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ABSTRACT

We study the dependence of the cooling of isolated neutron stars on the magnitude of the 3P2 neutron gap. Our “nuclear medium cooling”
scenario favors a suppressed value of the 3P2 neutron gap.
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1. Introduction

Theoretical study of neutron star (NS) cooling began with pi-
oneering works of Tsuruta & Cameron (1965) and Bahcall
& Wolf (1965). It has been argued that one-nucleon direct
Urca (DU) processes n → peν̄, pe → nν are forbidden up
to sufficiently high density and the main role is played by the
two-nucleon modified Urca (MU) processes, like nn → npeν̄
and np → ppeν̄. The “standard” scenario of NS cooling
emerged, where the main process responsible for the cooling
is the modified Urca process MU nn → npeν̄ calculated us-
ing free one pion exchange (FOPE) between nucleons, see
Friman & Maxwell (1979). An order of magnitude less con-
tribution to the neutrino emissivity is given by the nucleon
bremsstrahlung (NB) processes. The main process among
NB processes responsible for the cooling is neutron-neutron
bremsstrahlung nn → nnνν̄, neutron-proton bremsstrahlung
pn → pnνν̄ is less effective, and the proton-proton one pp →
ppνν̄ is even less effective. This scenario explains only the
group of slow cooling data. To explain the group of rapidly
cooling data the “standard” scenario was supplemented by “ex-
otic” processes either with a pion condensate, with a kaon con-
densate, with hyperons, or involving DU reactions, see Tsuruta
(1979), Shapiro & Teukolsky (1983) and references therein. All
these processes may occur only for densities higher than a crit-
ical density, (2÷6) n0, depending on the model, where n0 is the
nuclear saturation density.

Pair breaking and formation (PBF) processes permitted in
nucleon superfluids have been suggested. Flowers et al. (1976)

calculated the emissivity of 1S 0 neutron pair breaking and for-
mation (nPBF) process and Voskresensky & Senatorov (1987)
considered the general case. Neutron and proton pair break-
ing and formation processes (pPBF) were incorporated within a
closed diagram technique including medium effects. Numerical
estimates are valid both for 1S 0 and 3P2 superfluids. Schaab
et al. (1997) have shown that the inclusion of PBF processes
into the cooling code may allow one to describe the “interme-
diate cooling” group of data (even if one artificially suppresses
the effects of the medium). Thus the “intermediate cooling”
scenario arose.

The PBF processes were then incorporated in the cooling
codes of other groups, that worked with the “standard plus
exotics” scenario, see Tsuruta et al. (2002), Yakovlev et al.
(2004a), Page et al. (2004). Recently Page et al. (2004) called
the approach that incorporates the PFB processes into the
“standard” scenario, the “minimal cooling” paradigm. Some
papers included the possibility of internal heating that results
in a slowing down of the cooling of old pulsars, see Tsuruta
(2004) and refs. therein. However, because of the simplification
of the consideration, calculations within the “standard plus ex-
otics” scenario or within the “minimal cooling” paradigm did
not incorporate effects of the medium.

The necessity to include in-medium effects in the NS cool-
ing problem is a rather obvious issue. It is based on require-
ments of condensed matter physics, of the physics of the atomic
nucleus and heavy ion collisions, see Migdal et al. (1990) Rapp
& Wambach (1994), Ivanov et al. (2001). The relevance of in-
medium effects for the NS cooling problem has been shown

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20052799

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20052799


914 H. Grigorian and D. N. Voskresensky: Medium effects in cooling of neutron stars and the 3P2 neutron gap

by Voskresensky & Senatorov (1984, 1986, 1987), Senatorov
& Voskresensky (1987), Migdal et al. (1990), Voskresensky
(2001) who calculated emissivity of the MU, NB and PFB pro-
cesses taking into account in-medium effects. We call these
processes medium-modified Urca process (MMU), medium
nucleon bremsstrahlung (MNB) and medium pair breaking
and formation (MPBF) processes. The efficiency of the devel-
oped “nuclear medium cooling” scenario for the description
of NS cooling was demonstrated within the cooling code by
Schaab et al. (1997) and then by Blaschke et al. (2004). In the
latter paper it was shown that it is possible to fit the whole set
of cooling data available today. Besides the incorporation of
in-medium effects into the pion propagator and the vertices, it
was also exploited that the 3P2 neutron gaps are dramatically
suppressed. The latter assumption was motivated by the analy-
sis of the data (see Figs. 12, 15, 20−23 of Blaschke et al. 2004)
and by recent calculations of the 3P2 neutron gaps by Schwenk
& Friman (2004). However more recent work of Khodel et al.
(2004) suggested that the 3P2 neutron pairing gap should be
dramatically enhanced, as a consequence of the strong soften-
ing of the pion propagator. Thus the results of calculations of
Schwenk & Friman (2004) and Khodel et al. (2004), which
both aim to include medium effects in the evaluation of the
3P2 neutron gaps, are contradictory.

Our aim here is to check the consequences of an enhanced
3P2 neutron pairing gap within the “nuclear medium cool-
ing” scenario following the work of Blaschke et al. (2004).
The paper is organized as follows. In Sect. 2 we start with
a brief recapitulation of the Landau-Migdal Fermi liquid ap-
proach. Section 2.1 calculates the NN interaction amplitude.
In Sect. 2.2 we separate the in-medium pion mode yield-
ing the main contribution to the NN interaction for n > n0.
Section 2.3 demonstrates the importance of the renormaliza-
tion of the weak interaction in the medium. In Sect. 2.4 we
show internal inconsistencies of the FOPE model, which is the
basis of the “standard” scenario. Then in Sect. 3 we recapitu-
late the main processes as they are treated within the “nuclear
medium cooling” scenario. In Sect. 4 we discuss calculations of
the pairing gaps and how gaps affect the emissivities of differ-
ent processes. Then in Sect. 5.1 we discuss the cooling model
of Blaschke et al. (2004). In Sect. 6 we present emissivities of
the main processes, the heat capacity and thermal conductivity
contributions in the scenario of Khodel et al. (2004), when the
neutron processes are assumed to be frozen. In Sect. 7 we show
our numerical results. Concluding remarks are given in Sect. 8.

2. Medium effects. Nuclear Fermi liquid

2.1. NN interaction. Hard and soft modes

At temperatures of interest (T � εFn, εFp) neutrons and even
protons are only slightly excited above their Fermi seas and
all the processes occur in the close vicinity of the Fermi ener-
gies εFn, εFp. Quasiparticle approximation is fulfilled for nu-
cleons. In such a situation a Fermi liquid approach seems to be
the most efficient one. Within this approach the long-scale phe-
nomena are treated explicitly whereas short-scale ones are de-
scribed by the local quantities expressed via phenomenological

Landau-Migdal parameters. We deal with the baryon densities
7 n0 >∼ n >∼ 0.5 n0. The value n0 � 0.5m3

π, where mπ = 140 MeV
is the pion mass, � = c = 1. At such densities related to inter-
nucleon distances d ∼ 1/n1/3 ∼ (0.5 ÷ 1.3) 1/mπ processes im-
portant for the description of the NN interaction correspond to
typical energies and momenta ω, k <∼ few mπ. We call them the
long-range processes and treat them explicitly. These are nu-
cleon particle-hole processes, ∆ isobar-nucleon hole processes
(since the typical energy of the isobar is of the order of the mass
difference m∆ − mN � 2.1 mπ) and processes related to the ex-
citation of the pion (the typical excitation energy is of the order
of the pion mass). Thus we explicitly present loop diagrams
which depend strongly on the energy and momentum for the
ω, k <∼ few mπ of our interest.

Using the above argumentation of Fermi liquid theory (see
Landau 1956; Migdal 1967; Migdal et al. 1990) the retarded
NN interaction amplitude is presented as follows (see also
Voskresensky 2001, for further details)

= +

+ (1)

where

= + . (2)

The solid line presents the quasiparticle Green function of the
nucleon, the double-line is that of the ∆ isobar1. Thus most
long-range diagrams of the particle-hole and ∆-nucleon hole
types are explicitly presented in (1). Other long-range terms
come from the pion. The double-wave line in (2) corresponds
to the exchange of the free pion with inclusion of the contribu-
tions of the residual S wave πNN interaction and ππ scattering,
i.e. the residual interaction irreducible to the nucleon particle-
hole and delta-nucleon hole. The latter contributions we have
taken into account in (1). Thus the full particle-hole, delta-
nucleon hole and pion irreducible block (first block in (2)) is
by its construction significantly more local than contributions
given by explicitly presented graphs. If we decided to calculate
the irreducible block in (2) we would need to introduce σ, ω,
ρ exchanges and to treat diagrams with multiple pion lines. All
these terms are less energy-momentum dependent for ω, k <∼
few mπ than those we treat explicitly.

Up to now we have not perform any approximations, ex-
cept the quasiparticle approximation for the nucleons. Now we
perform the main approximation. Using the locality argument,
one assumes that the Landau-Migdal parameters, fnn, fnp in the
scalar channel and gnn, gnp in the spin channel, which param-
eterize the first block in (2), are approximately constant. Their
values are extracted from analysis of experimental data. In a

1 Diagrams with open particle lines have sense only if the quasi-
particle approximation is valid. Otherwise one needs to use the closed
diagram technique developed by Voskresensky & Senatorov (1987),
Knoll & Voskresensky (1995, 1996).
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more extended approach these parameters should certainly be
calculated as functions of the density, neutron and proton con-
centrations, energy and momentum.

The part of interaction involving ∆ isobar is analogously
constructed

= + . (3)

The main part of the N∆ interaction is due to the pion exchange.
Although information on the local part of the N∆ interaction is
rather scarce, one can conclude (Migdal et al. 1990; Suzuki
et al. 1999) that the corresponding Landau-Migdal parame-
ters are essentially smaller then those for the NN interaction.
Therefore for simplicity we neglect the first graph in the r.h.s.
of (3).

