
A&A 443, 1087–1093 (2005)
DOI: 10.1051/0004-6361:20053398
c© ESO 2005

Astronomy
&

Astrophysics

Robust reconstruction from chopped and nodded images

F. Lenzen1, O. Scherzer1, and S. Schindler2

1 Institute of Computer Science, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
e-mail: Frank.Lenzen@uibk.ac.at

2 Institute for Astrophysics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

Received 10 May 2005 / Accepted 30 July 2005

ABSTRACT

A well-known technique to reduce the influence of thermal and background noise in ground-based infrared imaging is chopping and nodding,
where four different signals of the same object are recorded and from which the object is reconstructed numerically. Since noise in the data can
severely affect the reconstruction, regularization algorithms have to be implemented. In this paper we propose to combine iterative reconstruc-
tion algorithms with robust statistical methods. Moreover, we study the use of multiple chopped data sets with different chopping amplitudes
and the appropriate numerical reconstruction algorithm. Numerical simulations show the robustness of the proposed methods in dealing with
noisy data.

Key words. methods: data analysis – techniques: image processing – infrared: general

1. Introduction

Data collected in infrared ground-based astronomy are affected
by atmospheric and telescopic thermal background noise. A
common approach for noise reduction is chopping and nod-
ding (Emerson 1994; Robberto et al. 2005). In chopping the
secondary mirror of the telescope is moved (cf. Bertero et al.
2003a) and signals are recorded for two different tilt angles.
We denote the positions before and after tilting by A and
B = A+ h, and the recorded signals by S 1 and S 2, respectively.
Afterwards, in a nodding procedure the telescope is moved to
the position C = A−h and the signal S 3 is recorded. Then a sec-
ond chopping procedure is applied and a signal S̃ 1 is recorded
at position A.

In the literature the vector h is referred to as the chopping
amplitude. The data visualized after chopping and nodding is

f = S 1 − S 2 − S 3 + S̃ 1

and the image u to be reconstructed satisfies

2u(.) − u(. − h) − u(. + h) = f (.).

When observing a point-like and isolated object the chopping
amplitude can be chosen in such way that at positions B and
C only empty sky is recorded, in which case the numerical re-
construction algorithm is not required. However, in practice the
objects observed are often extended or other objects are nearby.
In these cases the reconstruction step is mandatory.

Reconstruction from chopped and nodded data was first
discussed in Beckers (1994), where a Fourier-based reconstruc-
tion was suggested.

In Bertero et al. (1999, 2000, 2003a,b), iterative reconstruc-
tion algorithms were investigated. Recently Chan et al. (2003)
proposed reconstruction algorithms based on wavelet decom-
position.

Experiments have shown that noise can severely affect the
reconstruction process (see Kaeufl 1995). In this paper we in-
vestigate two different approaches for robust reconstruction in
the presence of a significant amount of noise.

The outline of this paper is as follows: in Sect. 2 we derive
the model of chopping and nodding and review the reconstruc-
tion algorithms introduced by Bertero et al. (2003a,b).

In this paper we use iterative regularization techniques as
well and thus Bertero’s work is the most relevant to compare
with. However for the sake of noise robustness we combine
iterative regularization techniques with robust filtering meth-
ods from statistics (cf. Sect. 3). Moreover, we study the com-
bined reconstruction from multiple chopped data with differ-
ent chopping amplitudes and the effect on the quality of the
reconstruction. Finally, in Sect. 4 we present some numerical
experiments.

2. Problem description and basic reconstruction
methods

2.1. Continuous problem

The problem description follows Bertero et al. (2003a,b), but
differs in the way that we take into account two-dimensional
chopping amplitudes. In Bertero et al. (2003a,b) the data are
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preprocessed by appropriate rotations so that the chopping am-
plitude is along the principal axis of the data.

We denote by u : R2 → R the brightness intensity distribu-
tion in the sky, which we assume to be non-negative.

