
medium-resolution optical spectra mainly acquired with the
FORS (FOcal Reducer Spectrograph) instruments on the VLT,
we derived their spectrophotometric properties, with a particu-
lar attention on defining an automatic process which will be
mandatory to analyze large surveys. We also investigate the

effect of spectral resolution on the derived quantities, as large
surveys like VVDS are based on low-resolution spectra.

This first paper focuses on the general reduction pipeline,
photometric properties and emission-line measurements. The
scientific analysis of this sample in terms of stellar popula-
tions, chemical abundances, etc., will be presented in subse-
quent papers.

This paper is organized as follow: we first describe our sam-
ple in Sect. 2, and then the observations and associated data
reduction in Sect. 3. We present the spectroscopic analysis in
Sect. 4 and the photometric data in Sect. 5. Finally we perform
a spectral classification of our sources in Sect. 6.

2. Sample description

2.1. The parent samples

The CFRS produced a large and homogeneous sample of field
galaxies with measured redshifts and morphological proper-
ties. This gives us the opportunity to select interesting galax-
ies at intermediate redshifts in order to acquire new spectra
with a better spectral resolution and SNR than the original
ones. We thus decided to select and re-observe a sub-sample
of CFRS galaxies selected in three of the five CFRS fields
visible from Paranal (Chile), namely CFRS 0000+00 (here-
after CFRS00), CFRS 0300+00 (hereafter CFRS03), and
CFRS 2215+00 (hereafter CFRS22). In addition to this main
sample, we acquired spectra for some new and unidentified
galaxies selected to fill the slits in the FORS masks. This
sample of 63 galaxies is called the “CFRS sub-sample” (see
Table 1).

In addition, we decided to take advantage of some se-
ries of spectra previously observed by the “Galaxies” team in
Toulouse and their collaborators. They were essentially sam-
ples of galaxies inside massive lensing clusters, but, in or-
der to complete the masks, some foreground or background
field galaxies were observed. These 48 field galaxies form the
“CLUST sub-sample” (see Table 2).

Finally, we added a sample of public available spectra from
the “Gemini Deep Deep Survey” (GDDS, Abraham et al. 2004)
to cover the high redshift end (i.e. 0.4 < z < 1.0). We selected
31 emission-line spectra which form the “GDDS sub-sample”
(see Table 3).

2.2. Selection criteria

The main goal of our program is to probe the physical proper-
ties of star-forming galaxies at intermediate redshifts. We thus
selected, among the CFRS sub-sample, galaxies with narrow
emission lines as quoted in the literature, thus excluding galax-
ies with broad Balmer emission lines typical of AGN. In order
to obtain spectra with a sufficient SNR in a reasonable exposure
time, we limited ourselves to galaxies brighter than an appar-
ent V-band magnitude VAB = 23 (on the CFRS sub-sample).
In order to fill the MOS masks, some galaxies without emis-
sion lines were also observed. Although we will not include
these objects in the present analysis, their spectra have been
reduced for possible future use. After the basic data reduction
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Table 1. The CFRS sub-sample. a Unique identification number (this
work, please use the acronym “LCL05”, for reference). b CFRS id
if available. c Redshift (see Sect. 3.2 for redshift determination).
d Signal-to-noise ratio of the continuum at∼5500 Å or ∼3500 Å (noted
by the symbol ∗). e Maximum signal-to-noise ratio of the strongest
emission line. f “a” flag means the emission lines were manually mea-
sured on this spectrum, “c” flag means this spectrum was a combina-
tion of two observations.

LCL05a CFRSb J2000 (α, δ) zc S/Nd
c S/Ne

m
f

field: CFRS00
001 00 02 46.93 − 00 39 01 0.3405 7.2 17 a
002 00 02 43.10 − 00 40 48 0.6157 7.3∗ 23 a
003 00 02 41.53 − 00 40 01 0.3409 11.1 58 a
004 00.0852 00 02 39.83 − 00 41 02 0.2682 13.1 50 a
005 00.0861 00 02 39.41 − 00 41 40 0.2682 19.7 19
006 00.0900 00 02 37.06 − 00 40 36 0.2470 8.7 33 a
007 00.0940 00 02 35.58 − 00 41 06 0.2694 13.5 26
008 00.1013 00 02 32.97 − 00 41 33 0.2437 7.5 34
009 00.0124 00 02 29.91 − 00 41 42 0.2880 8.5 16
010 00.0148 00 02 28.19 − 00 41 16 0.2672 14.0 39 c
011 00.1726 00 02 48.51 − 00 41 35 0.2959 16.1 55 a
012 00.0699 00 02 44.91 − 00 41 23 0.0874 11.6 17
013 00 02 44.59 − 00 39 52 0.2489 11.2 21 a
014 00 02 38.75 − 00 40 21 0.3902 7.2 7 a
015 00.1057 00 02 34.15 − 00 41 31 0.2432 5.8 30 a
016 00.0121 00 02 30.16 − 00 41 35 0.2975 12.8 228 a
017 00.0229 00 02 23.26 − 00 41 23 0.2453 13.9 18
field: CFRS03
018 03.1184 03 02 49.28 + 00 13 37 0.2046 7.3 30 c
019 03.1343 03 02 49.56 + 00 11 58 0.1889 5.0 33
020 03.0442 03 02 44.89 + 00 13 45 0.4781 6.3∗ 27 c
021 03.0476 03 02 43.11 + 00 14 13 0.2601 13.4 73 ac
022 03.0488 03 02 42.16 + 00 13 24 0.6049 5.6∗ 38 a
023 03.0507 03 02 40.44 + 00 14 03 0.4648 6.9∗ 30
024 03.0523 03 02 39.34 + 00 13 27 0.6532 7.0∗ 47 ac
025 03.0578 03 02 35.19 + 00 14 10 0.2188 7.4 32
026 03.0605 03 02 33.01 + 00 14 07 0.2189 9.6 54 ac
027 03.0003 03 02 31.85 + 00 13 18 0.2186 4.3 46 ac
028 03.0037 03 02 29.48 + 00 14 13 0.1744 26.0 86 ac
029 03.0046 03 02 28.67 + 00 13 33 0.5123 5.5∗ 18 c
030 03.0085 03 02 25.24 + 00 13 24 0.6083 4.1∗ 23 c
031 03.0096 03 02 24.29 + 00 12 28 0.2189 7.8 60 ac
field: CFRS22
032 22.0502 22 17 58.26 + 00 14 29 0.4682 6.0 15
033 22.0585 22 17 55.60 + 00 16 59 0.2940 11.9 32 c
034 22.0671 22 17 53.03 + 00 18 27 0.3175 15.5 67 ac
035 22.0819 22 17 48.76 + 00 17 18 0.2910 10.4 36 ac
036 22.0855 22 17 47.88 + 00 16 28 0.2105 13.6 100 a
037 22.0975 22 17 45.12 + 00 14 47 0.4189 6.8 21
038 22.1013 22 17 44.31 + 00 15 05 0.2307 14.4 76 a
039 22.1084 22 17 42.53 + 00 14 21 0.2928 16.3 52 ac
040 22.1203 22 17 39.54 + 00 15 25 0.5384 9.5∗ 69 c
052 22.0474 22 17 58.70 + 00 21 11 0.2794 8.0 119 a
053 22.0504 22 17 58.07 + 00 21 37 0.5382 10.9∗ 66 a
054 22.0637 22 17 54.01 + 00 21 26 0.5422 16.4∗ 83 a
055 22.0642 22 17 53.77 + 00 22 05 0.4687 3.7∗ 10 a
056 22.0717 22 17 51.63 + 00 21 46 0.2787 19.6 38
057 22.0823 22 17 48.57 + 00 21 27 0.3333 24.6 28
058 22.1082 22 17 42.49 + 00 21 05 0.2918 4.7 71
059 22 17 44.00 + 00 23 21 0.2765 8.6 28 a
060 22.1144 22 17 40.75 + 00 21 46 0.3586 5.0 21 a
061 22.1220 22 17 38.82 + 00 21 19 0.3583 8.9 29 a
062 22.1231 22 17 38.42 + 00 22 13 0.2846 16.8 82 a
063 22.1309 22 17 36.18 + 00 21 24 0.2847 5.2 23
041 22 17 53.01 + 00 19 14 0.2164 2.7 9
042 22 17 53.48 + 00 19 25 0.3524 2.2 22 a
043 22.0622 22 17 54.58 + 00 16 58 0.3237 6.4 20
044 22 17 46.54 + 00 17 13 0.2764 19.9 24
045 22.0919 22 17 46.48 + 00 16 53 0.4712 6.1∗ 158 ac
046 22 17 46.99 + 00 16 23 0.6515 7.3∗ 35
047 22 17 47.12 + 00 16 26 0.4716 2.8∗ 24
048 22.0903 22 17 46.76 + 00 15 45 0.2948 4.6 22 c
049 22.0832 22 17 48.44 + 00 15 15 0.2306 25.1 91 ac
050 22.1064 22 17 43.08 + 00 15 08 0.5369 4.4∗ 42 ac
051 22.1339 22 17 35.39 + 00 14 34 0.3842 6.1∗ 78 ac

