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ABSTRACT

We present a new radiative transfer code for axi-symmetric stellar atmospheres and compare test results against 1D and 2D models with and
without velocity fields. The code uses the short characteristic method with modifications to handle axi-symmetric and non-monotonic 3D wind
velocities, and allows for distributed calculations. The formal solution along a characteristic is evaluated with a resolution that is proportional
to the velocity gradient along the characteristic. This allows us to accurately map the variation of the opacities and emissivities as a function of
frequency and spatial coordinates, but avoids unnecessary work in low velocity regions. We represent a characteristic with an impact-parameter
vector p (a vector that is normal to the plane containing the characteristic and the origin) rather than the traditional unit vector in the direction of
the ray. The code calculates the incoming intensities for the characteristics by a single latitudinal interpolation without any further interpolation
in the radiation angles. Using this representation also provides a venue for distributed calculations since the radiative transfer can be done
independently for each p.
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1. Introduction

Massive stars and their winds play an important role in shap-
ing the dynamical structure and energy budget of galaxies. For
example, they enrich the ISM with nuclear processed material
and deposit large amounts of mechanical energy into their sur-
roundings. Despite decades of research and considerable ad-
vancements in our understanding of stellar envelopes, there is
still much to learn. Because of the complexities of these sys-
tems, and the increasing emphasis on the details, it has become
very difficult to proceed without complex numerical simula-
tions. It is not surprising, therefore, that the history of stellar
studies reflects not only our advancing knowledge but also our
increasing computational capabilities. Initially, simple plane-
parallel LTE models were utilized in numerical simulations
(see e.g., Kurucz 1991, and references therein) and these were
adequate for stars with dense atmospheres and low mass-loss
rates. These models were also the only simulations that were
viable on the computing facilities of the time. Unfortunately,
the above simplifications cannot be extended to most early-
type stars. Auer & Mihalas (1972, 1973), for example, demon-
strated that the assumption of LTE is invalid in O-type stars and
the statistical equilibrium equations need to be solved for the
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level populations. For massive stars with extensive mass-loss
(e.g., Wolf-Rayet stars) geometrical effects are also important
and plane-parallel models are no longer sufficient. As a mini-
mum, therefore, one needs to use non-LTE spherical models to
understand these objects. The system of statistical equilibrium
equations, however, is highly non-linear in the level popula-
tions and finding a solution for fully line blanketed models is a
formidable task. We have reached the necessary level in com-
puting power only in the last few years to be able to routinely
perform such computations (see e.g., Hubeny & Lanz 1995;
Hauschildt et al. 1996; Hillier & Miller 1998; Pauldrach et al.
2001; Gräfener et al. 2002).

Plane-parallel and spherical non-LTE modeling have found
wide applicability in spectroscopic studies. Recent works by
Martins et al. (2002); Crowther et al. (2002); Hillier et al.
(2003); Herrero et al. (2002) have revised the temperature scale
for O stars, for example, and have given new insights into
the structure of stellar winds. However, spherical (or plane-
parallel) modeling also has its limitations and cannot be used
to study many important stellar objects.

It has been known for a long time that some circumstel-
lar envelopes are non-spherical – the most well-known ex-
amples are the envelopes of Be stars. The hydrogen emis-
sion and infrared excess of these stars are thought to be
produced in a thin disk. The presence of these disks was
inferred from both line modeling and polarimetric studies
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(Poeckert & Marlborough 1978a,b), and has been confirmed
by interferometric observations (Stee et al. 1995; Quirrenbach
et al. 1997). Furthermore, recent MHD simulations (Cassinelli
et al. 2002; ud-Doula & Owocki 2002; Owocki & ud-Doula
2004) argue for equatorial confinement by magnetic field for
the origin of the disks. If a dynamically important magnetic
field is present in Be envelopes that in itself ensures at least a
2D nature of their wind.

Other stellar problems for which 1D models are inadequate
include rapidly rotating OB stars, binaries with colliding winds
or accretion disks, pre-main sequence and young stars, stel-
lar envelopes irradiated by external sources (e.g., massive stars
near an AGN), and the collapsing core (Type-II) supernovae
(e.g., Wang et al. 2001; Kifonidis et al. 2003). Advanced super-
novae models may even have cosmological applications since
these luminous objects can be used as distance calibrators in the
nearby universe (see Dessart & Hillier 2005a,b, and references
therein).

The case of rapid OB rotators is particularly important for
this paper since we test our code on such a problem. These stars
are subjects of intense research and the exact structure of the
rotating envelope is not well established. The conservation of
angular momentum in the wind may result in meridional flow
toward the equator which potentially leads to disk formation
(see e.g., Bjorkman & Cassinelli 1993). Conversely the latitu-
dinal variation of the surface gravity will result in a variation of
the radiative flux with latitude that can inhibit disk formation,
and can cause a strong polar wind (Owocki et al. 1996; Maeder
& Meynet 2000). Either way, the underlying spherical symme-
try of the outflow is broken and at least axi-symmetric models
are needed for spectral analysis.

Motivated by the need for 2D model atmospheres, and
by the availability of fast computers and methods, we under-
took a project to develop a tool for spectroscopic analysis of
axi-symmetric stellar envelopes. The solution of the statisti-
cal equilibrium equations for the level populations and tem-
perature is discussed in the first paper of this series (Georgiev
et al. 2005, Paper I). At present the main code, ASTAROTH,
solves for the radiation field by a continuum transfer routine
that is based on the method of Busche & Hillier (2000) and
uses the Sobolev approximation for line transfer. In this paper
we present an alternate routine for ASTAROTH that can han-
dle the line-transfer without the use of Sobolev approximation
in models with continuous, but not necessarily monotonic, ve-
locity fields. We treated this problem independently from the
main project because it required experimentation with alternate
solution methods. In Sect. 2 we describe our goals and motiva-
tions in finding the proper solution method, and we also give
a brief discussion of the chosen approach. The C++ code that
was developed for the transfer is described in Sect. 3 where we
also present the test results and verification. Finally, we draw
our conclusions in Sect. 4.

2. Description of the solution technique

A non-LTE model of a stellar envelope is a complex non-
linear problem. The level populations and the radiation field
are strongly coupled. Thus, an iterative procedure is needed

to achieve a consistent solution. To solve the statistical equi-
librium equations for the level populations, one must deter-
mine the radiative transition rates for free-free, bound-free and
bound-bound transitions. These require the knowledge of the
radiation moments

J(r, ν) =
1

4π

∫
Ω

I(r, n, ν) dΩ (1)

and

Jl(r) =
1

4π

∫
Ω

∫ ∞

0
I(r, n, ν)Φl(ν) dνdΩ. (2)

The quantities I(r, n, ν), r, and n are the specific intensity, the
spatial position, and the direction in which the radiation is prop-
agating, respectively. The function Φl represents the normal-
ized line-profile for any given bound-bound transition and the
integrations are over all solid angles and frequencies.