Let Ω = [0, lx] × [0, ly] ⊂ R2 be a section of the sky under
investigation and let h =

(
hx, hy

)
� 0, hx ≥ 0, hy ≥ 0 be the

chopping amplitude. We define the operator

Ih : L2(Ωh)→ L2(Ω)

u→ Ih(u)(x, y) := 2u(x, y) − u(x + hx, y + hy) (1)

−u(x − hx, y − hy), (2)

where Y := L2(Ω) and X := L2(Ωh) are the spaces of square
integrable functions on Ω and

Ωh := Ω ∪ {(x, y)| (x + hx, y + hy) ∈ Ω or

(x − hx, y − hy) ∈ Ω},
respectively.

The problem of reconstruction from chopped data f (x, y) :
Ω→ R can be written as an operator equation

Ih(u) = f . (3)

A solution of Eq. (3) is also a minimizer of the functional

u→ ‖Ih(u) − f ‖2,
and therefore satisfies the corresponding optimality condition

I∗h(Ihu − f ) = 0. (4)

I∗h is the adjoint operator to Ih, which satisfies

∫

Ωh

Ih(u)v =
∫

Ω

uI∗h(v) for all u ∈ L2(Ωh), v ∈ L2(Ω).

Since I∗h is injective, for any injective operator J : X → Y,
Eqs. (3), (4) and

J(Ihu − f ) = 0 (5)

have the same solutions. Basic numerical methods for solving
Eq. (5) are based on fixed point iterations:

ui+1 := ui − τ J(Ihui − f ) , u0 := 0, (6)

where τ is a relaxation parameter. For J = I∗h the fixed point
iteration is commonly referred to as Landweber iteration

ui+1 := ui − τ I∗h(Ihui − f ) , u0 := 0. (7)

In Bertero et al. (2003a), Eq. (6) has been implemented with an
operator J that extends u periodically to Ωh.

Here, as in Bertero et al. (2003b), we use the operator

J(u)(x) :=

{
u(x) if x ∈ Ω
0 else

,

which extends a function u ∈ L2(Ω) to zero in Ωh \Ω.

2.2. Discretization

The domain Ω is discretized by a quadratic grid with nodes
(xi, y j) ∈ Ω, i = 1 . . .N, j = 1 . . .M and cell length 1. The
nodes coincide with the sampling points of u and f , i.e., u :=
(ui, j) = (u(xi, yi)) and f := ( fi, j) are the sampling data.

With u a bilinear interpolating function is associated.
Assuming u ≡ 0 on Ωh \ Ω the resulting discretized system
of Eq. (3) is

Ahu = f , (8)

where Ah is an NM×NM matrix. Details on the structure of ma-
trix Ah and properties of its eigenvalues can be found in Bertero
et al. (2003b). Note that matrix Ah is symmetric and positive
definite and thus Eq. (8) has a unique solution.

Since the null-space of Ih is not trivial, the choice of the
extension of u into Ωh\Ω enforces a particular solution of Ih to
be calculated.

2.3. Review on reconstruction methods

Three different methods have been proposed in the literature
for reconstruction from chopped and nodded data: Fourier-
based reconstruction method (cf. Beckers 1994; Bertero et al.
2003a), iterative reconstructions (cf. Bertero et al. 2003a), and
a wavelet based approach (cf. Chan et al. 2003). These methods
are reviewed below:

1. For applying the Fourier-based reconstruction (cf. Bertero
et al. 2003a) it is assumed that h is in the vertical direction
and the solution of Eq. (3) is periodic across ∂Ω in the chop-
ping direction. In this case the image can be reconstructed
for each column separately, the discretized linear system of
Ih becomes Ãhu = f with a circulant matrix Ãh and Fourier
techniques can be used for an efficient numerical solution:
applying the discrete Fourier transform to the linear system,
it becomes

F (Ãh)F u = F f

where F (Ãh) = D := diag(d1, . . .dM) is diagonal, and thus
can be solved efficiently provided the diagonal matrix has
full rank.