Straightforward resummation of (1) in the neutral channel
yields (Voskresensky & Senatorov 1987; Migdal et al. 1990)

ΓR
αβ =

α

α

β

β

= C0

(
F R
αβ +ZR

αβσ1 · σ2

)
+ f 2
πNT R

αβ(σ1 · k)(σ2 · k), (4)

F R
αβ = fαβγ( fαβ), ZR

nn = gnnγ(gnn), (5)

ZR
np = gnpγ(gnn), α, β = (n, p),

T R
nn = γ

2(gnn)DR
π0 , T R

np = −γppγ(gnn)DR
π0 ,

T R
pp = γ

2
ppDR

π0 ,

γ−1(x) = 1 − 2xC0AR
nn, γpp = (1 − 4gC0AR

nn)γ(gnn),

fnn = fpp = f + f ′, fnp = f − f ′, gnn = gpp = g + g
′, and

gnp = g − g′, the dimensional normalization factor is usually
taken to be C0 = π

2/[mN pFN (n0)] � 300 MeV fm3 � 0.77m−2
π ,

pFN (n0) is the nucleon Fermi momentum in the atomic nu-
cleus, DR

π0 is the full retarded Green function of π0, Aαβ is the
corresponding NN−1 loop (without spin degeneracy factor 2)

Aαβ =

β

α−1

, (6)

Ann(ω � q) � m∗2n (4π2)−1

(
ln

1 + vFn

1 − vFn
− 2vFn

)
,

Ann � −m∗n pFn(2π2)−1, for ω � qvFn, q � 2pFn, pFn = m∗nvFn,
m∗n is the effective neutron mass in medium, and for simplicity
we neglect proton hole contributions due to the low concentra-
tion of protons. The term proportional to C0 in (4) demonstrates
the change of the local block by the long-range loop NN cor-
relation factors and the term proportional to the pion-nucleon
coupling constant fπN demonstrates the change of the second
(pion) term in (2).

Resummation of (1) in the charged channel yields

Γ̃R
np =

p

n

p

n

= C0

(
F̃ R

np + Z̃R
npσ1 · σ2

)

+ f 2
πN T̃ R

np(σ1 · k)(σ2 · k) , (7)

F̃ R
np = 2 f ′γ̃( f ′), Z̃R

np = 2g′̃γ(g′),

T̃ R
np = γ̃

2(g′)DR
π− , (8)

γ̃−1(x) = 1 − 4xC0AR
np ,

DR
π− is the full retarded Green function of π−. The

Landau-Migdal parameters are poorly known for isospin asym-
metric nuclear matter and for n > n0. Taking into account
the arguments that they can be considered approximately as
constants, for estimates we may use the values extracted from
atomic nucleus experiments. One can expect that the most un-
certain will be the value of the scalar constant f due to the
essential role of the medium-heavy σ meson in this channel.
But this parameter does not enter the tensor force channel
which is the most important in our case. Unfortunately, there
are also uncertainties in the numerical values of the Landau-
Migdal parameters in other channels and even for atomic nu-
clei. These uncertainties are, mainly, due to attempts to get
the best fit of experimental data in each concrete case, slightly
modifying the parameterization used for the residual part of the
NN interaction. For example, calculations by Migdal (1967)
gave f � 0.25, f ′ � 1, g � 0.5, g′ � 1 whereas Saperstein &
Tolokonnikov (1998), Fayans & Zawischa (1995), Borzov et al.
(1984), including quasiparticle renormalization pre-factors, de-
rived the values f � 0, f ′ � 0.5 ÷ 0.6, g � 0.05 ± 0.1,
g′ � 1.1 ± 0.1.

Typical energies and momenta entering the NN interaction
amplitude of interest are ω � 0 and k � pFn. Then one es-
timates γ(gnn, ω � 0, k � pFn, n = n0) � 0.35 ÷ 0.45. For
ω = k � T typical for the weak processes with νν̄ one has
γ−1(gnn, ω � k � T, n = n0) � 0.8 ÷ 0.9.

2.2. Virtual pion mode

The pion is strongly affected by the nucleon surroundings. It is
obvious already from the fact that typical densities are n ∼ 1
and the pion-nucleon coupling constant is fπN = 1 in units mπ =
� = c = 1. Obviously perturbation theory is not applicable in
this case. Instead we continue to use the Fermi liquid approach
suitable for the description of the strong interaction.

A straightforward resummation of diagrams (1), (2) yields
the following re-summed Dyson equation for pions

= +

+ + ΠR
res (9)
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The πN∆ full-dot-vertex includes a phenomenological back-
ground correction due to the presence of the higher resonances,
ΠR

res is the residual retarded pion self-energy that includes the
contribution of all the diagrams which are not presented ex-
plicitly in (9), such as S wave πNN and ππ scatterings (in-
cluded by double-wavy line in (2)). For zero temperature the
main contribution to ΠR

res is given by the Weinberg-Tomozawa
term which has a simple analytic form. A part of ΠR

res related to
ππ fluctuations is important for the description of the vicinity
of the pion condensation critical point. It is calculated explic-
itly. Other contributions are rather small and can be neglected,
as follows from the comparison of the theory predictions with
different atomic nucleus data, see Migdal et al. (1990).

The full πNN vertex takes into account NN correlations

= + . (10)

Therefore the nucleon particle-hole part of Ππ0 is ∝ γ(gnn) and
the nucleon particle-hole part of Ππ± is ∝ γ(g′). The value of
the NN interaction in the pion channel is determined by the full
pion propagator at small ω and k � pFn, i.e. by the quantity

(ω∗)2(k) = −(DR
π )
−1(ω = 0, k, µπ). (11)

Typical momenta of interest are k � pFn. Indeed the mo-
menta entering the NN interaction in MU and MMU pro-
cesses are k = pFn, the momenta governing the MNB are
k = km (Voskresensky & Senatorov 1986) where the value
k = km � (0.9÷1)pFn corresponds to the minimum of (ω∗)2(k).
The quantity ω∗ ≡ ω∗(km) is the effective pion gap, i.e., the
effective pion mass in some sense. The effective pion gap ω∗

demonstrates how much the virtual (particle-hole) mode with
pion quantum numbers is softened at a given density. The quan-
tity ω∗2(pFn(n)) replaces the value (m2

π + p2
Fn) in the case of

the free pion propagator used for the calculation of the MU
process by Friman & Maxwell (1979). It is different for π0

and for π± since neutral and charged channels are character-
ized by different diagrams permitted by charge conservation,
thus also depending on the value of the pion chemical poten-
tial, µπ+ � µπ− � 0, µπ0 = 0. For T � εFn, εFp, one has
µπ− = µe = εFn − εFp, as follows from equilibrium conditions
for the reactions n→ pπ− and n→ peν̄.

As follows from numerical estimates of different γ factors
entering (4) and (7), the main contribution to NN interaction for
n > n0 is given by the resummed medium one pion exchange
(MOPE) diagram

� (12)

if this channel (T ∝ (σ1 · k)(σ2 · k), see (7), (4)) of the reac-
tion is not forbidden or suppressed by specific effects such as
symmetry, small momentum transfer, etc.

The density dependence of the effective pion gapω∗ that we
use in this work is demonstrated in Fig. 1 (Fig. 1 of Blaschke
et al. 2004). The curve 1a in Fig. 1 shows the behavior of the
pion gap for n < nPU

c , where nPU
c is the critical density for the
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effective pion gap
n-n corr factor, C = 1.6

Fig. 1. Nucleon−nucleon correlation factor Γ and square of the effec-
tive pion gap ω∗ with pion condensation (branches 1a, 2, 3) and with-
out (1a, 1b).

pion condensation. In this work for simplicity we do not dis-
tinguish between different possibilities of π0, π± condensations
and the so-called alternative-layer-structure, see Voskresensky
& Senatorov (1984), Migdal et al. (1990) and Umeda et al.
(1994). Thus we assume that π0 and π− condensations occur
at the very same critical density nPU

c . Although the value nPU
c

depends on rather uncertain different parameters we, following
Blaschke et al. (2004), further assume nPU

c � 3 n0, cf. discus-
sion by Migdal et al. (1990). The curve 1b demonstrates the
possibility of a saturation of pion softening and the absence of
pion condensation for n > nPU

c (this possibility could be re-
alized, e.g., if Landau-Migdal parameters increased with the
density). This pion gap (from curves 1a+1b) is the value that
determines the pion Green function for the pion excitations.
Curves 2, 3 demonstrate the possibility of pion condensation
for n > nPU

c . The continuation of branch 1a for n > nPU
c , called

branch 2, shows the reconstruction of the pion dispersion rela-
tion in the presence of the condensate state. This pion gap is
the value that determines the pion Green function for the pion
excitations above the pion condensate vacuum. In the presence
of the pion condensate (for n > ncπ) the value ω∗ from curve 2
enters the emissivities of all processes with pion excitations in
initial, intermediate and final reaction states.

In agreement with the general trend known in condensed
matter physics, fluctuations dominate in the vicinity of the crit-
ical point of the phase transition and die out far away from it.
The jump from branch 1a to 3 at n = nPU

c is due to the first
order phase transition to the π condensation, see discussion of
this point by Dyugaev (1975, 1982), Voskresensky & Mishustin
(1981, 1982), Migdal et al. (1990). The |ω∗| value on branch 3
is proportional to the amplitude of the pion condensate mean
field (the line with the cross in the standard notation of the dia-
gram technique).