Table 2. The CLUST sub-sample. Same legend as Table 1. g alter-
native identification number if available (LBP2003: Le Borgne et al.
2003, CBB2001: Couch et al. 2001, CPK2001: Campusano et al.
2001, SKK2001: Smail et al. 2001).

LCL05a altg J2000 (α, δ) zc S/Nd
c S/Ne

m

field: a2218

136 SKK2001 368 16 35 59.12 + 66 12 01.3 0.6926 4.0∗ 17
137 SKK2001 159 16 35 45.02 + 66 12 44.7 0.4730 5.7∗ 24
138 16 35 40.48 + 66 13 06.0 0.4491 1.4 6

field: a2390

064 21 53 38.10 + 17 43 48.0 0.2412 13.6 70
065 21 53 40.01 + 17 44 07.2 0.0665 6.1 214
066 21 53 28.00 + 17 39 01.1 0.4261 1.0 8
067 21 53 25.34 + 17 39 44.4 0.4500 3.3 10
068 21 53 30.42 + 17 39 16.4 0.6291 2.6∗ 11
069 21 53 26.84 + 17 40 43.4 0.2213 6.8 38
070 21 53 29.30 + 17 40 26.8 0.7392 6.1∗ 27
071 21 53 33.45 + 17 40 53.2 0.5263 3.9 29
072 21 53 39.42 + 17 43 50.6 0.3425 4.8 15
141 21 53 33.02 + 17 41 56.8 0.3982 5.7 33

field: a963

139 10 17 04.82 + 39 02 27.2 0.7307 1.2 27
140 10 17 04.57 + 39 02 25.3 0.7307 2.4 25

field: ac114

073 LBP2003 b 22 58 37.19 − 34 49 27.8 0.2605 10.6 42
074 22 58 43.42 − 34 48 04.8 0.0965 13.7 253
075 CBB2001 796 22 58 54.75 − 34 48 26.8 0.0985 10.2 28
076 LBP2003 h 22 58 43.35 − 34 49 36.5 0.3207 21.5 54
077 LBP2003 c 22 58 43.07 − 34 48 48.1 0.2999 19.8 47
078 CPK2001 V7 22 58 45.60 − 34 49 03.9 0.5669 9.3∗ 27
079 CPK2001 V6 22 58 50.94 − 34 47 26.5 0.4095 5.0∗ 16
080 CBB2001 688 22 58 41.83 − 34 49 06.1 0.3304 8.5 34
081 CPK2001 V11 22 58 57.46 − 34 47 06.8 0.3805 2.5 13
082 CPK2001 V9 22 58 56.56 − 34 46 58.6 0.4121 7.2∗ 17
083 22 58 54.94 − 34 46 32.6 0.7262 11.7∗ 111
084 CBB2001 453 22 58 37.48 − 34 50 16.2 0.4100 4.2∗ 24
085 22 58 35.92 − 34 49 26.9 0.7186 3.0∗ 20
086 22 58 35.20 − 34 48 59.0 0.4125 2.6 11
087 22 58 42.52 − 34 49 26.8 0.4092 1.3∗ 9
088 22 58 41.11 − 34 48 48.2 0.7571 4.8∗ 70

field: cl1358

142 13 59 48.33 + 62 31 18.4 0.4069 1.6 72

field: cl2244

089 22 47 14.75 − 02 03 25.1 0.5628 5.8∗ 23
090 22 47 14.63 − 02 08 12.9 0.5651 5.4∗ 34
091 22 47 13.62 − 02 07 36.5 0.7865 7.8∗ 27
092 22 47 08.58 − 02 07 05.4 0.3289 4.6 57
093 22 47 08.35 − 02 06 38.8 0.6402 5.1∗ 36
094 22 47 07.04 − 02 04 28.6 0.5701 2.4∗ 17
095 22 47 09.56 − 02 07 15.7 0.3416 3.9 13
096 22 47 14.16 − 02 06 51.8 0.4386 3.3∗ 15
097 22 47 11.35 − 02 06 29.6 0.5724 4.8∗ 17
098 22 47 11.08 − 02 06 19.5 0.5717 2.9∗ 15

field: j1206

099 12 06 13.71 − 08 51 01.3 0.3555 7.9 21
100 12 06 10.29 − 08 45 53.7 0.3547 5.6 26
101 12 06 09.66 − 08 50 44.4 0.3547 8.6 18
102 12 06 10.97 − 08 50 22.3 0.4280 10.0 13
103 12 06 13.18 − 08 48 26.8 0.4759 6.6 21
104 12 06 07.74 − 08 47 21.2 0.4522 5.2∗ 19
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Table 3. The GDDS sub-sample. Same legend as Table 1.