2. The constrained Landweber iteration (Bertero et al. 2003a,
referred to as method (A)) reads as follows:

u(0) = 0
for n = 1 . . .N :

u(n) = P+
[
u(n−1) + τ AT

h

(
f − Ahu(n−1)

)]

where P+ is the projection operator onto the set of non-
negative vectors (each negative entry is set to zero), and τ
is a positive relaxation parameter.
The projected Lavrentiev iteration (method (B)) is de-
fined by

u(0) = 0
for n = 1 . . .N :

u(n) = P+
[
u(n−1) + τ

(
f − Ahu(n−1)

)]
.
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Both iterative methods work reasonably efficiently if the
chopped and nodded data are only distorted by a small
amount of noise. In this case, the results are qualitatively
comparable to those obtained with the Fourier methods.
However, these methods suffer from robustness problems
with respect to high noise distortions.

3. Finally we review a wavelet approach proposed by Chan
et al. (2003). Here chopping is interpreted as high-pass fil-
tering. Supplementing this filter by a low-pass and a sub-
sequent high-pass filtering a tight frame wavelet system
for a multi-resolution analysis is obtained. The Landweber
method is then combined in a multi resolution frame-
work and a wavelet thresholding is applied (cf. Donoho &
Johnstone 1994). Wavelet thresholding is used to denoise
each iterate. Moreover, a post-processing step to remove
artifacts in feature-less areas is proposed.

3. Robust reconstructions

3.1. Modifications of the iterative methods

Simulations with noisy data show that the methods described
above have a tendency to introduce artificial structures as a
result of the noise (cf. Sect. 4.2).

We propose to combine iterative reconstruction methods
with a median filtering technique in each iteration step. Median
filtering (cf. e.g. Pestman 1998) is the method of choice, since it
removes artificial structures (cf. Soille 2003) appearing in each
iteration step. Moreover, the median can be implemented very
efficiently.

The median filter is defined as follows:
For an odd number of values {v1 . . . v2n+1} in ascending or-

der, the median is vn. In median filtering each value ui0, j0 is
replaced by the median value of surrounding values ui, j with in-
dices i, j in a neighborhood of i0, j0. We take the neighborhood
(i, j) satisfying |i − i0| ≤ s and | j − j0| ≤ s with s = 1, 2, 3. The
median filter can be implemented very efficiently (cf. Soille
2003; Sonka et al. 1999).

We investigate the following variant of method (A) de-
fined by
u(0) = 0
for n = 1 . . .N :

1. u(n) = P+
(
u(n−1) + τ AT

h

(
f − Ahu(n−1)

))

2. Apply the median filter to u(n).
and the variant of method (B) is defined accordingly.
This strategy of combination of an iterative method with ad-
ditional filtering after each iteration is analogous to the strat-
egy of the wavelet based approach in Chan et al. (2003), where
wavelet thresholding is used for additional filtering after each
iteration of the Landweber method.

3.2. Reconstruction based on the conjugate gradient
method

Since Ah is symmetric and positive-definite, it can be solved
with the conjugate gradient (cg) method (cf. Hanke-Bourgeois
2002), which has faster convergence properties than the

Landweber and Lavrentiev methods. However, the fast conver-
gence also makes the method more sensitive to noise, which
we overcome again by applying after one iteration of the
cg-method an additional median filtering step. The modified
cg-method reads as follows:
u(0) = 0
for n = 1 . . .N :

1. Apply one step of the cg-method with
initial vector u(n−1)

2. Denoting the result by ũ(n),
we replace ũ(n) by P+ũ(n) to meet the
constraint of non-negativity.
3. We apply the median filter to ũ(n)

to achieve iterate u(n).
The constraint of non-negativity is necessary to avoid artifacts
in the reconstruction.

3.3. Multiple chopped data sets

For an improvement of the quality of the reconstruction
Beckers (1994) and Bertero et al. (2000) proposed using mul-
tiple chopped and nodded data sets. The reconstruction is per-
formed on each data set independently and the results are com-
bined in a post-processing step calculating the pointwise mean
or the median.

In Bertero et al. (2000) this strategy is used to avoid two
kinds of artifacts, first, ghosts from bright sources, and sec-
ond regions where faint structures are superimposed by nega-
tive counterparts of bright sources and consequently the recon-
structed image artificially becomes zero.

In the following we take advantage of multiple data sets for
a robust reconstruction in the presence of noise.