Only J and Jl are needed to solve the statistical equilibrium
equations, but they have to be updated every iteration cycle.
This introduces stringent requirements on numerical efficiency
and speed, but also allows for simplifications. The Radiative
Transfer (RT) code does not have to produce the observed spec-
trum, for example, since it is irrelevant for the transition rates.
Nor do the specific intensities at each depth need to be stored.
On the other hand, the run time characteristics of the code are
critical for its application in an iterative procedure. Therefore,
our RT code is optimized to calculate J, Jl, and the “approxi-
mate lambda operator” (Λ∗, see Sect. 2.3) as efficiently as pos-
sible. Crude spectra in the observer’s frame are calculated only
if requested, and only for monitoring the behavior of the code.

At a minimum, a realistic non-LTE and line-blanketed
model atmosphere requires the inclusion of most H, He, C, N,
O, and a large fraction of Fe transitions in the calculation. The
running time and memory requirements of such a model can
be several orders of magnitude larger in 2D than those of its
spherical or plane-parallel counterpart. The dramatic increase
in computational effort arises from both the extra spatial di-
mension, and from the extra variable needed to describe the
angular variation of the radiation field. In spherical models,
for example, the radiation field is symmetric around the radial
direction – a symmetry which is lost in 2D. We believe that
realistic 2D/3D simulations, especially in the presence of non-
monotonic flow velocities, will inevitably require the simul-
taneous use of multiple processors. Therefore, we developed
ASTAROTH and this RT code to be suitable for distributed
calculations by ensuring that their sub-tasks are as independent
from each other as possible.

2.1. The solution of the radiative transfer

Our choice to calculate moments J and Jl is to solve the radia-
tive transfer equation for static and non-relativistic media

n∇I(r, n, ν) = −χ(r, n, ν)
[
I(r, n, ν) − S (r, n, ν)

]
, (3)

and then evaluate the integrals in Eqs. (1) and (2). The quan-
tities χ and S in Eq. (3) are the opacity and source function,
respectively. A major simplification in this approach is that a
formal solution exists for Eq. (3). At any s position along a
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given ray (or characteristic), the optical depth and the specific
intensity are

τν =

∫ s

0
χds′ (4)

and

I(τν) = IBC e−τν +
∫ τν

0
S (τ′) eτ

′−τν dτ′, (5)

respectively (from now on, we stop indicating functional de-
pendence of quantities on r, n, and ν). Therefore, the inten-
sity can be calculated by specifying IBC at the up-stream end
(s = 0) of the ray and by evaluating two integrals (assuming
that S and χ are known). We sample the radiation field by a
number of rays for every spatial point. If the number and the
orientation of the rays are chosen properly, then the angular
variation of I is sufficiently reproduced and accurate J and Jl

can be calculated.
There are alternatives to this simple approach; each has its

own merits and drawbacks. For example, from Eq. (3) one can
derive differential equations for the moments of the radiation
field and solve for them directly. This approach has been suc-
cessfully used in 1D codes, like CMFGEN (Hillier & Miller
1998), and in calculations for 2D continuum/grey problems
(Busche 2001). A distinct advantage of the method is that elec-
tron scattering (ES) is explicitly included in the equations, and
consequently no ES iteration is needed. However, to achieve
a closed system of moment equations a closure relationship
between the various moments is required. This relationship is
generally derived from the formal solution which requires at
least a fast and rudimentary evaluation of Eqs. (4) and (5).
Furthermore, the 2D moment equations are quite complicated
and it is not easy to formulate the proper boundary conditions
in the presence of non-monotonic velocity fields. For our pur-
poses we needed a simple approach that is flexible enough to
implement in distributed calculations.

An increasingly popular method to solve the RT is using
Monte-Carlo simulations. In this method, a large number of
photon packets are followed through the envelope and the prop-
erties of the radiation field are estimated by using this photon
ensemble (see e.g., Lucy 1999, 2002, 2003). While the Monte-
Carlo simulations are flexible and suitable for parallel comput-
ing, they can also have undesirable run-time characteristics.
It is also unclear how line overlaps in the presence of a non-
monotonic velocity field can be treated by Monte-Carlo tech-
niques without the use of Sobolev approximation.

After considering our needs and options, we decided to use
the straightforward approach, solving Eq. (3) and evaluating
Eqs. (1) and (2). This approach provides a reasonable com-
promise of accuracy, numerical efficiency, and flexibility. Our
code will also increase the pool of available RT programs in
stellar studies. Each solution technique has its specific strength
(e.g., our method is fast enough for an iterative procedure) and
weaknesses; therefore, future researchers will have more op-
tions to choose the best method for their needs. Having a selec-
tion of RT codes that are based on different solution methods
will also allow for appropriate cross-checking of newly devel-
oped programs.

Fig. 1. A sub-section of a typical spatial grid used in our RT code. The
boundary and internal points are indicated by grey and black dots, re-
spectively. The solid arrow represents a SC belonging to point i+2 and
pointing in the direction of the radiation. Note, that the characteristic
is terminated at the closest cell boundary (between nodes 2 and 3),
and is not followed all the way to the boundary of the domain (grey
points). The numbering at the nodes indicates the order in which the
intensity in this direction is evaluated. The small empty circles on the
SC are the integration points (see Sect. 2.1) and the dashed arrows
show which grid points are used for interpolating χ and S (straight
arrows), or IBC (curved arrows).

The most accurate solutions for Eqs. (4) and (5) are
achieved when the integrals are evaluated all the way to
the boundary of the modeling domain along each ray (Long
Characteristic (LC) method, Jones 1973; Jones & Skumanich
1973). To increase efficiency, we decided to use the so-called
“Short-Characteristic” (SC) method, first explored by Mihalas
et al. (1978) and Kunasz & Auer (1988). In our implementation
of this method, the characteristics are terminated at the next
up-stream radial shell (normally, they would be terminated at
any cell boundary) where IBC is calculated by an interpolation
between the specific intensities of the nearest latitudinal grid
points (see Fig. 1). We calculate the specific intensity in a given
direction for all grid points starting with those at the upstream
end of the domain (where I is set to the appropriate boundary
condition) and proceed with the calculation downstream (see
Fig. 1 for details). This evaluation scheme ensures that all in-
tensity values are calculated by the time they are needed for the
interpolation of IBC. With this simple trick, the specific inten-
sity is calculated very efficiently but for the cost of introducing
coupling between the directional sampling of the intensity at
the grid points. We will discuss the implications of this cou-
pling in Sect. 2.2.