LCL05a GDDS id J2000 (α, δ) z
field: NOAO-Cetus
105 02-0452 02 09 49.51 − 04 40 24.49 0.828
106 02-0585 02 09 50.13 − 04 40 07.55 0.825
107 02-0756 02 09 43.49 − 04 39 43.11 0.864
108 02-0995 02 09 48.09 − 04 38 54.39 0.786
109 02-1134 02 09 44.46 − 04 38 33.46 0.913
110 02-1724 02 09 37.13 − 04 36 02.61 0.996
field: NTT Deep
111 12-5337 12 05 18.75 − 07 24 57.19 0.679
112 12-5513 12 05 16.62 − 07 24 43.70 0.611
113 12-5685 12 05 15.21 − 07 24 28.16 0.960
114 12-5722 12 05 20.96 − 07 24 22.27 0.841
115 12-6456 12 05 19.15 − 07 23 45.64 0.612
116 12-6800 12 05 18.14 − 07 23 21.97 0.615
117 12-7099 12 05 26.34 − 07 22 53.02 0.567
118 12-7205 12 05 15.47 − 07 22 58.00 0.568
119 12-7660 12 05 26.83 − 07 22 07.83 0.791
120 12-7939 12 05 31.39 − 07 20 37.77 0.664
121 12-8250 12 05 17.24 − 07 20 02.97 0.767
field: SA22
122 22-0040 22 17 32.22 + 00 12 45.91 0.818
123 22-0145 22 17 47.08 + 00 13 17.40 0.754
124 22-0563 22 17 36.84 + 00 15 27.22 0.787
125 22-0619 22 17 45.85 + 00 16 42.48 0.673
126 22-0630 22 17 32.36 + 00 16 16.28 0.753
127 22-0643 22 17 38.32 + 00 16 59.41 0.788
128 22-0751 22 17 46.55 + 00 16 26.68 0.471
129 22-0926 22 17 31.36 + 00 17 48.10 0.786
130 22-1534 22 17 37.87 + 00 17 45.88 0.470
131 22-1674 22 17 49.22 + 00 17 14.32 0.879
132 22-2196 22 17 44.16 + 00 15 21.56 0.627
133 22-2491 22 17 37.66 + 00 14 12.38 0.471
134 22-2541 22 17 32.94 + 00 13 58.92 0.617
135 22-2639 22 17 46.70 + 00 13 31.93 0.883

process (see Sect. 3), we selected only the spectra with “vis-
ible” (i.e. from visual examination, signal-to-noise ratio of at
least 5) emission lines and a good overall SNR of the contin-
uum (at least 10). We also want the spectrum to show at least
[Oii]λ3727, Hβ and [Oiii]λ5007 lines in order to derive the
metallicity of the galaxies.

We do not aim to construct any volume-limited, magnitude-
limited, or emission-line flux-limited sample. Our main con-
cern is to build a sample of star-forming galaxies selected
by their bright emission lines. However, we must point out
that this selection criterion introduces some biases. First the
very high or very low metallicity objects will not be selected
(i.e. [Oiii] lines are too weak). Second, very dusty and thus
very strongly reddened galaxies are not selected in our sample.

3. Spectroscopic data

3.1. Observations and data reduction

Spectrophotometric observations of the “CFRS sub-sample”
were performed during two observing runs (periods P65

and P67) with the ESO/VLT at Paranal (Chile). Two nights
(July 1st and August 28th, 2000) were devoted to the first run
(ESO 65.O-0367) during which we observed three masks: two
in the CFRS22 field and one in the CFRS00 field. We used the
FORS1 spectrograph mounted on the ANTU unit of the VLT.
The exposure time for each mask was divided into four ex-
posures of 40 min, leading to a total exposure time per mask
of 2h40min. Two other nights (June 25th and September 13th,
2001) were allocated for the second run (ESO 67.B-0255).
For this run, we used both the FORS1 and FORS2 spec-
trograph mounted on the ANTU and KUEYEN units of the
VLT respectively. We observed three more masks: one in the
CFRS22 field (total exposure time = 8 × 25 min = 3h20min),
one in the CFRS00 field (total exposure time = 6 × 25 min =
2h30min), and one in the CFRS03 field (total exposure time =
8 × 25 min = 3h20min).

The instrumental configuration was the same for all the
observations. MOS masks have been produced using the
FIMS software. Pre-images (5 min exposure time in rGunn band)
for each field have been acquired for an accurate position-
ing and orientation of the MOS masks. The GRIS300V grism
has been used to cover a total possible wavelength range of
∼4500–8500 Å with a resolution Rs = 500. The effective wave-
length range depends on the position of the slit/galaxy in the
MOS mask, being shorter at the edges of the mask. The slit
width was 1′′ yielding a nominal resolution of ∼15 Å. The
GG435+31 light blocking filter was used to avoid any second-
order contamination in the red part of the spectrum.

Most spectra of the “CLUST sub-sample” have been
obtained during the run ESO 072.A-0603 with FORS2 on
VLT/KUEYEN dedicated to the observation of background
galaxies magnified by massive clusters. As the main targets
do not fill the whole masks, slits have been designed on clus-
ter and foreground galaxies, as well as background unmagni-
fied galaxies. The clusters observed were Abell 2390, AC 114
and Clg 2244-02 (hereafter Cl2244). FORS2 in MXU mode
has been used with the GRIS300V grism and an order sort-
ing filter GG375, allowing a useful wavelength range from
4000 Å to 8600 Å, and yielding a wavelength resolution of
Rs = 500. The observations were made in service mode be-
tween August 29th and September 3rd, 2003. For each cluster
mask, a total exposure time of ∼4 h was obtained. A 1′′ slit
width was used for each slit. Similar spectra were obtained on
April 11th 2002 during a visitor mode run (ESO 69.A-0358)
on cluster MACS J1206.2-0847 (hereafter J1206) with the
FORS1 spectrograph on VLT/MELIPAL (see Ebeling et al.,
in preparation). The GRIS300V grism and a 1′′-width slit were
used, yielding a wavelength coverage between ∼4000 Å and
8600 Å, and a wavelength resolution of Rs = 500. An or-
der sorting filter GG375 was used. The total exposure time
was 38 min. The additional AC 114 data were obtained on
October 5, 1999 during the run ESO 64.O-0439 with FORS1 on
VLT/ANTU (UT1) telescope. The same G300V and 1′′-width
slit were used. These observations were also part of a pro-
gram to study magnified background galaxies. The wave-
length coverage is ~4000–8000 Å and the resulting resolu-
tion 500. Depending on the mask used, the exposure times were
2h15min, 1h30min or 1h17min (see Campusano et al. 2001).
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Table 4. Summary of spectroscopic observations.