Let hk, k = 1 . . .K denote a set of chopping amplitudes and
denote by f k the corresponding sampled data sets.

A reconstruction u is a solution of the system

Ahk u = f k k = 1, . . . ,K . (9)

We solve this system with a blocked Landweber-Kacmarcz
method (for more details on such methods cf. Kaltenbacher
et al. 2005):
Set u(0) = 0
for n = 1 . . .N : (iteration index)

1. For each k = 1, . . . ,K perform
two cg iterations starting from
(u(n−1)) .
The solution is denoted by u(n)

k .
2. Calculate the median u(n) from
of u(n)

1 , . . . , u
(n)
K for noise removal.

Note that the median is calculated separately in each sampling
point for the stack of images: That is in step 2 of the above
algorithm we set

(u(n))i, j := median {(u1)i, j, . . . , (uK)i, j}
for each i, j.

We also tested an alternative combination, namely to first
detect outliers in {(u1)i, j, . . . , (uK)i, j} via the standard deviation
and then calculating the mean ignoring these outliers, which
gives fairly similar results as when using the median.
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4. Numerical experiments

4.1. Simulation of the noise process

Realistic noisy test data used for our numerical experiments re-
quire detailed knowledge of the noise process. There are two
different sources of noise, which we have to take into account,
background emission and thermal (dark) noise which is to be
reduced with chopping and nodding, and noise occurring dur-
ing the data recording process, which is Poisson noise (due to
photon counting errors of CCD detector) and Gaussian readout
noise.

We assume that the noise affects each of the four recorded
signals independently. Let η(u(x, y)) denote the random vari-
able, then the recorded signal reads as follows

f̃ (x, y) := 2 (u(x, y)) + η(u(x, y)) + η(u(x, y))
−u(x + hx, y + hy) − η(u(x + hx, y + hy))
−u(x − hx, y − hy) − η(u(x − hx, y − hy)) .

(10)

We write f̃ (x, y) := f (x, y)+ η̃(x, y) resp. f̃i, j := fi, j+ η̃i, j, where
η̃(x, y)

η̃(x, y) = η(u(x, y)) + η(u(x, y))

−η(u(x + hh, y + hy)) − η(u(x − hx, y − hy)).

According to our considerations, the random variable η(u) is
the sum of a Gaussian white random η1 = N(0, σ1), σ1 ≥ 0
(the background emission and read out noise) and a Poisson
noise η2(u): η(u) := η1(u) + η2(u).

We use test images with intensities scaled to the range
of [0, 1]. These intensities are related to the number of pho-
tons counted by the CCD detector. An intensity u corresponds
to the number of N · u photon counts with some unknown fac-
tor N > 0. The Poisson distribution of the photon counts can
be approximated by a Gaussian distribution with standard de-
viation

√
N · u.

Scaling this distribution to the range [0, 1] the intensi-
ties are Gaussian distributed with standard deviation

√
u/N.

Therefore, we can approximate η2 with a Gaussian distribution
with standard deviation

√
σ2u and σ2 =

1
N .

4.2. Behavior of the “classical” methods

In the following we demonstrate that artificial structures appear
in the reconstruction with “classical” methods from the noise.

Here we concentrate on the case of chopping amplitudes
that are small with respect to the image size.

In the case of a horizontal chopping amplitude being an in-
teger multiple of the pixel size, the condition number of the ma-
trix Ah is of the order of the ratio of number of sampling points
and the chopping amplitude (cf. Bertero et al. 2003b). Thus
the problem becomes ill-conditioned for small chopping ampli-
tudes and low-frequency eigenvectors are affected by noise in
the data resulting producing the artificial structures (cf. Bertero
et al. 2003b).

Figure 1 shows an artificial test image (left) and corre-
sponding chopped and nodded data (right) with a chopping am-
plitude h = (5, 3) which is distorted by two Gaussian noise

Fig. 1. Left: test image. The white frame marks the domain Ω, where
the chopped data are recorded; right: Corresponding chopped data
with chopping amplitude h = (5, 3) including noise with variances
σ1 = 0.05 and σ2 = 0.0001.

processes with parameters σ1 = 0.05 and σ2 = 0.0001. The
signal-to-noise-ratio is 25.47521.