The observation that pion condensation appears by the first
order phase transition needs a comment. The first order phase
transitions in the systems with several charged species is asso-
ciated with the possibility of a mixed phase, see Glendenning
(1992). The emissivity is increased within the mixed phase
since efficient DU-like processes due to nucleon re-scattering
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on the new-phase droplets are possible. However Voskresensky
et al. (2002, 2003) and Maruyama et al. (2003, 2005a) demon-
strated that, if it exists, the mixed phase is probably realized
only in a narrow density interval due to charge screening ef-
fects. Thereby to simplify the consideration we further disre-
gard the possibility of a mixed phase. We also disregard the
change in the equation of state (EoS) due to pion condensation
assuming that the phase transition is rather weak.

The density dependence of the correlation factor Γ is pre-
sented in Fig. 1. For the correlation factor entering the emissiv-
ity of the MMU process one can use an approximate expres-
sion Γ(n) � 1/[1 + C(n/n0)1/3], C � 1.4 ÷ 1.6. Note that this
value Γ is an averaged quantity (Γ6 = Γ2

w−sΓ
4
s). Actually the

correlation factor Γ6 entering the emissivity of the MMU pro-
cess (see Eq. (23) below) looks more involved and depends
on the energy-momentum transfer, being different for vertices
connected to the weak coupling (the correlation factor related
to the weak coupling vertices Γw−s is close to unity) and for
vertices related to the pure strong coupling (Γs is slightly less
than above introduced factor Γ), see estimates of the energy-
momentum dependence of the correlation factors at the end of
the previous subsection. We see that vertices are rather strongly
suppressed (and this suppression increases with the density) but
the softening of the pion mode is enhanced (ω∗2 < m2

π) for
n > nc1 � 0.5 ÷ 0.8 n0. Such a behavior is supported both the-
oretically and by analysis of nuclear experiments, see Migdal
et al. (1990).

Even with full microscopic calculations the functions Γ(n)
andω∗(n) contain large uncertainties. These uncertainties come
mainly from simplifications inherent to the Landau-Migdal ap-
proach to nuclear forces where the Landau-Migdal parame-
ters are constants. However it seems misleading to disregard
medium effects only based on existing rather large uncertain-
ties. We believe that further more detailed comparison of theory
and experiment will allow one to reduce these uncertainties.

2.3. Renormalization of the weak interaction.

The full weak coupling vertex that takes into account NN cor-
relations is determined by (10) where now the wavy line should
be replaced by the lepton pair. Thus for the vertex of interest,
N1 → N2lν̄, we obtain, see Voskresensky & Senatorov (1987),
Migdal et al. (1990),

Vβ =
G
√

2

[̃
γ( f ′)l0 − gAγ̃(g′)lσ

]
, (13)

for the β decay and

Vnn = −
G

2
√

2

[
γ( fnn)l0 − gAγ(gnn)lσ

]
,

VN
pp =

G

2
√

2

[
κppl0 − gAγpp lσ

]
, (14)

κpp = cV − 2 fnpγ( fnn)C0Ann,

γpp = (1 − 4gC0Ann) γ(gnn), (15)

for processes on the neutral currents N1N2 → N1N2νν̄, Vpp =

VN
pp + Vγpp, G � 1.17× 10−5 GeV−2 is the Fermi weak coupling

constant, cV = 1 − 4 sin2 θW , sin2 θW � 0.23, gA � 1.26 is the
axial-vector coupling constant, and lµ = ū(q1)γµ(1−γ5)u(q2) is
the lepton current. The pion contribution ∼q 2 is small for typ-
ical | q | � T or pFe, and for simplicity is omitted. In medium
the value of gA (i.e. g∗A) slightly decreases with the density.

The γ factors renormalize the corresponding vacuum
vertices. These factors are different for different processes.
The matrix elements of the neutrino/antineutrino scattering
processes Nν→ Nν and of MNB behave differently depending
on the energy-momentum transfer and whether N = n or N = p
in the weak coupling vertex. Vertices

N

ν

N

ν

, N

N

ν̄

ν

(16)

are modified by the correlation factors (5) and (8). For
N = n these are γ(gnn, ω, q) and γ( fnn, ω, q) leading to an
enhancement of the cross sections for ω > qvFn and to a
suppression for ω < qvFn.

Renormalization of the proton vertex (vector part of
VN

pp + Vγpp) is governed by the processes, see Voskresensky &
Senatorov (1987), Voskresensky et al. (1998),

p

p

n

n−1
ν̄

ν

+

p

p

γm

e

e−1

ν̄

ν

+ ... (17)

being forbidden in vacuum but permitted in medium. For the
systems with 1S 0 proton–proton pairing, ∝g2

A contribution to
the squared matrix element (see (14)) is compensated by the
corresponding contribution of the diagram with anomalous
Green functions of protons. The vector current term is ∝c2

V
in vacuum whereas it is ∝κ2pp in medium (by the first dia-
gram in (17)). Thereby the corresponding vertices with pro-
tons are enhanced in medium compared to small vacuum values
(∝c2

V � 0.006) leading to enhancement of the cross sections, up
to ∼10÷ 102 times for 1.5÷ 3n0 depending on the choice of the
parameters. It does not contradict the statement that correla-
tions are suppressed in the weak interaction vertices at n ≤ n0.
Enhancement with density comes from estimation (6) (that di-
rectly follows from Eq. (2.30) of Voskresensky & Senatorov
1987). Also as enhancement factor (up to ∼102) comes from
the virtual in-medium photon (γm), second diagram in (17),
whose propagator contains 1/m2

γ ∼ 1/e2, where mγ is the ef-
fective spectrum gap, that compensates for the small e2 factor
from electromagnetic vertices, see Voskresensky et al. (1998),
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Leinson (2000). It is included by replacing VN
pp → Vpp.

Other processes permitted in intermediate states like processes
with pp−1 and with pions are suppressed by a low proton den-
sity and by q2 ∼ T 2 pre-factors, respectively. The first diagram
in (17) was considered in Voskresensky & Senatorov (1987),
where the MpPBF process was first introduced, and then in
Migdal et al. (1990), Schaab et al. (1997), and it was shown
that MnPBF and MpPBF processes may give contributions of
the same order of magnitude. Finally, with electron-electron
hole (second diagram (17) and neutron-neutron hole (first dia-
gram (17)) correlations included we recover this statement and
the numerical estimate of Voskresensky & Senatorov (1987),
Schaab et al. (1997).

Work of Kolomeitsev & Voskresensky (1999) gives another
example demonstrating that, although the vacuum branching
ratio of the kaon decays is Γ(K− → e−+νe)/Γ(K− → µ−+νµ) ≈
2.5 × 10−5, in medium (due to the lambda-proton hole, Λp−1,
decays of virtual K−) it becomes of the order of unity. Thus we
again see that depending what reaction channel is considered,
in-medium effects may significantly enhance the reaction rates
or substantially suppress them. Ignoring these effects may lead
to quite misleading results.

2.4. Inconsistencies of the FOPE model

Since the FOPE model is the basis of the “standard” scenario
for cooling simulations, which is still in use, we would like
to demonstrate inconsistencies in the model for the descrip-
tion of interactions in dense (n >∼ n0) baryon medium (see
Voskresensky & Senatorov 1986; Voskresensky 2001).

The only diagram in the FOPE model which contributes to
the MU and NB is

fπN

fπN

(18)

Dots symbolize FOPE. This is the first available Born approx-
imation diagram, i.e. the second order perturbative contribu-
tion in fπN coupling. In order to be theoretically consistent one
should use perturbation theory up to the same second order
in fπN for all the quantities. The pion spectrum is then deter-
mined by a pion polarization operator expanded up to the same
order in fπN :

ω2 � m2
π + k2 + ΠR

0 (ω, k, n), (19)

ΠR
0 (ω, k, n) =

fπN

fπN

The value Π0(ω, k, n) is easily calculated containing no uncer-
tain parameters. For ω→ 0, k � pF and for isospin symmetric
matter

ΠR
0 � −α0 − iβ0ω, (20)

α0 �
2mN pFk2 f 2

πN

π2
> 0, β0 �

m2
Nk f 2

πN

π
> 0.

Replacing this value in (19) we obtain a solution iβ0ω �
(ω∗)2(k) with Im ω < 0 (for k � km) already for n > 0.3n0 that
would mean appearance of pion condensation ((ω∗)2(km) < 0).
Indeed, the mean field begins to grow as ϕ ∼ exp(−Imω · t) ∼
exp(αt), α > 0, until repulsive ππ interaction does not stop its
growth. But it is experimentally proven that there is no pion
condensation in atomic nuclei, i.e. even at n = n0.

The puzzle is solved as follows. The FOPE model does not
work for such densities. One should replace FOPE by the full
NN interaction given by (4), (7). The essential part of this in-
teraction is due to MOPE with vertices corrected by NN corre-
lations, see (12). Also the particle-hole, NN−1, part of the pion
polarization operator is corrected by NN correlations. Thus

� ΠR
0 (ω, k, n)γ(g′, ω, k, n) (21)

is suppressed by the factor γ(g′, ω = 0, k � pF , n � n0) �
0.35 ÷ 0.45. The final solution of the dispersion relation (19),
now with full Π instead of Π0, yields Imω > 0 for n = n0

whereas the solution with Imω < 0, which shows the begin-
ning of pion condensation, appears only for n > ncπ > n0.

3. Medium effects in neutrino radiation processes

3.1. Medium effects in two-nucleon processes

Medium effects essentially modify the contributions of all
processes. The main contributing diagrams are

π0

π+

n

n

n

p

ν̄

e

+

π0

π+

n−1

n

n

n

p

ν̄

e

+

n

π0

e

p

n

n

n

ν̄

+ ...