LCL05 ids instrument/telescope run λ range (Å) resolution slit width/lentgh exposure time

001-010 FORS1 / VLT 65.O-0367 4500–8500 Rs = 500 1′′ / 22′′ 4 × 40 min

010-017 FORS2 / VLT 67.B-0255 4500–8500 Rs = 500 1′′ / 22′′ 6 × 25 min

018-031 FORS1 / VLT 67.B-0255 4500–8500 Rs = 500 1′′ / 22′′ 2 × 25 min

018-031(c) FORS2 / VLT 67.B-0255 4500–8500 Rs = 500 1′′ / 22′′ 6 × 25 min

032-040 FORS1 / VLT 65.O-0367 4500–8500 Rs = 500 1′′ / 22′′ 4 × 40 min

033-040(c) / 042-051 FORS2 / VLT 67.B-0255 4500–8500 Rs = 500 1′′ / 22′′ 6 × 25 min

034-040(c) / 041 / 045-051(c) FORS1 / VLT 67.B-0255 4500–8500 Rs = 500 1′′ / 22′′ 2 × 25min

052-063 FORS1 / VLT 65.O-0367 4500–8500 Rs = 500 1′′ / 22′′ 4 × 40 min

064-072 / 083-098 FORS2 / VLT 72.A-0603 4000–8600 Rs = 500 1′′ / 22′′ ∼4 h

073-082 FORS1 / VLT 64.O-0439 4000–8000 Rs = 500 1′′ / 22′′ 2h15min, 1h30min or 1h17min

099-104 FORS1 / VLT 69.A-0358 4000–8600 Rs = 500 1′′ / 22′′ 38 min

136 / 142 LRIS / Keck 2001A 3800–10 000 Rs ≈ 2000 1′′ / 175′′ 33 min

137-140 LRIS / Keck 2002A 3800–10 000 Rs ≈ 2000 1′′ / 175′′ 33 min

141 LRIS / Keck 2002B 3800–10 000 Rs ≈ 2000 1′′ / 175′′ 33 min

105-135 GMOS / Gemini GDDS 5500–9200 Rs ≈ 630

The remaining spectra in the “CLUST sub-sample” (with
LCL05# ≥ 136) are more magnified objects serendipitously
found during a long-slit search for Lyman-α emitters at high
redshift along the critical lines of the clusters Abell 963,
Abell 2218, Abell 2390 and Clg 1358+62 (Santos et al. 2004;
Ellis et al. 2001). The double-beam Low Resolution Imaging
Spectrograph (LRIS, Oke et al. 1995) was used on the Keck
telescope with a 1′′-width long and 175′′-length long slit,
a 600-line grating blazed at λ 7500 Å (resolution ∼ 3.0 Å) for
the red channel and a 300-line grism blazed at 5000 Å with a
dichroic at 6800 Å (resolution ∼ 3.5–4.0 Å) for the blue chan-
nel of the instrument. More details on these observations are
given in Santos et al. (2004).

Data reduction was performed in a standard way with
IRAF packages. In particular, the extraction of the 1D spectra
and the computation of SNR for each spectrum have been per-
formed with the IRAF package apall. The wavelength calibra-
tion used He-Ar arc lamps and flux calibration have been done
using spectrophotometric standard stars observed each night.
Two examples of FORS spectra of CFRS galaxies are shown in
Fig. 1.

Spectroscopic observations of the GDDS sub-sample have
been done with GMOS spectrograph on the Gemini North
telescope between August 2002 and August 2003. The spec-
tra cover a typical wavelength range of 5500 Å to 9200 Å
with a wavelength resolution of approximately Rs ≈ 630 (see
Abraham et al. 2004 for full details).

The spectroscopic observation details are summarized in
Table 4.

3.2. Redshift distribution

The redshift of galaxies were derived using the centroid of the
brightest emission lines: [Oii]λ3727, [Oiii]λ5007, Hβ and Hα
when available. In case of doubt, we tried to adjust a stellar
template to the continuum. Our redshifts agree with the pub-
lished ones to within 1% for the re-observed CFRS galaxies.

Fig. 1. Examples of VLT/FORS spectra of intermediate-
redshift CFRS galaxies. Bottom panel: a low-metallicity galaxy
(CFRS 00.0121) with a high collisional excitation degree. Top panel:
a high-metallicity galaxy (CFRS 03.0037). The position of the
brightest emission lines is indicated.

Figure 2 shows the histogram of the measured redshifts.
The redshift distribution is dominated by galaxies in the range
z ∈ [0.2, 0.4]. This is a result of our selection criteria which fa-
vor galaxies showing both [Oii]λ3727 and Hα emission lines.
This population is complemented by a number of galaxies with
z ∈ [0.4, 1.0] leaving us with a statistically significant, although
not complete, sample of 141 galaxies spanning the redshift
range 0.2 to 1.0.
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Fig. 2. Redshift histogram of our sample of intermediate-redshift
galaxies (bottom-left: all sample, top-left: “CFRS sub-samble”, top-
right: “CLUST sub-sample”, bottom-right: “GDDS sub-sample”).
The number of galaxies is calculated per 0.05 redshift bin.

4. Spectroscopic analysis

4.1. Continuum fitting and subtraction

4.1.1. The software

For the spectral fitting we have adapted the platefit
IDL code developed primarily by C. Tremonti. The code is dis-
cussed in detail in Tremonti et al. (2004), but for the benefit of
the reader we outline the key features here.

The continuum fitting is done by fitting a combination of
model template spectra (discussed below) to the observed spec-
trum with a non-negative linear least squares fitting routine.
The strong emission lines are all masked out when carrying out
this fit. The fitted continuum is then subtracted from the ob-
ject spectrum together with smoothed continuum correction to
take out minor spectrophotometric uncertainties. The residual
spectrum contains the emission lines.

The fit to the emission lines is carried out by fitting
Gaussians in velocity space to an adjustable list of lines. All
forbidden lines are tied to have the same velocity dispersion
and all Balmer lines are also tied together to have the same
velocity dispersion. This improves the fit for low SNR lines,
but for the present sample this is not of major importance.
The weak [Nii]λ6548 and [Nii]λ6584 emission lines, which
are closed to the Hα emission line at our working resolution,
are tied together so that the line ratio [Nii]λ6584/[Nii]λ6548
is equal to the theoretical value 3. The [Oii]λλ3726, 3729 line
doublet is measured as one [Oii]λ3727 emission line, with a ve-
locity dispersion freely fitted between 1.0 and 2.0 times the
velocity dispersion of the other forbidden lines, which repro-
duces the broadening effect of two narrow lines blended to-
gether. platefit returns the equivalent widths, fluxes and as-
sociated errors for all fitted lines as well as other information.

Fig. 3. Example of input spectrum for the CFRS 03.0037 galaxy at
z = 0.1744. The solid line shows the observed spectrum, the blue line
the error spectrum (magnified 5 times) and the red dotted line shows
the continuum fitting.

The pipeline was optimised for SDSS spectra so some pre-
cautions must be taken when using it on other data sets. In par-
ticular it is important to have a reliable error estimate for each
pixel (i.e. the error spectrum, see Fig. 3) and to mask out re-
gions of the spectra which are unreliable. Failure to do so will
severely affect the continuum fitting.

The software returns a set of new spectra (sampled in ve-
locity space): the continuum spectrum which is the fitted lin-
ear combination of the model templates added to the smoothed
continuum (see Fig. 3), the flux-continuum spectrum which is
the raw spectrum with the stellar continuum subtracted, the
nebular spectrum which is built by adding all the emission-
line fits together (see Fig. 4), and finally the stellar spectrum
which is the raw spectrum with the nebular one subtracted (note
that this only take into account the lines which are included in
the fitting).