Figure 2, top left and top right, shows the reconstruction
from these test data applying method (B) with τ = 0.1 for
h = (5, 3) after 10 and 100 iterations, respectively. We ap-
plied the same method to test data with a chopping amplitude
h = (5.5, 3.3) not matching the grid spacing. Reconstructions
after 10 resp. 100 steps are shown in Fig. 2, bottom left and
right.

The computation times2 of method B were 0.05 s for h =
(5, 3) and 10 steps, 0.2 s for h = (5.5, 3.3) and 10 steps, 0.5 s
for h = (5, 3) and 100 steps and 1.9 s for h = (5.5, 3.3) and
100 steps.

Since the chopped and nodded data f provide information
at the objects’ edges, their reconstruction is satisfactory at an
early stage of the iteration, whereas the objects’ interior is re-
constructed at a later stage. Therefore, larger objects require a
larger number of iterations to be reconstructed satisfactory.

When the discretization points are aligned with the chopped
discretization points the reconstruction is more efficient. If the
points are not aligned, then the numerical reconstruction is
smoother; moreover, the iterative algorithms are more slowly
convergent, i.e. a larger number of iterations is needed to re-
construct the interiors of the objects, which in turn leads to an
amplification of noise and appearance of artificial structures.
Method (A), the cg-method, and the Fourier method show sim-
ilar convergence properties. Applying the cg-based method to
noisy data shows that the residual ‖Ahu − f ‖ decreases in the
beginning but after some iterations it starts oscillating or even
increases. This suggests stopping the iteration of the cg-solver
when the residual reaches its first local minimum.

Since Eq. (3) is linear we have Ih(u f +uη) = f +η, where uη
are the data reconstructed from noise and u f is the reconstruc-
tion from noise-free data.

1 Let u : Ω→ R be a signal with minimum umin and maximum umax,
ũ : Ω→ R a distorted signal and σ the standard deviation of u−ũ, then
the signal-to-noise-ratio is defined by SNR := 20 log10

(
umax−umin
σ

)
.

2 Computed on an AMD 64 FX 3500+, computations times have
been averaged over several runs.
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Fig. 2. Top left: reconstruction from the noisy data given in Fig. 1,
right, with method (B) after 10 iterations and τ = 0.1. Top right: re-
construction with method (B) after 100 iterations and τ = 0.1. Bottom
left: reconstruction with h = (5.5, 3.3) using method (B) after 10 iter-
ations and τ = 0.1. Bottom right: reconstruction from the same data
using Method (B) after 100 iterations and τ = 0.1.

For illustration of the noise amplification behavior of this
equation, we assume that the data f ≡ 0 are disturbed at one
grid point:

ηi, j =

{
1 if i = i0 and j = j0
0 else

for a fixed i0 ∈ {1 . . .N}, j0 ∈ {1 . . .M}.
First, let us consider the Fourier-based reconstruction from

this particular η for horizontal chopping amplitudes. In order to
handle small eigenvalues of matrix D, we use a slightly modi-
fied method replacing matrix D by

D†ε := diag(d†1 . . . d
†
N)

where ε > 0 is a small parameter and

d†i =
{

1/di if |di| > ε
ε else

, i = 1 . . .N.

Figure 3 shows a horizontal cut through point (i0, j0) of the
function reconstructed from η for h = (5, 0) and ε = 0.1 resp.
ε = 1.

Similar artificial structures can be observed in the recon-
struction from iterative methods. Figure 4 shows the recon-
struction from data f for h = (5, 0) (top) and h = (5.5, 0)
(bottom).

In the later case, as the unknowns of u are far more cou-
pled the reconstruction is smooth and thus more complicated
to handle numerically.

4.3. Results of the modified methods

In this section we present numerical results of the modified
methods applied on noisy data.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

Fig. 3. Horizontal cut of the image reconstructed with the Fourier
method with D0.1 (solid line) and D1 (dashed line). The data are
fi, j := δi0 iδ j0 j for afixed i0 ∈ {1 . . .N}, j0 ∈ {1 . . .M} and the chop-
ping amplitude is h = (5, 0).