On every SC, we evaluate the integrals of Eqs. (4) and (5)
for every co-moving frequency of the down-stream end point
(i + 2 in Fig. 1) by

τ =
N−1∑
j=1

∆τ j ∆τ j =
χ j+1 + χ j

2
(s j+1 − s j) (6)
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and

∫ τν

0
S (τ′)eτ

′−τν dτ′ =
N−1∑
j=1

S j+1

∆τ j

(
∆τ j + e−∆τ j − 1

)

−
N−1∑
j=1

S j

∆τ j

(
∆τ j +

(
1 + ∆τ j

) (
e−∆τ j − 1

))
(7)

where N −1 is the number of integration steps. Eqs. (6) and (7)
can be easily derived from Eqs. (4) and (5) by assuming that
in each interval χ and S are linear in s and τ, respectively. To
ensure that the spatial and frequency variations of the opacity
and source function are mapped properly, we divide the SC into
small s j+1 − s j intervals by placing enough “integration” points
on the characteristic. The number of these points (N) depends
on the ratio of the “maximum line of sight velocity difference”
along the SC and an adjustable “maximum allowed velocity
difference”. By choosing this free parameter properly we en-
sure adequate frequency mapping but avoid unnecessary calcu-
lations in low velocity regions. Further, we can trade accuracy
for speed at the early stages of the iteration and later “slow
down” for accuracy. We allowed for 20 km s−1 velocity differ-
ences along any SC in the calculations that we present here.
Even though this is larger than the average frequency resolu-
tion of our opacity and emissivity data (∼10 km s−1), it was
still adequate. Trial runs with 2 km s−1 and 20 km s−1 “max-
imum allowed velocity difference” for the 1D model with re-
alistic wind velocities (see Sect. 3.2) produced nearly identical
results.

The line of sight velocities, χ j, and S j are calculated at
the integration points by bi-linear interpolations using the four
closest spatial grid points (see Appendix A and Fig. 1). We
would like to emphasize, that the interpolated χ j and S j are in
the co-moving frame and not in the frame in which the integra-
tion is performed. This difference must be taken into account in
Eqs. (6) and (7) by applying the proper Doppler shifts at each
integration point (see Appendix A).

With the exception of the intensity, all quantities are in-
terpolated assuming that they vary linearly between nodes.
Extensive testing of our code revealed that at least a third-
order interpolation is necessary to calculate IBC sufficiently ac-
curately (see Appendix A.2). For all other quantities first-order
approximation is adequate in most cases but not in all. Since
we wished to keep the first-order approximations if possible (it
is the least time consuming and is numerically well behaved),
a simple multi-grid approach was introduced to improve ac-
curacy. Unlike the intensity calculation, the interpolation of χ
and S do not have to be performed on the main grid; there-
fore, a dense spatial grid for opacities and source functions can
be created, using monotonic cubic interpolation (Steffen 1990),
before the start of the calculation. Then, we use this dense grid
to perform the bi-linear interpolations to the integration points
but perform the RT calculation only for spatial points on the
main grid. Before the next iteration, the opacities and source
terms on the dense grid are updated. To ensure a straightfor-
ward Λ∗ calculation we require the main grid to be a sub-grid
of the dense grid. Further, the use of the dense grid is optional
and only required if more accurate approximations of χ and S

Fig. 2. The definition of our fundamental coordinate system. The unit
vector n describes a characteristic (long thin line) pointing in the di-
rection of the radiation and r, β, and ε are the traditional polar coor-
dinates of a spatial point. Note that it is assumed here and in the rest
of the paper that z axis is the axis of symmetry. We use the impact-
parameter vector p (which is perpendicular to the plane containing the
characteristic and the origin), instead of n, to represent a particular
characteristic (see Sect. 2.2 for explanations).

are desired. With this rudimentary multi-grid technique, we im-
proved the accuracy of our calculations for essentially no cost
in running time (∼5−10% increase). However, there was a sub-
stantial increase in memory requirement. To avoid depleting the
available memory, the RT is usually performed in frequency
batches that can be tailored to fit into the available memory.
This technique not only decreases the memory requirements,
but also provides an excellent opportunity for parallelization.

2.2. Our coordinate system and representation
of directions

Most 2D problems that we are going to treat are “near-
spherical” with a moderate departure from a general spherical
symmetry. The radiation field is usually dominated by a central
source in these cases, and it is practical to treat them in a spher-
ical coordinate system. Therefore, we decided to use r, β, and ε
(see Fig. 2 for definition) for reference in our code.

In spherical symmetry, the most natural way to map the
directional variation of the intensity is using the “so-called”
radiation coordinates, θ and φ, that are defined by

cos(θ) = n · r (8)

and

sin(θ) · sin(β) · cos(φ) =
[
n× r

]
·
[
r × z

]
. (9)

The unit vectors n, r, and z are pointing in the direction of
the radiation, in the radial direction, and in the positive side of
the z axis, respectively (see Fig. 2). A proper choice of θ an-
gle grid can be very useful in treating inherent discontinuities
around the limb of the central star and the symmetries due to
the forward-peaking nature of the radiation field.

As mentioned in Sect. 2.1 a serious drawback of the
SC method is the interdependency of the specific intensities
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at different grid points. Beside introducing systematic errors by
the successive intensity interpolations, the SC method also cou-
ples the directional sampling of the radiation field on the grid.
Our choice of directions at a grid point not only has to suit the
needs of the particular point but also has to be able to provide
suitable starting values (IBC) for other points. Unfortunately,
θ and φ vary along a characteristic so it is not possible to use a
uniform θ and φ grid for all grid points without intensity in-
terpolations in the radiation coordinates. The later option is
not desirable for multidimensional RT. First, it requires a large
amount of memory to store all intensities for the interpolation.
Second, it makes the parallelization of the code difficult.

To find a proper directional sampling method one needs to
look for quantities that are conserved along a characteristic,
like

p = r × n, (10)

which we call the “impact-parameter vector” (see Fig. 2). This
vector describes all essential features of a characteristic and can
be considered as an analog of the orbital momentum vector in
two body problems. Its absolute value p = |p| is the traditional
impact-parameter and its orientation defines the “orbital plane”
of the radiation (the plane that contains the characteristic and
the origin). Following this analogy one can define an “inclina-
tion” angle for this plane by

p · cos(i) = p · z. (11)

In our code we set up a universal grid in impact-parameters (p)
and in inclination angles (i) for directional sampling. As op-
posed to the θ and φ angles, the inclination angle and the
impact-parameter do not vary along a ray; therefore, intensi-
ties in the proper directions will be available for the interpo-
lation when the transfer is solved for a given i and p. Using
an impact-parameter grid to avoid interpolation in θ angle has
already been incorporated into previous works (e.g., Busche &
Hillier 2000). By introducing the inclination angle grid we sim-
ply exploited the full potential of this approach.

It is useful to examine the relationship between the radia-
tion angles and our directional coordinates. The conversion is
via

sin(θ) =
p
r

(12)

and

sin(φ) =
cos(i)
sin(β)

(13)

at each grid point. Equation (13) can be easily derived by
spherical trigonometry as illustrated by Fig. 3. One can see
from Eqs. (12) and (13) that there is a degeneracy between
“incoming”–“outgoing”, as well as between “equator-bound”–
“pole-bound” rays. (The “pole-bound” rays are defined by
π
2 < φ <

3
2π.) The radiation coordinates (θ, φ) and (π − θ,

π − φ) are represented by the same (p, i) pair. Fortunately, the
“switch-over” can only occur at certain spatial positions. For
example, the incoming rays become outgoing only at r = p, so
this is just a simple book-keeping problem. Nevertheless, one

Fig. 3. Diagram illustrating the connection between the radiation an-
gle φ and the inclination angle. The “plane of the radiation” includes
the characteristic and the origin. Angles i and β are the angular dis-
tances between the z-axis and the directions of the p and r vectors,
respectively. Equation (13) can be derived by a spherical sine law us-
ing the boldface spherical triangle.

should always bear this degeneracy in mind when doing the
actual programming implementation of our method.