4.1.2. Model templates

The template spectra used to fit the continuum emission of
the galaxy in platefit were produced using the Bruzual &
Charlot (2003) population synthesis model1. At wavelengths
between 3200 and 9500 Å, the template spectra rely on the
STELIB stellar spectral library (Le Borgne et al. 2003), for
which the resolution is about 3 Å FWHM.

The template spectra were chosen in order to repre-
sent, through non-negative linear combinations, the proper-
ties of galaxies with any star formation history and metal-
licity. Specifically, the spectra were selected to provide good

1 These template spectra are included in the original model release
package.
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Fig. 4. Example of emission-line fits, done after the continuum sub-
traction for the CFRS 03.0037 galaxy at z = 0.1744.

coverage of SDSS-DR1 galaxies in the plane defined by the
4000 Å break and the Hδ stellar absorption line strength, which
are good indicators of the star formation history of a galaxy
(e.g., Kauffmann et al. 2003b). The library includes 10 tem-
plate spectra for each of the three metallicities Z = 0.2 Z�, Z�
and 2.5 Z�. The spectra correspond to 10 instantaneous-burst
models with ages of 0.005, 0.025, 0.10, 0.29, 0.64, 0.90, 1.4,
2.5, 5, and 11 Gyr.

4.2. Adaptation to non-SDSS spectra
and measurement of emission lines

We have created an interface procedure which facilitates the
analysis of our non-SDSS spectra with the platefit routines.
The input spectra are provided as two FITS files each: one for
the spectrum itself and another one for the error spectrum, the
output spectra are written into ASCII files and the measure-
ments are provided in a FITS table. The behaviour of the inter-
face procedure is controlled by a parameter file which is an ex-
tension of that used in the platefit code and which controls
the operation of the code.

The result of flux and equivalent-width measurements of
the main emission lines is shown in Table 8 and in Table 9.

4.2.1. Comparison with manual determination

It is instructive to compare the performance of the automatic fit-
ting code with manual measurements of line fluxes using stan-
dard methods. To this end we measured emission lines from
a subsample of the spectra using the task splot in IRAF. This
subsample is made of the 31 first reduced spectra, that do not
show any specific properties, among the CFRS sub-sample (see
Table 1). In this section we will compare these manual re-
sults to the automatically computed ones. We expect to see

Fig. 5. Comparison between oxygen emission lines measured auto-
matically (using platefit) and manually (using IRAF task splot).
Top panels: [Oii]λ3727 (left) and [Oiii]λ5007 (right) equivalent
widths (in Å) given by platefit as a function of the manual mea-
surement. Bottom panels: same for the measurements of line fluxes
(in 10−17 erg s−1 cm−2). The solid line is the x = y line and the dashed
line is the linear regression.

significant differences for the Balmer lines where it is difficult
to adjust for the contribution of the underlying stellar absorp-
tion when doing manual fitting. In contrast the measurements
for the forbidden lines should be consistent within the errors as
the effects of absorption lines for these is much less.

In Fig. 5, we compare the automatic (using platefit)
and manual measurements (using IRAF task splot) of oxygen
emission-line equivalent widths (top panels) and fluxes (bottom
panels). Figure 5 shows that there is a very good agreement
between manual and automatic measurements for two of the
strongest emission lines: [Oii]λ3727 and [Oiii]λ5007. Almost
every point fall on the y = x line and we also remark that the er-
ror estimates are consistent between the two methods. By com-
paring the bottom to the top panels, we see that the agreement is
good both for equivalent-width or for line-flux measurements.

In Fig. 6, we now compare the automatic and manual mea-
surements of equivalent widths for Balmer emission lines (top
panels) and low-intensity forbidden emission lines ([Nii]λ6584
and [Sii]λ6717, bottom panels). Figure 6 shows clearly the
need to use platefit in order to have a good estimate of the
Balmer emission lines. As we see in the top-left panel, man-
ual measurements significantly underestimate the flux in the
Hβ emission line where underlying stellar absorption is nor-
mally not negligible in our galaxies. We note however that
the difference between manual and automatic measurements
for the Hα emission line is smaller, which is to be expected
since the underlying absorption is similar to that at Hβ, but
the emission flux is considerably higher. The bottom pan-
els show the same comparison for the fainter [Nii]λ6584 and
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Fig. 6. Comparison between equivalent widths (in Å) for the Balmer
(top panels) and [Nii]λ6584, [Sii]λ6717 (bottom panels) emission
lines measured automatically (using platefit) and manually (using
IRAF task splot). The solid line is the x = y line and the dashed line
is the linear regression.

[Sii]λ6717 emission lines. The dispersion here is larger but the
measurements are consistent within the errors.

Two features are based on two blended emission lines each
at our working resolution: the doublet [Sii]λλ6717+6731 and
the line ratio [Nii]λ6584/Hα. In Fig. 7, we compare the au-
tomatic and manual measurements of these blended features
(EWs: top panels, fluxes: bottom panels). Figure 7 illustrates
the performance of platefit in deblending these lines. We
see that platefit is able to give good results for the measure-
ment of these low-intensity blended emission lines. To reach
this level of accuracy we had to modify the way the equiva-
lent width was estimated by platefit, which was optimised
for higher resolution spectra. We tested various methods, and
found that the best results were obtained when we calculated
the equivalent width taking the continuum from the smoothed
continuum spectra and combined this with the emission line
flux. This allows us to make use of the line information in other
parts of the spectrum to overcome the blending problems and
we get a very good agreement between the measurements at
different spectral resolutions as we will see below.

4.2.2. Resolution accuracy

To prepare for the spectral analysis of upcoming deep surveys,
such as VVDS, we have used our medium resolution data to
test the behaviour of platefit when used on spectra with
a lower resolution. This point will be critical in particular for
the [Nii]λ6584/Hα ratio, as these two lines are blended in low-
resolution spectra (Rs <∼ 313). The main issue is to determine if
we can use this ratio to perform any spectral classification (see

Fig. 7. Comparison between blended features computed from equiva-
lent width (in Å, top panels) and from fluxes (in 10−17 erg s−1 cm−2,
bottom panels) automatically (using platefit) and manually (using
IRAF task splot): the line sum [Sii]λλ6717+6731 (left) and the line
ratio [Nii]λ6584/Hα (right). The solid line is the x = y line and the
dashed line is the linear regression.

Sect. 6) and metallicity estimate (van Zee et al. 1998; Pettini
& Pagel 2004). Our sample is approximatively at the spec-
tral resolution Rs = 500, while the resolution of the VVDS
is Rs = 250. Thus, we have downgraded the resolution of our
spectra by a factor of two with a gaussian convolution, and we
have rerun platefit on the new spectra.