Fig. 4. Reconstruction from data fi j = {1 if i = i0 and j = j0, 0 else },
i0 and j0 fixed, using the cg-based method for h = (5, 0) (top) and
h = (5.5, 0) (bottom).

First we used the Fourier method with inverse Dε to recon-
struct our first test image3.

However, numerical experiments show that a small ε is
needed for a good reconstruction of noise-free data. Since the
eigenvalues of the inverse tend to infinity for ε → 0, arti-
ficial structures due to noise are significant for small ε. For
noisy data, a compromise between good reconstruction and lit-
tle noise amplification is not possible. The results are not satis-
factory, so they are not presented here.

Secondly, we consider reconstructions from the cg-based
method and method (B). Results from method (A), which in
general are more blurred, are not presented here.

Figure 5 left, shows the reconstruction from noisy data
with chopping amplitude h = (5, 3) with method (B) com-
bined with median filtering (filter size s = 1). Figure 5 right,
shows the reconstruction using the cg-method with median fil-
ter (s = 3 resp. s = 1 in the last step).

The computation times were 3.3 s for method (B) and 4.4 s
for the cg-method.

In both reconstructions artificial structures arising from
noise are removed by the median filtering (cf. Fig. 2).

Further experiments have been performed with the test im-
age shown in Fig. 6, which contains an object with a wide halo
extending across the boundary of the chosen domain.

Figure 6 (left) shows the signal u on Ωh, the part in which
the chopped data are provided is marked by the white rectangle.

3 For implementation the FFTW-C-library (Frigo & Johnson 1998,
resp. www.fttw.org) was used.
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Fig. 5. Left: reconstruction from the data in Fig. 1, right, with chop-
ping amplitude h = (5, 3) using method (B) with τ = 0.1 and 100 it-
erations combined with median filtering (filter size s = 1). Right: re-
construction after 30 iterations of the cg-based method combined with
median filtering (filter size s = 3 resp. s = 1 in the last iteration).

Fig. 6. Left: the second test image. Right: the corresponding noisy
chopped and nodded image for h = (10, 3), σ1 = 0.002 and σ2 =

0.00001.

We produced a multiple chopped data set with 5 different chop-
ping amplitudes (10, 3), (0, 7), (10, 10), (7, 14) and (15, 0). The
chopped data for h = (10, 3) on Ω is shown in Fig. 6 (right).

We added noise of variance σ1 = 0.001 and σ2 = 0.00001.
Note that for this test image the chopped data set contains
very weak structures. The signal-to-noise-ratio is 40.0494. We
compare different strategies for reconstruction from noisy data.
First we calculated the results of the cg-method with 40 iter-
ations for each single data set, applying the median filter af-
ter each iteration. For a fair comparison we depict the data
set showing the best results, which is that for h = (7, 14).
Figure 7 (top left) shows the result of the cg-based method
without median filtering. Undesirable noise enhancement oc-
curs. Figure 7 (top right) shows the reconstruction with the
cg-method where in each iteration step a median filtering is
performed (s = 3 resp. s = 1 in the last step).

Figure 7 (bottom left) shows the combined result of inde-
pendent reconstructions from the multiple data set, applying
40 iterations of the cg-method without median filtering on each
set and finally calculating the median in each data point. By
this post-processing the artificial structures are weakened.

Figure 7 (bottom right) shows the reconstruction combining
the different results after each cycle of cg-iterations by calcu-
lating the pointwise median.

The computation times were about 0.9 s for the cg-method
without median filtering and about 5.5 s with median filtering.
The reconstruction with multiple chopped data sets took about
4.7 s with independent reconstruction and finally averaging and
5 s with calculating the median after each iteration.

Fig. 7. Top left: reconstruction with the cg-method after 40 iterations
(without median filtering). The chopping amplitude is h = (7, 14). Top
right: 40 iterations with the cg-method combined with median filtering
with filter size s = 3 (s = 1 in the last iteration). Note that for compar-
ison with the method of multiple chopped data sets with amplitudes
h = (10, 3), (0, 7), (10, 10), (7, 14) and (15, 0) we depicted h = (7, 14)
showing best results by independent reconstruction. Bottom left: com-
bined image using the multiple chopped data calculating the pointwise
median after independent reconstruction. Bottom right: reconstruction
using multiple data sets and combining the results after each iteration
using the pointwise median.