There remains one important question. How exactly do we
choose the actual impact-parameter and inclination angle grid?
We adopted the approach of Busche & Hillier (2000) who used
the radial grid and a number of “core rays” (p ≤ rcore) for the
impact-parameters. The core rays are added only if a central
source with a radius rcore is present in the model. This will pro-
vide a radius dependent sampling since only p ≤ r can be used
for a given r radius. Also, the sampling is uneven and sparser
around θ = π

2 than around θ = 0 or π. Nevertheless, this grid
was proven to be adequate for near spherical problems and also
very convenient to use. For example, it ensures that p = r (the
switch-over from “incoming” to “outgoing” ray) is always a
grid point. Similarly, we based our inclination angle grid on the
β grid, although, we have the option to define it independently.
If needed, extra inclination angles can also be included around
i = π2 to increase the φ angle resolution at higher latitude.

Figure 4 illustrates a typical inclination angle grid and the
φ-angle sampling it provides. For illustration purposes we use
a hypothetical β grid of 1

2π (equator), 8
10π (72o), 6

10π (54o),
4
10π (36o), 2

10π (18o), and 0 (pole). Then, one may choose these
β values and their corresponding complementary angles (π−β)
for the inclination angle grid. By our definition, angles i ≤ π

2
sample the 0 ≤ φ ≤ π range, while i > π

2 covers the rest of
the φ space (see Fig. 4). The behavior of the φ-angle sampling
created by this inclination angle grid is very similar to that of
the θ-angle sampling provided by the radial grid. One can easily
see from Eq. (13) that for a given β any i < π2−β has no solution
for φ. The equatorial regions (β ∼ π2 ), therefore, are well sam-
pled in φ angle while there is only one valid inclination angle at
β = 0 (i = π2 ). This is reasonable in axi-symmetrical models, as
long as the polar direction is also the axis of symmetry (as we
explicitly assume). The φ-angle sampling is also uneven. The
regions around φ = 0 and π (local meridian) are better resolved
than those around φ= π2 and φ= 3

2π. In Sects. 3.1−3.3 we will
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Fig. 4. The φ-angle plane at different latitudes as viewed by an observer facing the central star/object. The unit vector pointing out of the page is
toward the observer. Each figure is centered on the line of sight of the observer and the equator is toward the bottom of the page. The figure was
created for inclination angles of 0o, 18o, 36o, 54o, 72o, 90o, 108o, 126o, 144o, 162o, and 180o which are indicated near the head of the arrows.
The radiation angle φ is measured counter-clockwise from the direction toward the equator as indicated on the outer rim of the circles. Panels
a and b are for β = 36o and 54o, respectively. For clarity, we assumed that the impact-parameter (p) of the rays is equal to r; therefore, any
direction that we sample lies in the φ plane. The figure shows that the φ-angle coverage is latitude dependent and unevenly spaced. Note, for
example, the absence of i = 0o, 18o, 36o (and their complementary angles) for β = 36o.

demonstrate that our sampling method not only eliminates the
need for interpolations in θ and φ angles, but sufficiently recov-
ers the directional variation of the radiation at every point and
is adequate for RT calculations in axi-symmetric envelopes.

2.3. Approximate Lambda Iteration

A seemingly natural choice for the iteration between the RT
and level populations is the notorious “Λ-iteration”. In this
scheme, the level populations from the previous cycle are used
to calculate new J and Jl which in turn are used to update the
populations. Unfortunately, this simple procedure fails to con-
verge for large optical depths. Convergence is ensured, how-
ever, by using the Accelerated Lambda Iteration (ALI; see e.g.,
Rybicki & Hummer 1991; Hubeny 1992) which takes some of
the inherent coupling into account implicitly. The relationship
between J and the source function S can be summarized as

J = Λ [S ] , (14)

where the Λ operator can be derived from Eqs. (1) and (3).
Both Λ operator and S depend on the level populations, how-
ever, we can “precondition” Λ (i.e., use the populations from
the previous cycle to evaluate it, see e.g., Rybicki & Hummer
1991) and only take the coupling through S into account to ac-
celerate the iteration. In 2D,Λ in its entirety is too complicated
to construct and time consuming to invert, which is necessary
to take the coupling into account. We can, however, split the
Λ operator into an “easy-to-invert” Λ∗ (Approximate Lambda
Operator) and the remaining “difficult” part by

J = Λ∗ [S ] + (Λ − Λ∗) [S ] . (15)

Then, we can precondition the “difficult” part by using the old
populations, and accelerate the iteration by invertingΛ∗. Note,
that the full Λ operator never needs to be constructed, only Λ∗
since

(Λ − Λ∗)
[
S i−1

]
= Ji−1 − Λ∗

[
S i−1

]
(16)

where Ji−1 and S i−1 is the moment and source term from the
previous iteration cycle.

The actual form of Λ∗ is a matter of choice as long as it
can be easily inverted. The most practical in 2D is separating
out the local contribution (i.e., diagonal part of the Λ operator
when written in a matrix form). This is easy to calculate and has
reasonably good convergence characteristics. During the eval-
uation of moments J and Jl (see Sect. 2.1), we also calculate
the diagonalΛ∗ operator. This is a fairly straightforward book-
keeping since we just have to add up the weights used for the
local source function during the integration of Eq. (5).

We used the Λ∗ operator to accelerate the ES iterations in
our test calculations (see the following sections). Apart from
the initial “hiccups” of code development, the operator always
worked as expected and produced the published convergence
characteristics (Rybicki & Hummer 1991). The implementa-
tion of the ALO iteration into the solution of the statistical
equilibrium equation is discussed in Paper I.

3. Code verification and test results

We have developed a C++ code that implements the solution
technique described in Sect. 2. As mentioned in Sect. 2.1, we
used a modified version of the traditional SC method by termi-
nating the characteristics at the closest spherical shell rather
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than any cell boundary (i.e., our SCs cross cell boundaries
in β direction). This modification allows us to avoid intensity
interpolations in the radial direction which increases the accu-
racy when a strong central source dominates the radiation field.
The transfer calculation for an impact-parameter (p) and incli-
nation angle (i) pair is performed on an axi-symmetric torus
with an opening-angle of 2i and which is truncated at the in-
ner radius of r = max(p, rcore). This torus contains all spatial
regions that a ray described by p and i can reach. The calcula-
tion starts at the outermost radius and proceeds inward, shell by
shell, until the truncation radius is reached; then, the outgoing
radiation is calculated in a similar manner by proceeding out-
ward. At the outer boundary we set the incoming intensity to
zero while either a diffusion approximation or a Schuster-type
boundary condition can be used at the truncation radius if it is
equal to rcore. In its present form, the code assumes top-bottom
symmetry, however, this approximation can easily be relaxed
to accommodate general axi-symmetric models. The RT calcu-
lation for each (p, i) pair is independent from any other. The
only information they share are the hydrodynamic structure of
the envelope, the opacities, and emissivities; all of which can
be provided by ASTAROTH.