Table 5 shows the difference between downgraded resolu-
tion and original resolution measurements for some character-
istic lines. We see that the rms of the relative difference is low
and strictly less than the error associated on each line. We also
remark that there are some systematic shifts (i.e. the mean value
of the difference is not null) but they are still lower than the er-
ror. Figure 8 shows that there is no dependence with the line
intensity. For low resolution spectra, we reach a higher level of
accuracy by tiding up the velocity dispersion of all the emission
lines together, whatever they are forbidden or Balmer lines.
This implies the assumption that all broad-line AGNs have
been taken out of the sample before running the platefit
software (see Sect. 6 below for a detailed discussion about the
various spectral types of emission-line galaxies).

The [Nii]λ6584/Hα line ratio as measured on the down-
graded spectra is compared to the original measurements in
Fig. 9 (see also Table 5). It is clear that the difference is small
and consistent with zero within the errors. The logarithm of
this line ratio, which is used for metallicity estimates, also has
a weak dependence on the spectral resolution, and the scat-
ter is lower than the standard error on metallicity calibrations
(∼0.2 dex).
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Table 5. Calculations of the mean and the rms of the difference between downgraded resolution and original resolution measurements. We give
first the absolute values, and then the relative values which are more physically significant in percent (rel. columns). We compare these results
to the mean of the error on the original data (two last columns).

Parameter mean rel. rms rel. err rel.

EW([Oii]λ3727) −0.30Å 3.3% 2.09Å 9.8% 1.21Å 8.2%

EW(Hα) +0.51Å 0.5% 3.32Å 9.0% 1.95Å 9.2%

EW([Nii]λ6584) +0.69Å 12% 1.92Å 24% 1.93Å 47%

[Nii]λ6584/Hα −0.02 11% 0.05 23% 0.05 47%

log([Nii]λ6584/Hα) −0.06 dex 8.2% 0.12 dex 16% 0.20 dex 21%

Fig. 8. Comparison between the equivalent width (in Å) of [Oii]λ3727
(top-left), Hα (top-right), Hβ (bottom-left) and [Nii]λ6584 (bottom-
right) measured at downgraded (Rs = 250) and original (Rs =

500) resolutions. The solid line is the x = y line and the dashed line is
the linear regression.

5. Photometric analysis

5.1. Photometric data

We measured the photometric magnitudes with SExtractor
(Bertin & Arnouts 1996) in the R band using the pre-imaging
data. We used an input file with all the image coordinates of
the galaxies and we computed the photometric magnitudes
using the best radial adjustment (MAG_BEST parameter). We
adopt these measurements in place of those from the litera-
ture for the CFRS sub-sample to ensure consistency with the
CLUST sub-sample.

For the CFRS sub-sample, the pre-imaging was per-
formed in the Gunn R band with the VLT/FORS1 camera.
For the CLUST sub-sample, pre-images have been acquired
in the Bessel R band with the FORS1 camera, except for
the J1206 field, for which the pre-imaging has been done
with the TEK2048 camera on the UH88in telescope in the
R band. For the LRIS data, we used observations of Abell 963,
Abell 2218, Abell 2390 with the CFH12k camera at CFHT

Fig. 9. Comparison between the [Nii]λ6584/Hα line ratio calculated
with the equivalent widths measured at downgraded (Rs = 250) and
original (Rs = 500) resolutions. The solid line is the x = y line and the
dashed line is the linear regression.

(Czoske et al. 2002) in the I band. For the cluster Clg 1358+62,
we measured photometry on an HST-WFPC image in the
F606W band.

The photometric calibration was performed in different
ways depending on the field. The J1206 field was already cali-
brated. The other fields from the CLUST sub-sample were cal-
ibrated using a photometric standard star. For the CFRS sub-
sample, the standard star was observed in a different filter
than the galaxies (Bessel R rather than Gunn R), preventing
us from using it to do the calibration. Fortunately we were able
to take advantage of the previously measured magnitudes of
the CFRS galaxies in the I band (CFHT FOCAM camera):
the Bessel R magnitudes of these objects were computed us-
ing spectroscopic colors (see Sect. 5.2), and we calculated the
zero-point of each image by doing a linear regression.

The photometric magnitudes of the GDDS sub-sample
were directly taken from the literature (Chen et al. 2002):
R band photometry of the NTT Deep field has been taken
with the BTC camera on the Cerro Tololo Inter-American
Observatory (CTIO) 4 m telescope, I band photometry of
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the NOAO-Cetus and SA22 fields have been taken with the
CFH12k camera on the Canada France Hawaii Telescope
(CFHT).

5.2. Spectroscopic magnitudes

We want to compute spectroscopic magnitudes, by integrating
the flux through a set of filter response curves, in order to have
information on the color (we only have photometric magni-
tudes in the R band), on the k-correction and on the aperture dif-
ferences (i.e. the amount of flux lost because of the limited size
of the slits during spectroscopic observations) of our galaxies.

We used an adaptation of the filter_thru routine from
the SDSS IDL library2. For a flux-calibrated spectrum this rou-
tine returns a spectroscopic magnitude in the AB system (Oke
1974). If the spectrum does not cover the full bandwidth of the
filter (borders at 5%), it returns nothing. We computed spec-
troscopic magnitudes directly from the observed spectrum if it
covers the full bandwidth of the filter, otherwise from the model
spectrum given by the continuum fitting.

We used the filter response curve of the FORS1 camera
(CCD + atmosphere) for the following bands: Bessel B, V , R
and I. We also have the filter response of the FORS1 camera in
the Gunn R band (used for the pre-imaging of the CFRS fields),
of the TEK2048 camera in the R band (used for the pre-imaging
of the J1206 field), of the CFHT FOCAM camera in the I band
(used for the original CFRS data), and of the BTC camera in
the R band and the CFH12k camera in the I band (used for the
photometry of the GDDS sub-sample). Finally we also calcu-
lated the photometry in the u, g, r, and i color system of the
SDSS for possible comparison (Fukugita et al. 1996). We have
checked that the spectroscopic colors are in good agreement
(i.e. within the error bars) with published photometric colors.

We can use the information of the continuum SNR from
Tables 1 and 2 to have an estimate of the uncertainties of the
spectroscopic magnitudes. We use the following formula:

∆m ≈ 2.5
ln 10

SNR−1.

We find a mean uncertainty of ∼0.1 mag.

5.3. Absolute magnitudes

The absolute magnitudes were computed using photometric
magnitudes and the k-correction given from spectroscopic
magnitudes (see Sect. 5.2). If we want, for example, the ab-
solute magnitude in the I band (MAB(I)) given a photometric
magnitude in the R band (RAB), we use the following formula:

MAB(I) = d + RAB +
(
Irest
spec − Robs

spec

)

where d is the distance modulus, Irest
spec and Robs

spec are the spec-
troscopic magnitudes computed respectively in rest-frame and
in observed-frame so that Irest

spec − Robs
spec is the k-correction. Note

that we can alternatively write:

MAB(I) = d + Irest
spec +

(
RAB − Robs

spec

)
2 http://spectro.princeton.edu

where RAB − Robs
spec is the aperture difference. We remark that

the aperture difference (ape in Table 6) is less than −1.3 mag
for a large majority of our sample, which means that the aper-
ture coverage is at least 30% of the galaxy total luminosity.
This avoids important disk/bulge effects (see Kewley et al.
2005 for details). The distance modulus is calculated using
the last cosmology given by WMAP (Spergel et al. 2003):
H0 = 71 km s−1 Mpc−1, ΩΛ = 0.73 and Ωm = 0.27. The fol-
lowing formula gives the distance modulus as a function of the
redshift z:

d = −5 log

(
c

H0 · 10 pc
· (1 + z) ·

∫ z

0
f (z′)−1/2dz′

)

where f (z′) = (1 + z′)2(1 + Ωmz′) −ΩΛz′(2 + z′).
The photometric magnitudes (RAB and I0

AB in Table 6) are
not corrected for foreground extinction whereas this is neces-
sary for future scientific analysis. We thus take into account the
foreground dust extinction from the Milky Way by using the
Schlegel et al. (1998) dust maps (AI in Table 6) for computing
the rest-frame colors and the absolute magnitude.