(22)

It was shown in Voskresensky & Senatorov (1984, 1986,
1987) and Migdal et al. (1990), see also a more recent re-
view Voskresensky (2001), that the main contribution to the
MMU process actually comes from the pion channel of the
reaction nn → npeν̄ (the first diagram in (22)), where eν̄
are radiated from the intermediate pion exchanging nucleons.
Less contribution comes from the NN−1 intermediate reaction
states (second diagram), and only much less contribution for
n >∼ n0 comes from the nucleon of the leg of the reaction
(third diagram, which naturally generalizes the corresponding
MU(FOPE) contribution (18)).
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Moreover, due to the pion softening (medium modification
of the pion propagator) the matrix elements of the MMU pro-
cess are further enhanced with the increase of the density to-
wards the pion condensation critical point, see Fig. 1. Roughly,
the emissivity of MMU reaction then acquires a factor (mainly
due to the pion decay channel of MMU)

εν[MMU ]
εν[MU]

∼ 103 (n/n0)10/3 Γ6(n)
[ω∗(n)/mπ]8

, (23)

where the pre-factor (n/n0)10/3 arises from the phase space
volume.

A different enhancement factor arises for the MNB pro-
cesses, where radiation from intermediate reaction states (see
first two diagrams in (22)) is forbidden:

εν[MNB ]
εν[NB ]

∼ 103 (n/n0)4/3 Γ6(n)
[ω∗(n)/mπ]3

· (24)

The valueω∗ entering Eqs. (23) and (24) is determined by curve
1a for n < ncπ and by curve 2 for n > ncπ if a condensate is
present. If a condensate is assumed to be absent one should use
the continuation 1b of the curve 1a.

3.2. Medium effects in one-nucleon DU-like processes

3.2.1. MNPBF processes

The one-nucleon processes with neutral currents given by the
second diagram (16) for N = (n, p) are forbidden at T > TcN by
energy-momentum conservation but they can occur at T < TcN ,
where TcN is the critical temperature for the nucleon-nucleon
(NN) pairing. Then the necessary energy and momentum can
be taken from breaking and formation of the Cooper pair.
However they need special techniques to be calculated, see
Flowers et al. (1976), Voskresensky & Senatorov (1987). Their
calculation is easily done in terms of closed diagrams with
normal and anomalous Green functions, see Voskresensky &
Senatorov (1987). These diagrams contain only one nucleon
loop. It clearly demonstrates that these processes are indeed
one-nucleon-like processes rather than two-nucleon NB-like
processes, as one sometimes interprets them. Due to the one-
nucleon origin there appears a huge (for the gap ∆ >∼ MeV)
pre-factor ∼ 1029 in their emissivity, see Eq. (37) below. Also
the typical temperature pre-factor ∼T 7 following the rough es-
timate of Flowers et al. (1976) is actually misleading. Instead
there is a ∆7(T/∆)1/2 pre-factor.

These processes (MnPBF) n→ nνν̄ and (MpPBF) p→ pνν̄
play very important roles in the cooling of superfluid NS, see
Voskresensky & Senatorov (1987), Senatorov & Voskresensky
(1987), Migdal et al. (1990), Schaab et al. (1997), Blaschke
et al. (2004). Due to the full vertices in (16) extra Γ2

w−s factors
appear in the MPBF emissivity. Medium effects are not as im-
portant for the n → nνν̄ process, changing the emissivity by a
factor of the order of one but they increase the emissivity of the
p→ pνν̄ process by two orders of magnitude, see Eq. (17).

3.2.2. Pion and kaon condensate processes

The P wave pion condensate can be of three types: π+s ,
π±, and π0 with different values of the critical densities
ncπ = (ncπ± , ncπ+s , ncπ0), see Migdal (1978). Thus above the
threshold density for the pion condensation of the given type,
the neutrino emissivity of the MMU process (22) is to be
supplemented by the corresponding PU processes

ν̄

p
π−c

e
n n

,

ν̄

p
π+c

e
n n

,

ν̄

n
π0

c

ep p
,

ν̄

n
π0

c

ν
n n

... (25)

The wavy line with the cross is associated with the amplitude of
the pion condensate mean field. Contrary to the FOPE model,
the MOPE model of Voskresensky & Senatorov (1986) consis-
tently takes into account the pion softening effects for n < ncπ

and both the pion condensation and pion softening effects in
presence of the condensate for n > ncπ. As we have men-
tioned, in our numerical calculations we assume for simplic-
ity that ncπ = nPU

c � 3 n0 is the same for neutral and charged
condensates. For vertices in (25) we use the values presented
above. Thus, emissivities of the PU processes are suppressed
by the Γ2

sΓ
2
w−s factors. In the case of a weak condensate field

for non-superfluid matter all processes with charged currents
yield contributions to emissivity of the same order of magni-
tude, whereas processes on neutral currents are significantly
suppressed, see Voskresensky & Senatorov (1984), (1986),
Leinson (2004).

For n > nKU
c the kaon condensate processes come into play.

The most popular is the idea of the S wave K− condensation
(e.g. see Brown et al. 1988; Tatsumi 1988) which is allowed
at µe > m∗K− (m∗K− is the effective kaon mass) due to possibil-
ity of the reaction e→ K−ν. Analogous condition for the pion,
µe > m∗π− (m∗π− is the effective pion mass) is not fulfilled due to a
strong S wave πNN repulsion, cf. Migdal (1978), Migdal et al.
(1990), (again the in-medium effect), otherwise S wave π− con-
densation would occur at lower densities than K− condensa-
tion. The neutrino emissivity of the K− condensate processes is
given by the equation analogous to charged pions however with
a different NN correlation factor and an additional suppression
factor due to a small contribution of the Cabibbo angle.

The phase structure of dense NS matter might be very
rich, including π0, π± condensates and K̄0, K− condensates in
both S and P waves, see Kolomeitsev & Voskresensky (2003);
coupling of condensates, see Umeda et al. (1994); charged
ρ-meson condensation, see Voskresensky (1997), Kolomeitsev
& Voskresensky (2004); fermion condensation yielding an ef-
ficient DU-like process in the vicinity of the pion condensa-
tion point (with the emissivity εν ∼ 1027 T 5

9 , m∗N ∝ 1/T ),
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see Voskresensky et al. (2000); hyperonization, see Takatsuka
& Tamagaki (2004); quark matter with different phases, such
as 2SC, CFL, CSL, plus their interaction with meson conden-
sates, see Rajagopal & Wilczek (2000), Blaschke et al. (2001),
Grigorian et al. (2004) and refs therein; and different mixed
phases. In the present work, as in Blaschke et al. (2004), we
suppress all these possibilities of extra efficient cooling chan-
nels except a PU process on the pion condensate. Other choices
are effectively simulated by our PU choice.

3.2.3. Other resonance processes

There are many other reaction channels allowed in the
medium. Any Fermi liquid permits propagation of zero
sound excitations of different symmetry related to the pion
and the quanta of a more local interaction determined via
Landau-Migdal parameters fα,β and gα,β. These excitations
present at T � 0 may also participate in the neutrino reactions.
The most essential contribution comes from the neutral current
processes, see Voskresensky & Senatorov (1986), given by the
first two diagrams of the series

n−1

νν̄

+
n

νn n

ν̄

+ ... (26)

Here the dotted line is the zero sound quantum of the appropri-
ate symmetry. These are the resonance processes (second one
of the DU-type) analogous to those processes on the conden-
sates with the only difference that the rates of reactions with
zero sounds are proportional to the thermal occupations of the
corresponding spectrum branches whereas the rates of the con-
densate processes are proportional to the modulus squared of
the condensate mean field. The contribution of the resonance
reactions is rather small due to the small phase space volume
(q ∼ T ) associated with zero sounds. Note the analogy of the
processes (26) with the corresponding phonon processes in the
crust.

3.2.4. DU processes

The proper DU processes in matter, as n → pe−ν̄e and pe− →
nνe,

n

p

ν̄

e

+

p

e

n

ν

(27)

should also be treated with the full vertices. They are forbidden
up to the density nDU

c when the triangle inequality pFn < pFp +

pFe begins to be fulfilled. For traditional EoS like that given
by the variational theory by Akmal et al. (1998), DU processes
are permitted only for n > 5 n0. Due to the full vertices in (27)
extra Γ2

w−s factors appear in the DU emissivity.
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Fig. 2. Neutron and proton pairing gaps according to model I (thick
solid, dashed and dotted lines) and according to model II (thin lines),
see text. The 1S 0 neutron gap is the same in both models, taken from
Ainsworth et al. (1989).