There are at least two major venues to accommodate multi-
processor calculations in the code. One way is to distribute
the (p, i) pairs among the available processors. To optimize
the calculation one needs to resolve a non-trivial load-sharing
issue. The actual number of spatial grid points involved in the
RT is not the same for all (p, i) pairs, so the duration of these
calculations is not uniform. For example, the transfer for p = 0
and i = π

2 involves all spatial grid points, while the one for
p = 0 and i = 0 includes only the points lying in the equator.
To use the full capacity of all processors at all times, a proper
distribution mechanism needs to be developed that allows for
the differences between processors and the differences between
(p, i) pairs.

We also have the option to distribute the work among the
processors by distributing the frequencies for which the RT is
calculated. In this case, the work-load scales linearly with the
number of frequencies, so the distribution is straightforward.
However, the lack of sufficient memory may prevent the distri-
bution of all opacities and emissivities and the processors may
have information only over their own frequency range. To take
the effects of velocity field into account at the limiting frequen-
cies, we introduce overlaps between the frequency regions.

So far, we have performed multi-machine calculations
where the (p, i) pairs or frequency ranges were distributed by
hand. The results of the distributed calculations were identical
to those performed on a single machine. Work is under way
to fully implement distributed calculations by using MPI pro-
tocols. Since our goal is to run the entire stellar atmosphere
code on multiple processors, we will discuss the details of par-
allelization in a subsequent paper after we have fully integrated
our code into ASTAROTH.

In the following we describe the results of some basic tests
of our code. First, we calculate the radiation field in static
2D problems with and without ES. Then, we present our re-
sults for realistic spherical problems with substantial wind
velocities. Finally, we introduce rotation in a spherical model

Fig. 5. The percentage difference between the J moments calculated
by our (Jsc) and by the LC program (Jlc) as a function of the depth
index (0 and 59 are the indices of the outer-most and inner-most ra-
dial grid points, respectively) for different latitudes. The ES opac-
ity in this model is described by Eq. (17). The symbols +, *, o, ×,
�, and � indicate the differences for β = 0, 0.1π, 0.2π, 0.3π, 0.4π,
and π

2 , respectively. Our code systematically overestimates J in the
outer regions (0−40) which is mostly due to the second order accuracy
of the radial interpolations. Errors from other sources (e.g., latitudi-
nal resolution, φ angle sampling) are most important at high-latitudes
(β ∼ 0.1−0.2 π) but still contribute less than ∼1%.

and demonstrate the ability of our code to handle 2D velocity
fields.

3.1. Static 2D models

The basic characteristics of our code were tested by perform-
ing simple calculations, 1D and 2D models without veloc-
ity field. We used the results of a LC program developed by
Hillier (1994, 1996) as a benchmark. This code was extensively
tested and verified by reproducing one dimensional models as
well as analytical solutions available for optically thin stellar
envelopes (e.g., Brown & McLean 1977). It was also tested
against Monte-Carlo simulations of more complicated models.

Our code reproduced the results of the LC program within a
few percent for all spherical and axi-symmetric models. It was
proven to be very stable and was able to handle extreme cases
with large optical depths. The most stringent tests were the
transfer calculations in purely scattering atmospheres. In such
cases, the necessary iterations accumulate the systematic er-
rors which highlights any weakness in the program. Several 1D
and 2D scattering models were run with ES optical depths vary-
ing between 1 and 100. Figures 5 and 6 compare our results to
those of the LC code for a model with electron scattering opac-
ity distribution of

χes = 10 ·
[ rcore

r

]3
·
(
1 − 1

2
· cos2 β

)
. (17)

No other source of opacity and emissivity was present in the
model. At the stellar surface we employed a Schuster-type
boundary condition of IBC = 1, while IBC = 0 was used
at the outer boundary. The ES iteration was terminated when
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Fig. 6. The percentage loss/gain of the total radial flux (H =∫
4π

Hrr2dΩ) with respect to the total flux emanating from the stellar
surface (Hcore) as a function of depth index for the 2D model described
by Eq. (17). The flux is conserved within ∼1%.

∆J
J ≤ 0.001% had been achieved. This model is an ideal test

case since the ES optical depth is large enough to require a sub-
stantial number of iterations to converge, but the convergence
is fast enough to allow for experimenting with different spatial
resolutions.

For the results we present in Fig. 5, the LC code was run
with 60 radial and 11 latitudinal grid points. The φ radiation an-
gle was sampled in 11 directions evenly distributed between 0
and π. This code assumes top-bottom and left-right symmetry
around the equator (β = π

2 ) and the local meridian (φ = 0),
respectively, so only half of the β and φ space had to be sam-
pled. The radial grid, supplemented by 14 core rays, was used
to map the θ radiation angle dependence (see Sect. 2.2 for de-
scription). We used a slightly modified radial and latitudinal
grid in our code. We added 3 extra radial points between the
2 innermost depths of the original grid, and 6 extra latitudinal
points were placed between β = 0 and 0.15 π. These modifi-
cations substantially improved the transfer calculation deep in
the atmosphere and at high latitudes. The sampling method of
the θ angle was identical to that of the LC code. We based our
inclination angle grid on the β grid and added 4 extra inclina-
tion angles around π2 to improve the coverage at high latitudes.
This grid resulted in a latitude dependent φ angle sampling. At
the pole, the radiation was sampled in only 2 directions while
on the equator 60 angles between 0 and 2π were used. Note,
that our code does not assume left-right symmetry!

Figures 5 and 6 show that we were able to reproduce the re-
sults of the LC code within ∼2% accuracy, and the total radial
flux is conserved within 1% level. It is also obvious that our
code needs higher spatial resolution to achieve the accuracy
of the LC code. This is expected since the LC program uses
higher order approximations and adds extra spatial points when
needed to increase the overall accuracy. In fact, one should not
call the LC code a pure Nr = 60, Nβ = 11 model. The aux-
iliary points increased the real resolution. It is not surprising,
on the other hand, that our code runs substantially faster on
the same machine. The difference was between a factor of 10

and 2, depending on the number of iterations needed to con-
verge. Unfortunately, we have not yet introduced sophisticated
acceleration techniques, like the Ng acceleration (Ng 1974), so
our code is not the most efficient when a very large number of
iterations is needed.