5.4. Lensing corrections

For the galaxies in the CLUST sub-sample, we need to correct
for the magnification effect caused by the gravitational lensing
of the cluster. We do this using the most recent mass models
for the galaxy clusters in this sample (for AC 114: Natarajan
et al. 1998; Campusano et al. 2001; for Abell 2390: Pelló et al.
1999; for Cl 2244: Kneib et al., unpublished; for Abell 2218:
Kneib et al. 1996; Ellis et al. 2001; for Abell 963: Smith et al.
2003; for Clg 1358: Franx et al. 1997). We derived the mag-
nification at the redshift of our background sources with the
LENSTOOL software developed by Kneib (1993). The correc-
tions due to the lensing are usually small (<0.3 mag) compared
with the photometric errors. For sources very close to the mean
redshift of the cluster (for example in J 1206) no correction was
applied.

The results are provided in Table 6. The I-band absolute
magnitude is given after correction for the foreground dust ex-
tinction, the k-correction and the lensing effect. We calculate
the absolute magnitude in any others bands using the given
spectroscopic colors.

5.5. Color–color diagrams

To gain some insight into the nature of the galaxy popula-
tion in our sample, we start by constructing the g − r versus
u − g color–color diagram (see Fig. 10). Strateva et al. (2001)
has shown that this diagram separates galaxies into early and
late types. We expect to see irregulars with a blue continuum at
low u−g and g−r colors, whereas ellipticals, which have a sub-
stantial Balmer break, should have “red” u−g and g−r colours.
To ease interpretation we use rest-frame colours throughout.

Figure 10 shows that our galaxy sub-samples are well dis-
tributed within the late-type region showing mainly irregular
or Sc “color” types. The proportion of early-type spirals is
much less and we have only a few ellipticals. This figure thus
indicates that the latest spectral types are more likely to be
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Fig. 10. Rest-frame color–color diagram using SDSS passbands. The
solid line shows the empirical separation (u − r = 2.22) between late-
type (below the line) and early-type (above the line) galaxies from
Strateva et al. (2001). The dotted lines shows the mean value of the
u − r parameter for standard spectra of the Sa, Sb, Sc and Irr spectral
types: respectively 2.56, 1.74, 1.29 and 0.76 (Strateva et al. 2001). The
different symbols indicate star-forming galaxies and AGNs as deter-
mined in Sect. 6 (see the description of the symbols in Fig. 14).

observed, as confirmed by the histogram shown in Fig. 11. This
result is primarily due to our selection criterion as we biased
our sample in favor of emission-line galaxies. Indeed irregular
galaxies usually have brighter emission lines than Sb galaxies,
so they will be in our sample down to very low SNR. In con-
trast galaxies of (spectral) type Sb will only be included in our
sample when their spectrum is of good SNR. Any possible ef-
fect introduced by this bias will have to be taken into account
in subsequent analysis.

We must however remark that neither Fig. 10 nor Fig. 11
are accurate enough to determine which galaxy is of a given
spectral type because of the high dispersion of the u − r values
for each spectral type (e.g. the effect of internal dust on the
colors).

6. Spectral classification

6.1. Nature of the main ionizing source

As we want to focus the scientific analysis on star-forming
galaxies, we have to make the difference between starbursts
and AGNs which both show emission lines in their spectrum.
The AGN population can be divided into three main types:
Seyfert 1, Seyfert 2 and LINERs. The Seyfert 1, also called
broad-line AGNs, can be excluded from our sample by com-
paring the FWHM of the Balmer emission lines to the FWHM
of the forbidden lines: those galaxies with a significantly higher
FWHM for the Balmer lines are expected to be Seyfert 1. The
ratio of the FWHM of the Balmer lines to that of the forbidden
lines is consistent with unity for most of our sample galaxies

Fig. 11. Histogram of the rest-frame u − r color. We plot the number
of galaxies per 0.1 bin of the u − r color as an indicator of the spectral
type. The solid and dotted lines are the same as in Fig. 10.

(mean of 0.98 with a rms scatter of 0.18). We found 6 peculiar
objects showing Balmer lines significantly broader than forbid-
den ones (FWHMBalmer/FWHMforbidden ∼ 2−3). These objects
could be classified as Seyfert 1 galaxies. However, after a care-
ful visual inspection of individual spectra, we found that the
measurement of the FWHM of the Balmer lines in these galax-
ies is disrupted by either weak Balmer emission lines or noise
features. These objects are thus classified as narrow emission-
line galaxies.

6.2. Diagnostic diagrams

6.2.1. “Red” diagnostics diagrams

We still need to separate star-forming galaxies from narrow-
line AGNs, namely Seyfert 2 and LINERs. Seyfert 2
have a high excitation degree compared to LINERs.
The standard prescription (Veilleux & Osterbrock 1987)
makes use of the [Nii]λ6584/Hα, [Sii]λλ6717+6731/Hα and
[Oiii]λ5007/Hβ line ratios to separate the star-forming galax-
ies from AGNs; and the [Oiii]λ5007/Hβ as an indicator of the
ionization level to distinguish Seyfert 2 from LINERs.

The standard diagnostic diagrams are shown in Fig. 12 for
the [Nii] diagnostic and in Fig. 13 for the [Sii] diagnostic. The
limit between star-forming galaxies and AGNs are given by
Kewley et al. (2001) (+0.15 dex for the [Sii] diagnostic in order
to take into account the model uncertainties). The star-forming
galaxies are well separated from AGNs and follow a clear se-
quence covering a large range of ionization levels and colli-
sional excitation degrees. The classification is obvious, i.e. the
[Nii] and [Sii] diagnostics are in agreement, for 37 galaxies:
34 are star-forming galaxies and 3 are Seyfert 2.
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Fig. 12. Standard diagnostic diagram using the [Nii]λ6584/Hα
emission-line ratio. Blue circles identify star-forming galaxies, green
squares indicate AGNs (Seyfert 2) and magenta triangles show contra-
dictory cases (see text for details). The solid line shows the theoretical
limit from Kewley et al. (2001). The dashed line is the empirical limit
from Kauffmann et al. (2003a) for SDSS galaxies.