4. Gaps

In spite of the many calculations that have been performed,
the values of nucleon gaps in dense NS matter are poorly
known. This is the consequence of the exponential depen-
dence of the gaps on the density dependent potential of the
in-medium NN interaction. This potential is not sufficiently
well known. Gaps that we have adopted in the framework of
the “nuclear medium cooling” scenario, see Blaschke et al.
(2004), are presented in Fig. 2. Thick dashed lines show pro-
ton gaps used in the work of Yakovlev et al. (2004a) performed
in the framework of the “standard plus exotics” scenario. In
their model, proton gaps are artificially enhanced (that is, not
supported by any microscopic calculations) to get a better fit
of the data. We use their “1p” model. Neutron 3P2 gaps pre-
sented in Fig. 2 (thick dash -dotted lines) are the same as those
of the “3nt” model of Yakovlev et al. (2004a). We will call this
model I. Thin lines show 1S 0 proton and 3P2 neutron gaps from
Takatsuka & Tamagaki (2004), for the model AV18 by Wiringa
et al. (1995) (we call it model II). We take the same 1S 0 neutron
gap in both models I and II (thick solid line), as calculated by
Ainsworth et al. (1989) and used by Schaab et al. (1997) within
the cooling code. Blaschke et al. (2004) used both models I
and II within the “nuclear medium cooling” scenario. Since the
1S 0 neutron pairing gap exists only within the crust, dying for
baryon densities n ≥ 0.6 n0, its effect on the cooling is rather
minor. The effect on the cooling arising from the proton 1S 0

pairing and from the neutron 3P2 pairing, with gaps reaching
up to rather high densities, is pronounced. The NS cooling es-
sentially depends on the values of the gaps and on their density
dependence. Findings of Schulze et al. (1996) and Lombardo
& Schulze (2000), who incorporated in-medium effects, moti-
vated us to check the possibility of a suppression of 1S 0 neu-
tron and proton gaps. For that we introduced pre-factors for 1S 0

neutron and proton gaps which we varied in the range 0.2 ÷ 1,
see Figs. 18 and 19 of Blaschke et al. (2004).
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4.1. Possibilities either of strong suppression or strong
enhancement of 3P2 gap

Recently Schwenk & Friman (2004) have argued for a
strong suppression of the 3P2 neutron gaps, down to val-
ues <∼10 keV, as a consequence of the medium-induced
spin-orbit interaction. They included important medium ef-
fects, such as the modification of the effective interaction
of particles at the Fermi surface owing to polarization con-
tributions, with particular attention to spin-dependent forces.
In addition to the standard spin-spin, tensor and spin-orbit
forces, spin non-conserving effective interactions were in-
duced by screening in the particle-hole channels. Furthermore
a novel long-wavelength tensor force was generated. The po-
larization contributions were computed to second order in the
low-momentum interaction Vlow k. These findings motivated
Blaschke et al. (2004) to suppress values of 3P2 gaps shown
in Fig. 2 by an extra factor f (3P2, n) = 0.1. Further possible
suppression of the 3P2 gap is almost not reflected in the behav-
ior of the cooling curves.

Contrary to expectations of Schwenk & Friman (2004),
the more recent work of Khodel et al. (2004) argued that the
3P2 neutron pairing gap should be dramatically enhanced, as
a consequence of the strong softening of the pion propagator.
According to their estimation, the 3P2 neutron pairing gap is as
large as 1 ÷ 10 MeV in a broad region of densities, see Fig. 1
of their work.

In order to apply these results to a broad density inter-
val both models may need further improvement. The model of
Schwenk & Friman (2004) was developed to describe not too
high densities. It does not incorporate higher order nucleon-
nucleon hole loops and the ∆ isobar contributions and thus it
may only partially include the pion softening effect at densi-
ties >∼n0. The model of Khodel et al. (2004) uses a simpli-
fied analytic expression for the effective pion gap (ω∗)2(km),
valid near the pion condensation critical point, if the latter oc-
curred by a second order phase transition. The latter assump-
tion means that (ω∗)2(km) is assumed to be zero in the critical
point of the phase transition. Outside the vicinity of the criti-
cal point the parameterization of the effective pion gap that was
used can be considered only as a rough interpolation. Actually
the phase transition is of first order and evaluations of quan-
tum fluctuations done by Dyugaev (1982) show that the value
of the jump of the effective pion gap in the critical point is
not as small. Moreover repulsive correlation contributions to
the NN amplitude have been disregarded. In the pairing chan-
nel under consideration, already outside the narrow vicinity of
the pion condensation critical point, the repulsion originating
from the NN correlation effects may exceed the attraction orig-
inating from the pion softening. Notice that, if the pairing gap
enhancement occurred only in a rather narrow vicinity of the
pion condensation critical point, it would not affect the results
of Blaschke et al. (2004). In the latter work two possibilities
were considered (see Fig. 1): i) a saturation of the pion soften-
ing with increase of the baryon density resulting in the absence
of pion condensation and ii) a stronger pion softening stimulat-
ing the occurrence of the pion condensation for n > nc � 3 n0.
In both cases the effective pion gap was assumed never to

approach zero and undergoing a not too small jump at the crit-
ical point from a finite positive value ((ω∗)2 � 0.3 m2

π) to a
finite negative value ((ω∗)2 � −0.1 m2

π). The reason for such a
strong jump is the strong coupling. If it were so, the strong soft-
ening assumed by Khodel et al. (2004) would not be realized.
However, due to uncertainties in the knowledge of forces acting
in strong interacting nuclear matter and a poor description of
the vicinity of the phase transition point we cannot exclude that
the alternative possibility of a tiny jump of the pion gap exists.
Therefore we will check how these alternative hypotheses may
work within our “nuclear medium cooling” scenario. Avoiding
further discussion of the theoretical background of the mod-
els, we investigate the possibility of a significantly enhanced
3P2 neutron pairing gap and of a partially suppressed proton
1S 0 gap, as suggested by Khodel et al. (2004). To proceed
in the framework of our “nuclear medium cooling” scenario
we introduce the enhancement factor of the original 3P2 neu-
tron pairing gap f (3P2, n), and a suppression factor of the pro-
ton 1S 0 gap f (1S 0, p). We do not change the neutron 1S 0 gap
since its effect on the cooling is minor.

4.2. Suppression of the emissivity by superfluid gaps

Generally speaking, the suppression factors of superfluid pro-
cesses are given by complicated integrals. As was demonstrated
by Sedrakian (2005) with the example of the DU process,
these integrals are not reduced to the R-factors, see Yakovlev
et al. (2004a). However, for temperatures significantly below
the critical temperature the problem is simplified. With an ex-
ponential accuracy the suppression of the specific heat is gov-
erned by the factor ξnn for neutrons and ξpp for protons:

ξii � exp[−∆ii(T )/T ], for T < Tci; i = n, p, (28)

and ξii = 1 for T > Tci, Tci is the corresponding critical tem-
perature. We do not need higher accuracy to demonstrate our
result. Therefore we will use these simplified factors.

For the emissivity of the DU process the suppression fac-
tor is given by min{ξnn, ξpp}, see Lattimer et al (1991). The
same suppression factor appears for other one nucleon pro-
cesses, as PU and KU and the resonance processes on zero
sounds, see the second diagram of (26). Suppression factors
for two nucleon processes follow from this fact and from
the diagrammatic representation of different processes within
the closed diagram technique by Voskresensky & Senatorov
(1987) and Knoll & Voskresensky (1995, 1996). These are:
ξnn · min{ξnn, ξpp} for the neutron branch of the MU process
(and for the same branch of the medium modified Urca pro-
cess, MMU); ξpp · min{ξnn, ξpp} for the corresponding pro-
ton branch of the process; ξ2nn for the neutron branch of the
(medium modified) nucleon bremsstrahlung (MnB) and ξ2pp for
the corresponding proton branch of the bremsstrahlung (MpB).
Thus, for ∆nn � ∆pp both neutron and proton branches of the
MMU process are frozen for T � Tcn due to the factors ξ2nn
and ξppξnn, respectively. Zero sound and other phonon pro-
cesses shown by the first diagram (26) are not suppressed by
the ξii factors. However their contribution to the emissivity is
very small due to the smallness of the available phase space
volume.
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5. Cooling model of Blaschke et al. (2004)

5.1. EoS and structure of NS interior, crust, surface

5.1.1. NS interior

We will exploit the EoS of Akmal et al. (1998) (specifically
the Argonne V18 + δv + UIX∗ model), which is based on the
most recent models for the NN interaction with the inclusion of
a parameterized three-body force and relativistic boost correc-
tions. Actually we adopt a simple analytic parameterization of
this model given by Heiselberg & Hjorth-Jensen (1999) (HHJ).
It uses the compressional part with the compressibility K �
240 MeV, and a symmetry energy fitted to the data around the
nuclear saturation density, and smoothly incorporates causal-
ity at high densities. The density dependence of the symmetry
energy is very important since it determines the value of the
threshold density for the DU process. The HHJ EoS fits the
symmetry energy to the original Argonne V18 + δv + UIX∗

model yielding nDU
c � 5.19 n0 (MDU

c � 1.839 M�). The orig-
inal Argonne EoS allows for neutral pion condensation (for
n > 2n0) that only slightly affects the energy density. One
may disregard this small change. This EoS does not allow for
charged pion condensation. The HHJ parameterization of the
EoS does not include π condensation effects. We further as-
sume that pion condensation (neutral and charged) occurs for
n > 3n0, see discussion in Blaschke et al. (2004). We assume
a minor effect of the pion condensation on the EoS and disre-
gard it. We also disregard changes of the isotopic composition
due to the charged pion condensation. The latter effect would
be small only if the charged pion condensate field were rather
weak. Thus we assume that the HHJ parameterization of the
EoS includes both mentioned effects or that they are negligible.

5.1.2. NS crust

The density n ∼ 0.5 ÷ 0.7 n0 is the boundary of the NS inte-
rior and the inner crust. In the latter there occurs the so-called
“pasta phase” discussed by Ravenhall et al. (1983), see also
Maruyama et al. (2005b). Then there is the outer crust and the
envelope. Note that our code generates a temperature profile
that inhomogeneous during the first 102 ÷ 103 y. The influ-
ence of the crust on the cooling and heat transport is minor
due to its rather low mass content. Therefore the temperature
also changes slightly in the crust up to the envelope.

5.1.3. Envelope

The resulting cooling curves depend on the Tin − Ts relation
between internal and surface temperatures in the envelope.
Figure 3 shows uncertainties existing in this relation. A calcula-
tion is presented for the canonical NS: M = 1.4 M�, R = 10 km
with the crust model HZ90 of Yakovlev et al. (2004b). Below
we will show that a minimal discrepancy of the increased gap
scenario with the data is obtained with what we called “our
fit” model in Blaschke et al. (2004). Using other choices like
the “Tsuruta law” (T Tsur

s = (10Tin)2/3, where Ts and Tin are
measured in K) only increases the discrepancy. To compare re-
sults with “our fit” model we use the upper boundary curve,
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Fig. 3. The relation between the inner crust temperature and the sur-
face temperature for different models. Dash-dotted curves indicate
boundaries of the uncertainty band. Notations of lines are determined
in the legend. For more details see Blaschke et al. (2004) and Yakovlev
et al. (2004b).

