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ABSTRACT

This paper studies the oscillatory stability of uniformly rotating main-sequence stars of mass 3−8 M� by solving the linearized non-adiabatic,
non-radial oscillation equations with a forcing term and searching for resonant response to a complex forcing frequency. By using the tradi-
tional approximation, the solution of the forced oscillation equations becomes separable, whereby the energy equation is made separable by
approximation. It is found that the κ-mechanism in rotating B-stars can destabilize not only gravity- or pressure modes, but also a branch of
low frequency retrograde (in corotating frame) oscillations in between the retrograde g-modes and toroidal r-modes. These unstable quasi-g
(or “q-modes”) hardly exhibit rotational confinement to the equatorial regions of the star, while the oscillations are always prograde in the
observer’s frame, all in contrast to g-modes. The unstable q-modes occur in a few narrow period bands (defined by their azimuthal index m) and
seem to fit the oscillation spectra observed in SPB stars rather well. The unstable q-mode oscillation spectrum of a very rapidly rotating 8 M�
star appears similar to that of the well-studied Be-star µ Cen. The unstable q-modes thus seem far better for explaining the observed oscillation
spectra in SPB-stars and Be-stars than do normal g-modes.
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1. Introduction

With the introduction of new opacity data by Iglesias et al.
(1992) and a later update by Iglesias & Rogers (1996) it was
suggested that the origin of β Cephei pulsations in massive
main-sequence stars as well as that of the slowly pulsating B
(SPB) stars (Waelkens 1991) of lower mass is caused by the
classical opacity valve mechanism (Eddington 1930) operating
on non radial g-mode or p-mode oscillations. Early stability
analyses with these new opacity results in non-rotating stars
have been published by e.g. Kiriakidis et al. (1992), Gautschy
& Saio (1993), and Dziembowski et al. (1993).

Observations by Balona (1994) and Balona & Koen (1994)
show an unexplainable lack of SPB stars in two open clusters
which do contain many pulsating β Cephei stars. It was sug-
gested that the lack of SPB stars in these clusters might be cor-
related with the rapid rotation of the cluster stars. Ushomirsky
& Bildsten (1998), in an attempt to explain Balona and Koen’s
observations in terms of rotational stabilisation of g-modes,
applied the traditional approximation combined with a quasi-
adiabatic stability analysis to study the effect of rotation on
the κ instability mechanism. They did not find a decisive
solution: rotation seemed indeed to stabilize some pulsation
modes but to destabilize other g-modes. This work was fol-
lowed up by Lee (2001) who used a fully non-adiabatic analysis
with a truncated expansion of spherical harmonics to approx-
imate the low-frequency g-mode oscillations in rotating stars.
Lee found some rotational stabilization caused by the Coriolis
coupling with higher degree spherical harmonic components,

especially for retrograde g-modes in the inertial regime, but this
seems insufficient to explain the lack of SPB stars in clusters
with rapidly rotating B-stars. Townsend (2003), also applying
the traditional approximation, tried to explain the lack of ob-
served rapidly rotating SPB stars by the well-known effect of
the Coriolis force on g-mode pulsations: the confinement of
the oscillation to the equatorial regions (|µ| < σ̄/(2Ωs)) of the
star, where µ = cosϑ and σ̄ is the oscillation frequency in the
corotating frame (e.g. Savonije et al. 1995). The lack of rapidly
rotating SPB stars would then be caused by a selection effect,
not by rotational stabilization of g-modes. However, more re-
cent observations indicate that the two open clusters studied
by Balona and Koen may, after all, contain a few SPB stars
(Stankov et al. 2002), so that the problem may be non-existent.

There is, however, another complication: the existence of
unstable rotational quasi g-modes or “q-modes” in rotating
main-sequence stars whose instability has been hitherto ne-
glected. The unstable q-modes exhibit hardly any rotational
confinement towards the equatorial region, in contrast to nor-
mal g-modes. In this paper we will study the stability of
these quasi g-modes in comparison with normal (retrograde)
g-modes and check how well unstable q-modes can explain the
oscillation spectra of rotating B-stars.

2. Basic oscillation equations
We consider uniformly rotating main sequence stars with
mass Ms between 3−8 M� and denote their radius by Rs. We
wish to study the oscillatory stability of these uniformly
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rotating B-stars by subjecting them to a perturbing periodic
force to determine the resonant behaviour. We assume the star’s
angular velocity of rotation Ωs to be much smaller than its
break-up speed, i.e. (Ωs/Ωc)2 � 1, with Ω2

c = GMs/R3
s , so

that effects of centrifugal distortion (∝Ω2
s ) may be neglected to

a first approximation. The Coriolis acceleration is proportional
to Ωs, and we consider its effect on the induced oscillatory mo-
tions in the star. We use spherical coordinates (r, ϑ, ϕ) with the
origin at the star’s centre, whereby ϑ = 0 corresponds to its
rotation axis.