The agreement between our code and the LC code pro-
gressively worsened as the total ES optical depth increased.
Satisfactory agreement could be achieved, however, by increas-
ing the radial resolution. Our test problems and most of the real
problems that we will address later are near spherical with a
modest latitudinal variation. The intensity reflects the strong
radial dependency and, therefore, the radial resolution con-
trols the overall accuracy. Figure 5 reveals another feature of
our method that affects the accuracy. Our result is sensitive to
the high-latitude behavior of the intensity for a given inclina-
tion angle and impact-parameter. At the high-latitude regions,
a given inclination angle samples directions that can be almost
parallel with the equator. Slightly different directions that are
almost parallel with the equator can sample very different radi-
ation in some axi-symmetric models, such as models with thin
disks. Aggravating this problem, our method also uses fewer di-
rections to map the radiation field at these high latitudes, unless
extra inclination angles around π

2 are included. This explains
why we had to use extra latitudes and inclination angles to pro-
duce the result for Figs. 5 and 6. We would like to emphasize,
however, that these problems are important only in extreme axi-
symmetric models (e.g, very thin disks or strong polar jets).
Many times, as it will be demonstrated in the next sections,
reasonable accuracies can be achieved on ordinary and simple
grids.

During the static 2D tests, we also experimented with the
multi-grid capability of our code and verified its scaling be-
havior. Tests with progressively increasing spatial resolution
showed that our code has second order accuracy. By doubling
the number of radial grid points, for example, the errors de-
creased roughly 4-fold. We also performed the ES iterations in
multiple steps and at progressively increasing resolution. First,
a coarse grid was created (e.g., half of the nominal resolution)
for a crude and fast initial iteration. Then, with the updated
source terms, a second iteration was performed on the nomi-
nal grid. This “double iteration” scheme was generally a factor
of two faster than a single iteration on the nominal grid. This
approach will be a promising venue for fast iterations in com-
bination with other acceleration techniques.

3.2. 1D test cases with realistic wind velocities

After performing static 2D tests, we applied our code to real-
istic 1D atmospheres. The primary purpose of these tests was
to verify our handling of realistic velocity fields. We used a
well known and tested 1D stellar atmosphere code, CMFGEN
(Hillier & Miller 1998), for comparison. Observed spectra for
a CMFGEN model are calculated independently by an auxil-
iary routine, CMF_FLUX (see Busche & Hillier 2005, for a
description). We compared our simulated observed spectra to
those of CMF_FLUX.
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Table 1. Description of model v34_36C.

Star AV 83

Sp. type O7 Iaf

log g 3.25

R 19.6 R�
Teff 34 000 K

Ṁ 2.5 × 10−6 M� yr−1

V∞ 900 km s−1

βa 2
a Power for CAK velocity law (Castor et al. 1975).

We have an extensive library of CMFGEN models to
choose a benchmark for our tests. We picked AV 83, a su-
pergiant in the SMC (see Table 1) which was involved in a
recent study of O stars (Hillier et al. 2003). Accurate rotation-
ally broadened spectra with different viewing angles are also
available for this star (Busche & Hillier 2005) which we will
use for comparison in Sect. 3.3. A detailed description of the
CMFGEN models for AV 83 can be found in Hillier et al.
(2003). We chose their model v34_36C (see Table 1) to test
our code. The radial grid with 52 depth points was adopted
from this model. The impact-parameter grid which samples the
θ radiation angle was defined by the radial grid augmented by
15 core rays (see Sect. 2.2 for details). Our simulation was run
as a real 2D case with two latitudinal angles (β = 0 and π2 ). We
used 3 inclination angles which resulted in transfer calculations
for 2 and 4 φ angles in the polar and the equatorial directions,
respectively. The RT calculations were performed on frequency
regions centered around strategic lines, like Hα. A coarse grid
(Nr = 26, Nβ = 2) and the nominal (Nr = 52, Nβ = 2) grid
was used for the ES iteration as in the cases of static models
(see Sect. 3.1). Note, that our model is not a fully consistent
solution because we did not solve for the level populations. We
simply used the output opacities and emissivities of the con-
verged CMFGEN model and calculated the RT for it.

Figure 7 shows the normalized J moment as a function of
wavelength for the C iv λλ1548−1552 doublet and Hα at dif-
ferent depths. The results of our code and those of CMFGEN
are in good agreement, except that we resolve narrow lines bet-
ter. CMFGEN solves the moment equation in the co-moving
frame, starting at the largest frequency. This procedure intro-
duces bleeding which broadens the sharp lines. Our results are
not affected by this bleeding since we use the formal solution.

Figure 8 shows the observed spectrum for AV 83 in the ob-
server’s frame. As is the case with the J moment the agreement
between our code and CMF_FLUX is excellent. In this case
CMF_FLUX does a better job but this is expected. Our code
is primarily for providing J and Jl for the solution of the rate
equations while it produces observed spectra only for testing.
The main purpose of CMF_FLUX, on the other hand, is to pro-
duce highly accurate spectra in the observer’s frame.

We would like to emphasize that our code did not
need higher spatial resolution to reproduce the results of
CMFGEN/CMF_FLUX, as opposed to some cases presented in
Sect. 3.1. The pure scattering models of Sect. 3.1 were extreme

examples and were hard to reproduce. The comparison with
CMFGEN proves that our code can handle realistic problems
at a reasonable spatial resolution.

3.3. Tests with a rotating envelope

As a final test for our SC code we ran simulations of semi-
realistic 2D atmospheres. These were created by introducing
rotation in otherwise 1D models. AV 83 offers a good op-
portunity for such an experiment. It has a slowly accelerating
wind and low terminal velocity that enhances the importance of
the rotational velocities. Also, its spectrum contains numerous
photospheric and wind features which behave differently in the
presence of rotation.

Capitalizing on these features Busche & Hillier (2005) used
AV 83 to test their code for calculating observed spectra in
2D models, and to perform a comprehensive study of the ob-
servable rotation effects. They utilized the LC method and a
very dense directional sampling to calculate the observed spec-
tra for an arbitrary viewing angle. This code serves the same
purpose for ASTAROTH as CMF_FLUX does for CMFGEN;
to calculate very accurate observed spectra for an already con-
verged model. Since our code produces observed spectra only
for testing purposes and error assessment, the comparison pro-
vides only a consistency check between the two codes. Further,
Busche & Hillier (2005) do not calculate radiation moments, so
we could only examine whether our results behave as expected
with respect to the 1D moments of CMFGEN.

The rotation in the envelope of AV 83 was introduced by
using the Wind Compressed Disk model (WCD, Bjorkman &
Cassinelli 1993). Busche & Hillier (2005) ran several calcu-
lations to study the different aspects of rotation. We adopted
only those that were used to study the Resonance Zone Effects
(RZE, Petrenz & Puls 1996). To isolate RZE-s, the latitudinal
velocities were set to zero and the density was left unaffected
by the rotation (i.e., it was spherical). The azimuthal velocity
in such simplified WCD cases is described by

vφ = veq · rcore

r
· sin (β) (18)

(see Bjorkman & Cassinelli 1993; Busche & Hillier 2005). For
the maximum rotational speed on the stellar surface (veq) we
adopted 250 km s−1 following Busche & Hillier (2005). The
radial velocity in the WCD theory is described by a CAK ve-
locity law, so we used the same radial velocities as in Sect. 3.2.