η = 4 × 10−16 and the lower boundary curve η = 4 × 10−8. In
Fig. 3 we also draw lines η = 1 × 10−14 and η = 1 × 10−11 as
they are indicated in the corresponding Fig. 2 of Yakovlev et al.
(2004b). The selection of η = 4 × 10−8 and η = 4 × 10−16 as
the boundaries of the uncertainty-band seems to be a too strong
restriction, see Yakovlev et al. (2004b). The limit of the most
massive helium layer is achieved for η ∼ 10−10. On the other
hand the helium layer begins to affect the thermal structure only
for η > 10−13. Thus one could exploit 10−13 < η < 10−10 as a
Tin−Ts band. We will use a broader band, as is shown in Fig. 3.
By this we simulate the effect of maximum uncertainties in the
knowledge of the Tin − Ts relation.

5.2. Main cooling regulators

We compute the NS thermal evolution adopting our fully gen-
eral relativistic evolutionary code. This code was originally
constructed for the description of hybrid stars by Blaschke et al.
(2001). The main cooling regulators are the thermal conduc-
tivity, the heat capacity and the emissivity. In order to better
compare our results with results of other groups we try to be as
close as possible to their inputs for the quantities that we did
not calculate ourselves. Then we add the changes, improving
the EoS and including the medium effects.

5.2.1. Thermal conductivity

We take the electron-electron contribution to the thermal con-
ductivity and the electron-proton contribution for normal pro-
tons from Gnedin & Yakovlev (1995). The total contribution
related to electrons is then given by

1/κe = 1/κee + 1/κep. (29)

For T > Tcp (normal “n” matter), we have κnep = κep. For T <
Tcp (superfluid “s” matter) we use the expression

κsep = κep/ξpp > κ
n
ep, (30)
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that gives a crossover from the non-superfluid case to the super-
fluid case. The vanishing of κsep for T � Tcp is a consequence
of the scattering of superfluid protons on the electron impuri-
ties, see Blaschke et al. (2001). Following (29) we get κne < κ

s
e.

For the neutron contribution,

κn = 1/κnn + 1/κnp, (31)

we use the result of Baiko et al. (2001) that includes cor-
rections due to the superfluidity. Although some medium ef-
fects are incorporated in this work, the nucleon-hole correc-
tions of correlation terms and the modification of the tensor
force are not included. This should modify the result. However,
since we did not calculate κn ourselves, we can only roughly
estimate the modification: not too close to the critical point
of the pion condensation the squared matrix element of the
NN interaction |M|2med ∼ p2

F,nΓ
2
s/(ω

∗)2, see Eq. (12) and values
shown in Fig. 1, is of the order of the corresponding quantity
|M|2vac ∼ p2

F,n/[m
2
π + p2

F,n] estimated with the free one pion ex-
change, whereas |M|2med may significantly increase for n ∼ nPU

c .
However Blaschke et al. (2004) checked that both increasing
and decreasing of the thermal conductivity does not change the
picture as a whole.

The proton term is calculated similarly to the neutron one,

κp = 1/κpp + 1/κnp. (32)

The total thermal conductivity is the sum of the partial
contributions

κtot = κe + κn + κp + ... (33)

For the values of the gaps used in Blaschke et al. (2004) the
other contributions to this sum are smaller than those presented
explicitly (κe, κn and κp). Finally Blaschke et al. (2004) con-
cluded that in their scenario transport is relevant only up to the
first 103 y.

5.2.2. Heat capacity

The heat capacity contains nucleon, electron, photon, phonon
and other contributions. The main in-medium modification of
the nucleon heat capacity is due to the density dependence of
the effective nucleon mass. We use the same expressions as
Schaab et al. (1997). The main regulators are the nucleon and
the electron contributions. For the nucleons (i = n, p), the spe-
cific heat is (Maxwell 1979)

ci ∼ 1020(m∗i /mN) (ni/n0)1/3ξii T9 erg cm−3K−1, (34)

for the electrons it is

ce ∼ 6 × 1019 (ne/n0)2/3 T9 erg cm−3 K−1. (35)

Near the phase transition point the heat capacity acquires a
pion fluctuation contribution. For the first order pion conden-
sation phase transition this additional contribution contains
no singularity, like for the second order phase transition, see
Voskresensky & Mishustin (1982) and Migdal et al. (1990).
Finally, the nucleon contribution to the heat capacity may in-
crease up to several times in the vicinity of the pion condensa-
tion point. The effect of this correction on global cooling prop-
erties is unimportant and simplifying we neglect it.

The symmetry of the 3P2 superfluid phase allows for the
contribution of Goldstone bosons (phonons):

CG � 6 × 1014T 3
9

erg
cm3 K

, (36)

for T < Tcn(3P2), n > ncn(3P2). We include this term in our
study although its effect on the cooling is minor. A similar con-
tribution comes from other resonance processes permitted on
zero sounds, see the first diagram in (26). In order not to intro-
duce an extra parameter dependence we will simulate the effect
of all phonon and zero sound terms with the term (36).

5.2.3. Emissivity

We adopt the same set of partial emissivities as in the work
of Schaab et al. (1997). The phonon contribution to the emis-
sivity of the 3P2 superfluid phase, as well as the zero sound
contribution, is negligible. The main emissivity regulators are
the MMU, see the rough estimation (23), MnPBF and MpPBF,
and MNB processes. For n > nPU

c � 3 n0 the PU process be-
comes efficient and for n > nDU

c � 5.19 n0 the DU process is
the dominant.

Only the qualitative behavior of the interaction shown in
Fig. 1 is motivated by the microscopic analysis whereas the
actual numerical values of the correlation parameter and the
pion gap are rather uncertain. Thus we vary the values Γ(n)
and ω∗2(n) in accordance with the discussion of Fig. 1. By that
we check the relevance of alternative possibilities: a) no pion
condensation and a saturation of the pion softening with in-
creasing density, curves 1a + 1b, and b) the presence of pion
condensation, curves 1a + 2 + 3. We also add the contribution
of the DU for n > nDU

c .
All emissivities are corrected by correlation effects. The

PU process contains an extra Γ2
s factor compared to the DU pro-

cess (the emissivity of the latter is ∝Γ2
w−s). Another suppression

of PU emissivity comes from the fact that it is proportional to
the squared pion condensate mean field |ϕ|2. Near the critical
point |ϕ|2 ∼ 0.1, increasing with density up to |ϕ|2 ∼ f 2

π /2,
where fπ � 93 MeV is the pion decay constant. Finally, the
PU emissivity is suppressed by about 1−2 orders of magnitude
compared to the DU one. We adopt the same gap dependence
for the PU process as for the corresponding DU process. In su-
perfluid matter all emissivity terms are suppressed by the cor-
responding ξii factors.

6. Main cooling regulators in the scenario
of Khodel et al. (2004)

When neutron processes are frozen the most efficient process
is the MpPBF process, p → pνν̄, for T < Tcp. Taking into
account the medium effects in the weak coupling vertex, see
Eq. (17), we use the same expression for the emissivity of this
process as has been used by Voskresensky (2001) and Blaschke
et al. (2004):

εν[MpPBF] ∼ 1029 m∗N
mN

[
pFp

pFn(n0)

] [
∆pp

MeV

]7

×
[

T
∆pp

]1/2

ξ2pp
erg

cm3 s
, T < Tcp. (37)
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This process contributes only below the critical temperature
for proton pairing. Inclusion of medium effects greatly en-
hances the vertex of this process compared to the vacuum ver-
tex, see the above discussion of this fact in Sect. 2.3. A fac-
tor Γ2

w−s ∼ 102 arises, since the process may occur through
nn−1 and ee−1 correlation states, with subsequent production
of νν̄ from the nn−1νν̄ and ee−1νν̄ channels rather than from
a strongly suppressed channel pp−1νν̄, see Voskresensky &
Senatorov (1987), Senatorov & Voskresensky (1987), Migdal
et al. (1990), Voskresensky et al. (1998), Leinson (2000)
and Voskresensky (2001). Relativistic corrections incorporated
in the description of the pp−1νν̄ vertex in Yakovlev et al.
(2004a) also produce an enhancement being however signifi-
cantly less than that arises from medium effects in nn−1νν̄ and
ee−1νν̄ channels. Thus we see no reason not to include these
medium effects and we note only a moderate dependence of
the result on the uncertainties in the strong interaction.

We also present here an explicit expression for the emis-
sivity of the proton branch of the nucleon bremsstrahlung in-
cluding medium effects, MpB, pp→ ppνν̄. In the case of sup-
pressed neutron 3P2 gaps this process contributes much less
than the nucleon bremsstrahlung processes involving neutrons.
However, when neutron reactions are frozen, the pp → ppνν̄
process becomes the dominating process for Tcn > T > Tcp.
The emissivity of the pp → ppνν̄ reaction takes the form, see
Voskresensky & Senatorov (1986) for more details,

ε(MpB) ∼ 1023ξ2ppIpp
Y5/3

p Γ
4
sT 8

9

(ω∗)4(km)

×
(

m∗p
mN

)4 (
n
n0

)5/3 erg
cm3 s

, (38)

T9 = T/109 K, m∗p is the effective proton mass. Here we take
Γs � Γ(n) � 1/[1 + C(n/n0)1/3], C � 1.4 ÷ 1.6. This factor
takes into account NN correlations in strong interaction ver-
tices, Yp = np/n is the proton to nucleon ratio. As above, for
simplicity we assumed that the value k = km (at which the
square of the effective pion gap (ω∗)2(k) is minimimum) is
rather close to the value of the neutron Fermi momentum pFn,
as it follows from the microscopic analysis of Migdal et al.
(1990). To simplify the consideration we take the same value
of the effective pion gap for the given process as that for the
MMU process (although in general it is not so, and thus the
result (38) is model dependent), cf. Blaschke et al. (2004),

Ipp ∼
π

64

(
pFn

pFp

)5
ω∗(km)

pFn
· (39)

We have checked that for T < Tcp for the pairing gaps under
consideration the MpB reaction contributes significantly less
than the MpPBF process. It could be not the case only in a nar-
row vicinity of the pion condensation critical point, if pion con-
densation occurred with only a tiny jump of the effective pion
gap in the critical point. However, even in this case there are
many effects which could mask this abnormal enhancement.