Fig. 13. Standard diagnostic diagram using the [Sii]λλ6717+6731/Hα
emission-line ratio. Same legend as in Fig. 12.

6.2.2. “Blue” diagnostic diagrams

As recently pointed by Lamareille et al. (2004), we can also use
the “blue” emission lines (i.e. [Oii]λ3727, [Oiii]λ5007 and Hβ)
to perform the spectral classification for higher redshift galax-
ies (i.e. with no observable Hα and [Nii]λ6584 “red” lines) but
with a lower accuracy. We note that 104 galaxies (73.8% of our
sample) can only be classified with the blue diagnostics. The
blue diagnostic diagrams are shown in Fig. 14 and in Fig. 15.
Please note that we use theses diagrams without any correction

Fig. 14. “Blue” diagnostic diagram. The symbols show the results of
the “blue” diagnostic: blue circles for star-forming galaxies, green
squares for AGNs (Seyfert 2), magenta triangles for contradictory
cases and red stars for unclassified objects. Filled symbols are for ob-
jects already classified with standard diagnostic diagrams. The solid
line shows the empirical calibration from Lamareille et al. (2004) and
the dashed lines the associated error domain.

Fig. 15. Another “blue” diagnostic diagram. Same legend as in Fig. 14.

for dust extinction (as calibrated on 2dFGRS data), by the use
of equivalent widths instead of fluxes (see Sect. 6.2.3 below).

We found four objects (LCL05 045, LCL05 065,
LCL05 109, and LCL05 142), very close in the R23 vs.
O32 classification (four points on top of Fig. 15), which are
classified as Seyfert 2 according to this diagram. However
this classification is not in agreement with i) the “red” clas-
sification as star-forming galaxy that we derive for one of
them (LCL05 065), ii) with the overall aspect of their spectra
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(very faint continuum and high ionization state typical of
HII galaxies), or iii) with the low [Nii]/Hα ratio estimated
recently from NIR spectroscopy for LCL05 045 (Maier et al.
2005). We conclude that the R23 vs. O32 “blue” classification,
calibrated on the 2dFGRS data, may not be valid on its upper
part. For these four objects, we keep only the results from
the [Oiii]λ5007/Hβ vs. [Oii]λ3727/Hβ classification, i.e.
candidate star-forming galaxies (see below).

We found four objects (LCL05 017, LCL05 097,
LCL05 115, and LCL05 130) which are classified as Seyfert 2
galaxies but with very high error bars on the diagnostic
diagrams. These objects show noisy spectra and/or undetected
Hβ emission line (while oxygen lines are detected). Therefore
their classification as Seyfert 2 is not fully secure.

We have a number of objects which fall into the error do-
main on the two “blue” diagrams and are thus unclassified.
After checking their spectra, we decided to keep them in our
sample as candidate star-forming galaxies, keeping in mind in
the subsequent analysis that their emission-line spectrum could
be contaminated by a low-luminosity AGN.

We finally find 115 (81.6%) “secure” star-forming galaxies,
7 (5.0%) Seyfert 2, 16 (11.3%) “candidate” star-forming galax-
ies, and 3 (2.1%) objects which are still unclassified (i.e. they
have one or more missing lines). Results are shown in Table 7.

6.2.3. Discussion on dust extinction

The “red” diagnostic diagram makes use of various line ratios
which are all insensitive to the dust extinction because they
involve emission lines with similar wavelengths ([Nii]λ6548,
[Sii]λλ6717, 6731 and Hα in one case, [Oiii]λλ4959, 5007
and Hβ in the other case). This is not the case for the “blue”
diagnostic diagrams which make use of the [Oii]λ3727 and
Hβ emission lines in the same ratio. These diagrams can then
be strongly affected by the dust extinction.

The effect of dust is minimized by the use of equivalent
width measurements instead of fluxes. Indeed no correction
for reddening is needed on equivalent width ratios, if we as-
sume that the attenuation in the continuum and emission lines
is the same. To check this assumption, we have derived dust
extinction values from the observed Hα/Hβ Balmer decrement
on the 24 galaxies where it is possible (we use the extinction
law of Seaton 1979, and a theoretical Balmer decrement of 2.87
from Osterbrock 1989). The E(B−V) coefficients that we found
are given in Table 7. We then used these results to correct the
[Oii]λ3727/Hβ flux ratio for reddening and we compared it to
the same equivalent width ratio.

Figure 16 shows the result of this comparison. We see that
the equivalent width ratio is consistent with the dust-corrected
flux ratio, with the exception of two very high ratios which are
underestimated with equivalent widths. The rms of the resid-
uals around the y = x line is 0.10 dex. We conclude that the
“blue” diagnostic diagrams are not significantly affected by the
differential attenuation between [Oii]λ3727 and Hβ emission
lines. The low value of the rms of the residuals tells us that any
possible effect is already included in the error domain of the
“blue” calibration.

Fig. 16. Comparison between the equivalent-width (x-axis) and dust-
corrected flux (y-axis) ratio of [Oii]λ3727 and Hβ emission lines. The
solid line shows the y = x curve and the dashed line is the fit to
the data.

7. Conclusions

We have defined a sample of 141 emission-line galaxies at in-
termediate redshifts ranging from z = 0.2 to z = 1.0. We ob-
tained medium-resolution spectroscopic observations of these
galaxies in the optical range, and associated R-band photome-
try. The following conclusions can be drawn from this paper:

– Our sample has been used to test the platefit software
originally developed by C. Tremonti, and which is designed
to automatically measure spectral features (e.g. emission
lines). We managed to adapt it to our lower resolution and
SNR spectra. The comparison with manual measurements
shows that we get better measurements for those emis-
sion lines where Balmer absorption features are important
(e.g. Hα, Hβ and [Oii]λ3727 emission lines), and that we
get correct measurements of flux and equivalent widths for
blended lines (e.g. [Nii]λ6584 and Hα emission lines).

– We have done as careful a job as possible and are reason-
ably sure that the platefit software can also be used for
future and ongoing large surveys (VVDS, zCOSMOS, etc.)
which are based on low resolution spectroscopy. We ver-
ify, by downgrading the resolution of our spectra, that the
flux and equivalent-width measurements at low resolution
are not altered more than the measurement error. In par-
ticular, the [Nii]λ6584/Hα line ratio is robust to resolution
changes.

– The platefit software has been used to measure
k-corrected spectroscopic colors. Our sample of galaxies
covers all the late-type range in a color–color diagram, with
a maximum for the Irregular and Sc spectral types.

– Standard and “blue” diagnostic diagrams show a majority
of star-forming galaxies, and some narrow-lines AGNs (i.e.
Seyfert 2 galaxies), covering the whole range of ionization
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level and collisional excitation degree. Because the Hα line
gets redshifted out of the optical range at high redshifts,
∼70% of our sample must be classified using the “blue”
diagnostic diagrams. About 10% of our galaxies still re-
main unclassified because they fall in the uncertainty re-
gion of these diagrams, we classify them as “candidate”
star-forming galaxies.

More analysis in terms of chemical abundances and stellar pop-
ulations will be described in subsequent papers.
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