We again adopted the radial grid of model v36_34C (Hillier
et al. 2003) and used three β angles (0, π4 , and π2 ). In addition to
these grids we had a dense radial and latitudinal grid (Nr = 205,
Nβ = 9) for the interpolation of opacities, emissivities, and ve-
locities; and a coarse grid (Nr = 26, Nβ = 2) for the ES iter-
ation. We used 14 inclination angles, evenly spaced between 0
and π, which resulted in intensity calculations for 24 φ angles
(between 0 and 2π) at every point on the equator. As before,
we performed our “double ES iteration scheme” (see Sects. 3.1
and 3.2) with convergence criteria of ∆J

J ≤ 0.001%.
Figures 9 and 10 show the behavior of the J moment around

the C iv λλ1548−1552 doublet and Hα, respectively, and also
for the closest spherical and non-rotating CMFGEN model
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Fig. 7. The normalized J moment as a function of wavelength around the C iv λλ1548–1552 doublet (left column) and Hα (right column) at
different locations in the envelope of AV 83 (the stellar model is described in Table 1). The top row of figures shows J at vr ∼ v∞, the middle at
vr ∼ 0.1v∞, while the bottom row displays J in the hydrostatic atmosphere (vr ∼ 0). Note, that all spectra are in the co-moving frame. The solid
(thin) and dash-dotted (thick) lines were calculated by CMFGEN and our code, respectively. Even though this model is spherical, our code
treated it as a 2D case. As expected for spherical models, we calculated identical J moments for every latitude.
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Fig. 8. The observed spectrum around the C iv λλ1548–1552 doublet calculated by CMF_FLUX (thin solid line) and by our code (thick
dash-dotted line). Note, that these spectra are in the observers’ frame.

(thin/red line). It is obvious that substantial deviation occurs
only in the outer envelope and only for photospheric lines.
Strong P-Cygni profiles, like those of the C iv λλ1548−1552
doublet, are barely affected apart from a little smoothing
around the blue absorption edge and at the maximum emission.
The Hα emission, on the other hand, changes its strength sub-
stantially between β = 0 and π

2 . This sensitivity casts doubts
about the reliability of Hα as an accurate mass loss indicator
for rotating stars with unknown viewing angle. A similar sen-
sitivity to the rotation can also be seen on the iron lines around
C iv λλ1548−1552 doublet that are also formed at the wind
base.

Closer to the stellar surface the rotation effects on Hα di-
minish. At this depth, the behavior of narrow lines becomes in-
teresting. The iron lines around C iv λλ1548−1552 doublet are
broadened and skewed to the blue. This is the combined result
of the large angular size of the stellar surface, limb darkening,
and the broken forward-backward symmetry in the azimuthal
direction. We will discuss this issue below in detail. At stellar
surface (vr ∼ 0) the optical depth is so large that any parcel of
material sees only its immediate neighborhood which roughly
moves with the same velocity. Consequently, no skewness, dis-
placement or line-shape difference occurs between the profiles
calculated for different latitudes (not shown in Figs. 9 and 10).

Figure 11 shows the detailed structure of the He i 4713.17 Å
profile in J moment. Since this line is not affected by blend-
ing (see e.g., the second panel of Fig. 12), its position, shape,
and width should clearly reflect the expected rotation effects
and should highlight any inconsistencies in our model calcu-
lation. We present these profiles in velocity space and correct
for the local radial velocities. The bottom row of Fig. 11 shows
He i 4713.17 Å deep in the atmosphere (vr ∼ 0 and τν 	 1).
The line is in weak emission centered around 0 km s−1 as ex-
pected. The profiles are similar at all latitudes which reflects
the fact that only radiation from the nearby co-moving regions
contributes to J at this position. The line width reflects the

local turbulent velocity and temperature. The top row of Fig. 11
shows the normalized J at vr ∼ V∞. Here the line is in absorp-
tion and the profile widths show strong latitudinal dependence.
We expect He i 4713.17 Å to form in the photosphere, far from
the radii where vr ∼ v∞ (r ∼ 50rcore). In the co-moving frame of
this position the central star covers only a small solid angle on
the sky and can be considered as moving away with a uniform
velocity, roughly equal to v∞. When we correct for the radial
velocity of this position, we almost correctly account for the
Doppler shift of each small section of the photosphere, hence,
the profiles in Fig. 11 should be and are centered on ∼0 km s−1.
The polar view (solid line) shows the intrinsic line profile (un-
affected by rotation) while the equatorial view (dash-dotted)
broadened by ±250 km s−1 as it should.

The profiles displayed in the middle panel of Fig. 11 are
more difficult to understand. They appear to be blueshifted
and also skewed at β = π

4 and π
2 . At these intermediate radii

(vr ∼ 0.1v∞ and r ∼ 1.5rcore) the stellar surface covers a large
portion of the sky and the Doppler shifts of photospheric re-
gions vary substantially. The line profile in J is a superposition
of the profiles emanating from different photospheric regions,
and it is affected by the angular size of the photosphere and
by the limb darkening. The line center should be redshifted
by less than 0.1v∞ velocity which explains the ∼−20 km s−1

blueshift in the middle panel of Fig. 11 (i.e., we over compen-
sated the Doppler shift). The blueward tilt of the profiles at
β = π

4 and π
2 is caused by the forward-backward asymmetry

around the rotational axis. The trailing and leading side of the
photosphere contributes a broader and narrower profile, respec-
tively, which causes the blueward tilt. We can conclude, there-
fore, that the gross characteristics of the He i 4713.17 Å line
profiles in Fig. 11 reflect the expected features at all depths and
reveal no inconsistencies in our method.

Figure 12 shows the observed spectra at different viewing
angles around selected transitions. We also show the calcula-
tions of CMF_FLUX for the corresponding spherical model.
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Fig. 9. The normalized J moment as a function of wavelength around the C iv λλ1548–1552 doublet at vr ∼ v∞ (top) and at vr ∼ 0.1v∞ (bottom).
The wind velocity is described by a simplified version of the WCD model, for which the polar velocities and the density enhancements were
turned off (see text for description). The azimuthal rotation was calculated by Eq. (18) with veq = 250 km s−1. The thin (red) curve is the basic
spherical symmetric model of AV 83 which was produced by CMF_FLUX. The thick blue, green, and purple lines were calculated by our code
and display J for β = 0, π4 , and π2 , respectively.

Not surprisingly, the observed spectra reveal the same charac-
teristics as those of J moment at large radii. For our purposes,
the most important feature of Figs. 12 is the remarkable simi-
larity to Figs. 4 and 5 of Busche & Hillier (2005). Despite the
limited ability of our code to produce observed spectra, Fig. 12
shows all the qualitative features of the synthetic observations.

Most of the differences are due to our treatment of the ES. Our
code does not redistribute the scattered radiation in frequency
space which would produce smoother features like those of
Busche & Hillier (2005). Note, that we run CMF_FLUX with
coherent ES for proper comparison; therefore, the spherical
symmetric spectra also show sharper features.
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Fig. 10. Same as Fig. 9, but for the spectra around Hα.