For n > nPU
c the process pπ0

c → pνν̄ on the neutral pion con-
densate is still permitted. However its contribution is strongly
suppressed, see Leinson (2004).

0 1 2 3 4 5 6 7

log(t[yr])

5.6

5.8

6

6.2

6.4

lo
g(

T
s 
[K

])

R
X

 J
08

22
-4

3

1E
 1

20
7-

52
R

X
 J

00
02

+
62

PS
R

 0
65

6+
14

PS
R

 1
05

5-
52

R
X

 J
18

65
-3

75
4

V
el

a

G
em

in
ga

PS
R

 J
02

05
+

64
 in

 3
C

58
 

C
ra

b

CTA 1

1.000
1.100
1.250
1.320
1.400
1.480
1.600
1.700
1.750
1.930

Fig. 4. Figure 21 of Blaschke et al. (2004). Gaps are from Fig. 2 for
model II. The original 3P2 neutron pairing gap is additionally sup-
pressed by the factor f (3P2, n) = 0.1. The pion gap is determined by
curves 1a+2+3 of Fig. 1. The Ts − Tin relation is given by “our fit”
curve of Fig. 3. Here and in all subsequent figures the value Ts is the
red-shifted temperature. NS masses are indicated in the legend; see
Blaschke et al. (2004).

In the case of frozen neutron degrees of freedom the spe-
cific heat is governed by protons and electrons, see Eq. (34) for
i = p and (35). Here, we again suppress the contribution to the
specific heat by the narrow vicinity of the pion condensation
critical point due to the fact that in our scenario (see Fig. 1)
the modulus of the squared effective pion gap (ω∗)2 is always
larger than ∼(0.1÷0.3) m2

π. With such an effective pion gap the
pion contribution to the specific heat is not as strong and can be
disregarded to simplify the consideration. For the second order
phase transition (and for a first order phase transition but with
a tiny jump of |(ω∗)2| in the critical point), pion fluctuations
would contribute more strongly to the specific heat yielding a
term cπ ∝ T PU

c /ω
∗ for |T −T PU

c |/T PU
c � T PU

c , see Voskresensky
& Mishustin (1982), Migdal et al. (1990).

When neutron processes are frozen the values κn and κp

are suppressed and the thermal conductivity is reduced to the
electron and proton contributions, see Eqs. (29) and (32).

7. Numerical results

Now we give the results of our calculations of cooling curves.
First we present Fig. 21 of Blaschke et al. (2004), now Fig. 4.
Cooling curves shown in this figure were calculated using “our
fit” model of the crust, shown with the solid curve in Fig. 3.
Here and in the corresponding figures below the surface tem-
perature is assumed to be red-shifted, as observed at infin-
ity from the radiation spectrum. Gaps are given by model II
of Fig. 2. However, the 3P2 gap is additionally suppressed
by a factor f (3P2, n) = 0.1, as motivated by calculations of
Schwenk & Friman (2004). The calculation includes pion con-
densation for n > nPU

c . The figure shows a good fit to the data.
If we used calculations disregarding the possibility of pion con-
densation (see curves 1a + 1b of Fig. 1) we would also get an
appropriate fit to the data, cf. Fig. 20 of Blaschke et al. (2004).
If we took the original 3P2 gap of model II, we would not be
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Fig. 5. Cooling curves according to the nuclear medium cooling sce-
nario, see Fig. 4. Gaps are from Fig. 2 for model II but the 3P2 neutron
pairing gap is additionally enhanced by a factor f (3P2, n) = 50 and the
1S 0 proton gap is suppressed by f (1S 0, p) = 0.1. The pion gap is de-
termined by curves 1a+2+3 of Fig. 1. The Ts −Tin relation is given by
“our fit” curve of Fig. 3.
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Fig. 6. Same as Fig. 5, but for the original 1S 0 proton gap suppressed
by f (1S 0, p) = 0.5.

able to describe the data. The cooling would be too fast, see
Fig. 23 of Blaschke et al. (2004).

We will now check the possibility of ultra-high 3P2 neutron
pairing gaps, as proposed by Khodel et al. (2004). In Figs. 5
and 6 we demonstrate the sensitivity of the results presented
in Fig. 4 to the enhancement of the neutron 3P2 gap and to a
suppression of the 1S 0 proton gap, following the suggestion of
Khodel et al. (2004). Again we use the calculation including
pion condensation for n > nPU

c .
We start with “our crust” model and model II for the gaps,

using however the additional enhancement factor f (3P2, n) =
50 for the neutron 3P2 gap. Introducing factors f (1S 0, p) =
0.1 and f (1S 0, p) = 0.5 we test the sensitivity of the results
to the variation of the 1S 0 proton gap. We do not change the
value of the 1S 0 neutron gap since its variation almost does
not influence on the cooling curves for NSs with masses M >
1 M�, that we will consider.

Comparison of Figs. 4–6 shows that in all cases NSs with
masses M >∼ 1.8 M� cool in similar ways in spite of the fact

that 3P2 neutron and 1S 0 proton gaps vary over wide limits.
This is because 3P2 neutron and 1S 0 proton gaps disappear at
the high densities occuring in the central regions of these very
massive NSs, see Fig. 2. Thus these objects cool similarly to
non-superfluid objects. Extremely rapid cooling of stars with
M ≥ 1.84 M� is due to the DU process, which is very efficient
in normal matter. The latter process appears in the central re-
gion of NSs with M > 1.839 M�. Therefore we notice that the
cooling curves are very sensitive to the density dependence of
the gaps. The difference in the cooling of NSs with M < 1.8 M�
in the cases presented in Figs. 5 and 6 is the consequence of
different values of proton gaps used in these two calculations.
This difference is mainly due to the MpPBF processes. The
larger the proton gap, the more rapid is the cooling.

We checked that for stars with M <∼ 1.6 M� for T < Tcn

for the 3P2 neutron pairing, a complete freezing of the neutron
degrees of freedom occurs for f (3P2, n) >∼ 20. Then contribu-
tions to the emissivity and to the specific heat involving neu-
trons are fully suppressed. For heavier stars (M > 1.6 M�) a
weak dependence on the value of the factor f (3P2, n) still re-
mains even for f (3P2, n) > 100 but the corresponding cooling
curves lie too low to allow for an appropriate fit of the data.
This difference between cooling of stars with M < 1.6 M�
and M > (1.6 ÷ 1.7) M� is due to the mentioned density de-
pendence of the neutron 3P2 gap. The latter value smoothly
decreases with the increase of the density reaching zero for
n >∼ 4.5 n0 (the density 4.5 n0 is achieved in the center of a
NS of mass M = 1.7 M�). At densities slightly below 4.5 n0

the gap is small. Therefore for stars with M > (1.6 ÷ 1.7) M�
the scaling of the gap by a factor f (3P2, n) changes the size of
the region where the gaps may affect the cooling. For stars with
M <∼ 1.6 M� gaps have finite values even at the center of the
star. Thus there exists a critical value of the factor f (3P2, n),
such that for higher values of f (3P2, n) the cooling curves are
unaffected by its change.

Figures 5 and 6 demonstrate that we did not succeed in
reaching an appropriate overall agreement with the data; the
cooling was too rapid. The cooling of old pulsars is not ex-
plained in all cases. Although the heating mechanism used by
Tsuruta (2004) may partially help in this respect, the discrep-
ancy between the curves and the data points seems to be too
high, especially in Fig. 6. We see that in our regime of frozen
neutron processes a better fit is achieved in Fig. 5, i.e., for
a stronger suppressed proton gap (for f (1S 0, p) = 0.1). The
discrepancy is even more severe, since to justify the idea of
Khodel et al. (2004) we should use a softer pion propagator.
Only a strong softening of the pion mode might be consis-
tent with a significant increase of the neutron 3P2 gap. On the
other hand such an additional softening would result in still
more rapid cooling. The work of Voskresensky et al. (2000) dis-
cussed the possibility of a novel very efficient process with the
emissivity εν ∝ T 5, that would occur due to non-Fermi liquid
behavior of the Fermi sea very near the pion condensation crit-
ical point with the assumption of strong pion softening. If we
included this very efficient process, the disagreement with the
data could be strongly enhanced. An enhancement of the spe-
cific heat due to pion fluctuations within the vicinity of the pion
condensation point cannot compensate for the acceleration of
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Fig. 7. Cooling curves of the neutron star with mass 1.4 M� accord-
ing to the nuclear medium cooling scenario, see Fig. 4. Gaps are from
Fig. 2 for model II but the 3P2 neutron pairing gap is additionally en-
hanced by different factors f (3P2, n) (shown in figure) and the 1S 0

proton gap is suppressed by f (1S 0, p) = 0.1. The pion gap is deter-
mined by curves 1a+2+3 of Fig. 1. The Ts − Tin relation is given by
“our fit” curve of Fig. 3.

the cooling owing to the enhancement of the emissivity. Khodel
et al. (2004) used the value nc = 2 n0 for the critical density of
the pion condensation. In case of the Urbana-Argonne equation
of state that we exploit here (we use the HHJ fit of this equa-
tion of state that removes the causality problem, see Blaschke
et al. (2004) for details) the density n = 2 n0 is achieved in the
central region of a NS with the mass M ∼ 0.8 M�. This means
that all NSs with M >∼ 0.8 M� would cool extremely fast and
would not be seen in soft X rays.