The third test image (Fig. 8) is an observation of the plan-
etary nebula Menzel III (the ant nebula). The intensities stored
in floating point precision show a large difference of intensities
between the nebula and the central star. To visualize the data,
the intensities were logarithmically scaled to gray values by ap-
plying the function S (x) = log(x/(m·max)+0.1)−log(0.1)

log(1.1)−log(0.1) , where x ≥ 0,
max is the maximal intensity in the image and m is a scaling
parameter, set to m = 0.01 for the results presented here.

We simulated the chopping and nodding procedure includ-
ing artificial noise of variance σ1 = 5 × 10−6 and σ2 = 10−6.
We have chosen this noise variance corresponding to the weak
intensities of the nebula in the range about 10−4. We used small
chopping amplitude of up to 14 pixels for testing. Note that
when applying large chopping amplitudes the original image
can be reconstructed by a few iteration steps. Then the ampli-
fication of the noise is negligible. The corresponding chopped
data for h = (14, 10) is given in Fig. 8 (right). The signal-to-
noise ratio is 42.9788. Figure 9 (top left) shows the result of
method (B) after 100 iterations where at each iteration median
filtering with s = 1 has been used. Figure 9 (top right) shows
the result of the cg-based method after 20 iterations in combi-
nation with median filtering. In both cases some blurring ef-
fect caused by the median filter can be recognized. Finally we
used data obtained with chopping amplitudes (14, 10), (14, 0),
(14, 14), (10, 0) and (10, 14). Figure 9 (bottom left) shows the
reconstruction using method (B) on each data set and com-
bining the results after each iteration step using the pointwise
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Fig. 8. Left: third test image, planetary nebula Menzel III, Right: arti-
ficial chopped data for h = (14, 10) including noise σ1 = 5× 10−6 and
σ2 = 10−6.

Fig. 9. Top left: result of method (B) after 100 iterations in combina-
tion with the median filtering with filter size s = 1. Top right: result of
the cg-based method after 20 iterations in combination with median
filtering with size 3 resp. 1 in the last iteration. Bottom left: result of
a combined reconstruction with method (B) (τ = 0.1, 100 steps) us-
ing multiple data from chopping amplitudes (14, 10), (14, 0), (14, 14),
(10, 0), and (7, 14). After each iteration step the reconstructed images
are reinitialized with the pointwise median. Bottom right: result of a
combined reconstruction (pointwise median) with the cg-method with
20 steps using the same multiple data set.

median as described in Sect. 3.3. In Fig. 9 (bottom right) we
used the cg-method (20 iterations) where again the pointwise
median is calculated after each iteration.

The computation times were about 2.5 s using method (B)
with median filtering, 0.9 s using the cg-method with median
filtering and 2.8 or 1.6 s using method (B) or the cg-based
method on the five different chopped data sets and calculating
the median after each iteration.

5. Summary and conclusions

In this paper we give an overview of Fourier-based and iterative
schemes for the reconstruction of images from chopped and
nodded data. As an alternative to reconstruction methods docu-
mented in the literature we proposed an algorithm based on the
conjugate-gradient(cg)-method which is faster converging.

Experiments show that for the “classical” reconstruction
methods noise can severely affect the reconstruction process.
To prevent noise enhancement we propose to combine itera-
tive methods with median filtering techniques (robust methods
from statistics). Filtering is performed in each iteration of the
reconstruction process.

We produced satisfactory numerical results for three differ-
ent test images with noisy chopping and nodding data. Noise
artifacts are removed during reconstruction.

An alternative strategy to enhance the quality of reconstruc-
tion is to use multiple chopping amplitudes. The results of the
reconstruction are combined by statistical methods after each
iteration. This also provides a method robust against noise.

Since the method of multiple chopped data sets does not
show any blurring effects, we propose to use this method if the
required data are available. In the case of a single data set the
methods with a median filter should be applied.
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