4. Summary

We have implemented the short-characteristic method into a
radiation transfer code that can handle axi-symmetric stellar
models with realistic wind-flow velocities. This routine will re-
place the continuum transfer plus Sobolev approximation ap-
proach that is currently used in our axi-symmetric stellar atmo-
sphere program (ASTAROTH, Paper I). The new transfer code
allows for non-monotonic wind-flow and, therefore, will en-
hance ASTAROTH’s ability to treat line transfer accurately in
models for Be stars, OB rotators, binaries with colliding winds

or accretion disks, pre-main sequence and young stars, and for
collapsing core (Type-II) supernovae.

The most important improvements of our approach are the
sampling method that we introduced to map the directional
variation of the radiation, and the flexible approach to allow for
non-monotonic velocity fields. We use a global grid in impact-
parameters and in inclination angles (the angle between the
equator and the plane containing the ray and the origin), and
solve the transfer independently for every pair of these pa-
rameters. The code calculates the incoming intensities for the
characteristics – a necessary feature of the short-characteristic
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Fig. 11. Normalized J profiles of He i λ4713.17 at vr ∼ v∞ (top), 0.1v∞ (middle), and 0 (bottom). The solid, dashed, and dash-dotted spectra
are for β = 0 (pole), π4 , and π

2 (equator), respectively. The velocity scale is centered on the line and corrected for the above radial velocities.
Our code reproduces the expected characteristics of the profiles within the uncertainties of our calculations (∼20 km s−1). Note the skewed line
profiles at intermediate radii (middle panel) which are the results of the broken forward-backward symmetry around the rotational axis (see
Sect. 3.3 for details).
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Fig. 12. The observed spectra of AV 83 around the C iv λλ1548–1552 doublet (top), the C iii/N iii/He ii emission complex between
4630−4700 Å, He ii λ5411, and Hα (bottom), respectively. See Sect. 3.3 and Fig. 9 for the description of the model parameters. The thick
(red) curve is the spherical model calculated by CMF_FLUX, while the thin (blue), dashed (green), and dashed-dotted (purple) curves are our
calculations for viewing angles 0, π4 , and π

2 , respectively. Note that the characteristics of these spectra (e.g., line widths and shapes) are very
similar to those of Busche & Hillier (2005, see text for further details).
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method – by a single latitudinal interpolation. Our approach
eliminates the need for further interpolations in the radiation
angles. The effects of the wind-flow are taken into account by
adapting the resolution along the characteristics to the gradi-
ent of the flow velocity. This method ensures the proper fre-
quency mapping of the opacities and emissivities where it is
needed, but avoids performing unnecessary work elsewhere.
Furthermore, it also provides flexibility in trading accuracy for
speed.

The code also allows for distributed calculations. The
work-load can be shared between the processors by either dis-
tributing the impact-parameter – inclination angle pairs for
which the transfer is calculated or by assigning different fre-
quency ranges to the processors.

We tested our code on static 1D/2D pure scattering prob-
lems. In all cases, it reproduced the reference result with an
error of a few percent. More complex tests on realistic stel-
lar envelopes, with and without rotation, were also performed.
Our code reproduced the results of a well-tested 1D code
(CMFGEN, Hillier & Miller 1998), as well as the expected
features in 2D rotating atmospheres. These tests demonstrated
the feasibility and accuracy of our method. In a subsequent
paper, we will describe the implementation of our code into
ASTAROTH and present the results of fully self-consistent
2D simulations.
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Appendix A: Interpolation methods

A.1. Linear interpolations

We used bi-linear interpolations to calculate opacity, source
function, and line of sight velocity at non-grid positions in our
modeling domain. The values were calculated by a weighted
average of the corresponding quantities at the nearest grid
points by

χ(ν) =
4∑

l=1

wl · χl(ν), (A.1)

S (ν) =
4∑

l=1

wl · S l(ν), (A.2)

and

n · u =
4∑

l=1

wl ·
(
n · ul

)
. (A.3)

The nearest grid points are described as l = 1 (r1, β1), l = 2
(r1, β2), l = 3 (r2, β1), l = 4 (r2, β2); which set the weights in
Eqs. (A.1)−(A.3) to

w1 =
r − r2

r1 − r2
· β − β2

β1 − β2
w2 =

r − r2

r1 − r2
· β − β1

β2 − β1
(A.4)

w3 =
r − r1

r2 − r1
· β − β2

β1 − β2
w4 =

r − r1

r2 − r1
· β − β1

β2 − β1
· (A.5)

Coordinates r (r2 ≥ r > r1) and β (β2 ≥ β > β1) are the
coordinates of the general (non-grid) position. Note, that the
frequency dependent quantities were interpolated in the co-
moving frame!

Since the integrals in Eqs. (4) and (5) are evaluated in
the co-moving frame of the down-stream end point of the
characteristic, the opacities and source functions calculated by
Eqs. (A.1) and (A.2) need to be properly Doppler corrected
for the evaluation of the integrals. For a frequency ν in the co-
moving frame of the down-stream end point the procedure goes
as follows: a) first we find the Doppler shifts ∆z j by Eq. (A.3)
for every integration point j on the characteristics (see Sect. 2.1
for definitions); b) we find co-moving frequencies νk and νk−1

so that

νk ≥ ν ·
(
1 − ∆z j

)
> νk−1 (A.6)

at all integration points; c) we find the opacity and source func-
tion for νk and νk−1 by Eqs. (A.1) and (A.2); d) we use lin-
ear interpolation in frequency space to get these parameters at
ν ·

(
1 − ∆z j

)
for the integrations.

This seemingly cumbersome procedure is actually a
straightforward book-keeping that can be programmed very ef-
ficiently in the presence of monotonic velocity fields. Note, that
we do not mean global monotonicity but a velocity field that is
monotonic along the SC! One can assure such a situation by
properly creating the spatial grid.

A.2. Interpolation of the intensities

Linear interpolations of the intensities at the upstream end
point of the SC does not provide acceptable accuracy. This is
because of the accumulation of errors from all previous inten-
sity interpolations. Extensive testing of our method showed that
the best result was achieved by using monotonic cubic interpo-
lations (e.g., Steffen 1990). We use this method to interpolate
the intensities in β angle for fixed r and ν. The monotonic cu-
bic approximation provides the necessary 3rd order accuracy,
yet avoids artificial variations (“ringing”) that can be amplified
and propagated on our grid. Using monotonic interpolations ac-
tually dampens out such “ringings” and stabilizes our method.

An unfortunate effect of requiring monotonicity, however,
is that we need to save the intensities for all frequencies and
β angles on the previously treated shell (see Sect. 3 for descrip-
tion of our code). Fortunately, this does not impede our efforts
to accommodate multi-processor calculations because all (p, i)
pairs can still be treated independently. Only, we require an ad-
ditional memory area for ∼NβNν real number per (p, i) pair.
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