Actually, we checked the whole interval of variation
of f (3P2, n) and f (1S 0, p) in the range 1 ÷ 100 and 0.1 ÷
0.5 respectively. We verified that the variation of f (3P2, n)
and f (1S 0, p) in the whole mentioned range done within our
parameterization of the effective pion gap does not improve
the picture (curves 1a + 2 + 3 of Fig. 1). Using the pion gap
from branches 1a+ 1b does not achieve a better fit. In all cases
we obtain too rapid cooling. To demonstrate this, in Fig. 7 we
show the cooling of a 1.4 M� star for different values of the
f (3P2, n) factor. The factor f (1S 0, p) is taken to be 0.1. We
see that for f (3P2, n) < 15 ÷ 20 the curves rise with the in-
crease of f (3P2, n). For f (3P2, n) > 20 the curves do not de-
pend on f (3P2, n).

To check how the results are sensitive to uncertainties in
our knowledge of the value (39) that determines the strength
of the in-medium effect on the emissivity of the MpB process
we multiplied (38) by a pre-factor f (MpB) that we varied in
the range f (MpB) = 0.2 ÷ 5. In agreement with the above dis-
cussion, for f (MpB) < 1, for temperatures log Ts[K] > 5.9
the cooling curves are shifted upwards. For f (MpB) > 1, for
temperatures log Ts[K] > 5.9 the cooling curves are shifted
downwards. However, independently of the value f (MpB) for
log Ts[K] < 5.9 the curves are not changed. Thus it does not
allow us to diminish the discrepancy with the data.

Now we will check the efficiency of another choice of the
gaps, as motivated by model I, thick lines in Fig. 2. Compared
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Fig. 8. Figure 15 of Blaschke et al. (2004). Gaps from model I. The
original 3P2 neutron gap is suppressed by f (3P2, n) = 0.1. The pion
gap is determined by curves 1a+2+3 of Fig. 1. The Ts − Tin relation is
given by “our fit” curve of Fig. 3. For more details see Blaschke et al.
(2004).

to model II model I uses an artificially enhanced proton gap.
Thus, one can expect that model I is less realistic than model II.
Also note a different density dependence of the proton gaps in
model I (it cuts off at densities n ≥ 3.2 n0) and in model II
(it cuts off at higher densities, n ≥ 4.2 n0). Since uncertainties
in the existing calculations of the gaps are very high and the
parameterization of model I has been used by one of the groups
working on the problem of cooling of NSs, see Yakovlev et al.
(2004a), we will consider the consequences of this possibility
as well.

Figure 8 demonstrates our previous fit of the data within
model I, but for the original 3P2 neutron gap suppressed by
f (3P2, n) = 0.1, see Blaschke et al. (2004). Again the pion gap
is determined by curves 1a + 2 + 3 of Fig. 1.

If we took the original 3P2 gap of model I, we would not
succeed in describing the data. The cooling would be too fast,
see Fig. 22 of Blaschke et al. (2004). Therefore we check the
possibility of ultra-high 3P2 neutron pairing gaps, as proposed
by Khodel et al. (2004).

As in Fig. 5, Fig. 9 uses f (3P2, n) = 50 and f (1S 0, p) = 0.1
but now for the gap in model I, and, as in Fig. 6, Fig. 10 uses
f (1S 0, p) = 0.5 for the gap in model I. Figures 9 and 10 show
that within the variation of the gaps of model I the discrep-
ancy to the data is still stronger compared to that for the above
calculation based on the use of model II. The difference be-
tween curves shown in Figs. 9 and 10 is less pronounced than
for those curves in Figs. 5 and 6. Indeed, as we have men-
tioned, the density dependence of the proton gap is different
in models I and II. In model II the proton gap reaches higher
densities (�4.2 n0) than in model I (�3.2 n0). Thus in the case
shown by Figs. 9 and 10 a non-superfluid core begins to con-
tribute at lower values of the star mass. Therefore in both fig-
ures the corresponding cooling curves are almost the same for
M >∼ 1.6 M�. Using the pion gap from branches 1a+1b, i.e. dis-
regarding the possibility of pion condensation, does not allow
a better fit.
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Fig. 9. Cooling curves according to the nuclear medium cooling sce-
nario, see Fig. 8. Gaps are from Fig. 2 for model I but the 3P2 neutron
pairing gap is additionally enhanced by a factor f (3P2, n) = 50 and
the 1S 0 proton gap is suppressed by f (1S 0, p) = 0.1. The pion gap is
determined by curves 1a+2+3 of Fig. 1. The Ts − Tin relation is given
by “our fit” curve of Fig. 3.
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Fig. 10. Same as Fig. 9, but for the original 1S 0 proton gap suppressed
by f (1S 0, p) = 0.5.

The dependence of the results on the different choices of
the Ts − Tin relation is demonstrated by Figs. 11 and 12 for
gaps based on a modification of model II. For this demonstra-
tion we first took the upper boundary curve η = 4 × 10−16

and then the lower boundary curve η = 4.0 × 10−8 in Fig. 3.
We show that these choices however do not allow us to im-
prove the fit. Comparing Figs. 11 (η = 4 × 10−16) and 5 (“our
fit”) based on the same modification of model II we see that
with the “our fit” crust model (Fig. 5) the deviation from the
data points is less pronounced. We have checked that based
on model I one arrives at the same conclusion. An increase of
the factor f (1S 0, p) to 0.5 reduces the fit. In Fig. 12 we use
the lower boundary curve η = 4.0 × 10−8 of Fig. 3. We fur-
ther demonstrate that the selection of a different choice of the
Ts − Tin relation within the band shown in Fig. 3 does not di-
minish the discrepancy. This discrepancy increases compared
to that demonstrated by “our fit” model. Indeed, the cooling
evolution for times t <∼ 105 yr (Ts >∼ 106 K) is governed by
neutrino processes. Thus the higher Tin, the larger Ts is. The
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Fig. 11. Cooling curves according to the nuclear medium cooling sce-
nario. Gaps are from Fig. 2 for model II but the 3P2 neutron pairing
gap is additionally enhanced by a factor f (3P2, n) = 50 and the 1S 0

proton gap is suppressed by f (1S 0, p) = 0.1. The pion gap is deter-
mined by curves 1a+2+3 of Fig. 1. The Ts − Tin relation is given by
the crust model for η = 4.0 × 10−16.
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Fig. 12. Same as in Fig. 11, but for the crust model η = 4.0 × 10−8.

slowest cooling is then obtained, if one uses the lower boundary
curve η = 4.0 × 10−8 of Fig. 3. The evolution of NSs for times
t >∼ 105 yr begins to be controlled by the photon processes. In
the photon epoch (t � 105 yr) the smaller the Ts value, the
less efficient the radiation is. Thus for t � 105 yr the slow-
est cooling is obtained if one uses the upper boundary curve
η = 4.0 × 10−16 of Fig. 3. The “our crust” curve simulates the
transition from one limiting curve to the other demonstrating
the slowest cooling in the temperature interval shown in the
figures.

In all cases the data are not explained by the assumption
of an enhanced neutron 3P2 gap (for f (3P2, n) > 1) and a
partially suppressed 1S 0 proton gap (for f (1S 0, p) = 0.1÷0.5).

8. Concluding remarks

Our aim was to consider large 3P2 gaps within the “nuclear
medium cooling” scenario of Blaschke et al. (2004) that well
described the cooling data with the opposite assumption of
suppressed 3P2 gaps. Therefore we did not incorporate extra
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assumptions of internal heating for old pulsars, see Tsuruta
(2004), and quark cores in massive NSs, see Blaschke et al.
(2001) and Grigorian et al. (2004) and refs therein.

The main problem with the given scenario is that at the
frozen neutron contribution to the specific heat and to the emis-
sivity, the region of surface temperatures Ts > 106K is deter-
mined by proton processes. The most efficient among them is
the MpPBF process for T < Tcp and MpB for T > Tcp. For the
proton gaps that we deal with, the MpPBF process proves to be
too efficient, yielding too rapid cooling. Thus at least several
slow cooling data points (at least in data for old pulsars) are not
explained. Some works ignore the medium-induced enhance-
ment of the MpPBF emissivity that results in a 10−100 times
suppression of the rate. We omitted this possibility as physi-
cally unrealistic. The origin of this enhancement is associated
with opening up of new reaction channels in the medium that
are forbidden in vacuum.

Thus, we have shown that the “nuclear medium cooling”
scenario of Blaschke et al. (2004) fails to appropriately fit the
neutron star cooling data with the assumption of a strong en-
hancement of the 3P2 neutron gaps (we checked the range
f (3P2, n) = 1÷100) and for moderately suppressed 1S 0 proton
gaps (for f (1S 0, p) = 0.1 ÷ 0.5). On the other hand the same
scenario allowed us to appropriately fit the whole set of data
with the assumption of a significantly suppressed 3P2 neutron
gap (for f (3P2, n) ∼ 0.1). We observed essential dependence
of the results not only on the values of the gaps but also on
their density dependence. We used the density dependence of
the gaps according to models I and II. The latter model is sup-
ported by microscopic calculations. We excluded an attempt
to artificially fit the density dependence of the gaps trying to
match cooling curves with the data. Although such an attempt
could improve the fit, it is not physical and we did not pursue it.
However we encourage further attempts of microscopic calcu-
lations of the gaps, which would take into account the most im-
portant medium effects. With correctly treated gaps one could
perform new simulations of NS cooling.
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