Let us denote the displacement vector in the star by ξ and
perturbed Eulerian quantities like pressure P′, density ρ′, tem-
perature T ′, and energy flux F′ with a prime. The linearized
hydrodynamic equations governing the non-adiabatic response
of the uniformly rotating star to the perturbing potential ΦT

may then be written as
[(
∂

∂t
+ Ωs

∂

∂ϕ

)
v′i

]
ei + 2Ωs × u′ = −

1
ρ
∇P′ +

ρ′

ρ2
∇P − ∇ΦT, (1)

(
∂

∂t
+ Ωs

∂

∂ϕ

)
ρ′ + ∇ ·

(
ρu′
)
= 0, (2)

(
∂

∂t
+ Ωs

∂

∂ϕ

) [
S ′ + ξ · ∇S

]
= − 1
ρT
∇ · F′, (3)

F′

F
=

(
dT
dr

)−1 [(3T ′

T
−
ρ′

ρ
−
κ′

κ

)
∇T + ∇T ′

]
(4)

where κ denotes the opacity of stellar material and S its specific
entropy. These perturbation equations represent, respectively,
conservation of momentum, conservation of mass, and conser-
vation of energy, while the last equation describes the radiative
diffusion of the perturbed energy flux. For simplicity we adopt
the Cowling (1941) approximation; i.e. we neglect perturba-
tions to the gravitational potential caused by the star’s oscil-
latory distortion. For the higher radial order oscillation modes
studied here, this approximation should be adequate. As usual,
we also neglect perturbations of the nuclear energy sources (not
important) and of convection (frozen convective flux approxi-
mation). In main-sequence (MS)stars more massive than about
6 M�, in which the opacity Z-bump driving region is convec-
tively unstable, this latter approximation introduces some un-
certainty with respect to the detected oscillatory instabilities.

For the periodic forcing, we apply a force equal to the (real
part of) the gradient of

ΦT(r, ϑ, ϕ, t) = f rl Pm
l (µ) ei(σt−mϕ) (5)

where σ is the (real) forcing frequency in the inertial frame,
µ = cosϑ, Pm

l (µ) is an associated Legendre polynomial, and f
is an arbitrary constant. Since we are interested in periodic so-
lutions of the forced oscillations, we assume the perturbations
have the same time and ϕ dependence as the forcing, although
with a certain phase lag due to radiative damping. After factor-
ing out the known time and ϕ-dependence, Eqs. (1)–(4) form a
2D problem in the (r, ϑ) meridional plane of the perturbed star.
To simplify this problem we apply the so-called “traditional
approximation”.

3. The traditional approximation

For a rotating star the solutions of Eqs. (1)–(4) are no longer
separable into r-, ϑ-, and ϕ-factors and cannot be described
by a single spherical harmonic (l,m) due to the action of the
Coriolis force on oscillating stellar matter. However, for a uni-
formly rotating star in the traditional approximation, separabil-
ity is retained by neglecting the ϑ- component of the angular
velocity vector (e.g. Unno et al. 1989). This is done because
the radial motions are expected to be small in the stably strati-
fied layers of the star, especially for low-frequency modes. It is
known (Berthomieu et al. 1978; Savonije et al. 1995) that the
traditional approximation yields qualitatively correct results for
g-modes if the oscillation frequency σ̄ is small compared to
the Brunt-Väisälä frequency (thus outside the convective core),
so that the horizontal oscillatory motion dominates. This is
also a reasonable approximation for the q-modes with weak
radial motion studied here. Figure 2 shows that for modes with
|σ̄|/Ωc ≤ 1 this requirement is amply satisfied in the radiative
envelope of a 3 M� star.

The problem is now reduced to two 1-dimensional prob-
lems (in ϑ and r) with a prescribed azimuthal harmonic
dependence eimϕ, since we assume the unperturbed star axi-
symmetric. When only the radial component of Ωs is retained,
the ϑ- and ϕ-components of the equation of motion can be
written:

−σ̄2ξϑ − 2iΩsσ̄ cosϑξϕ = −
1
rρ
∂P′

∂ϑ
−

1
r
∂ΦT

∂ϑ
, (6)

−σ̄2ξϕ + 2iΩsσ̄ cosϑξϑ =
im

rρ sinϑ
P′ +

im
r sinϑ

ΦT. (7)

We have expressed the velocity perturbations in terms of the
displacement vector by the relation u′ = iσ̄ξ, with σ̄ = σ−mΩs

the oscillation frequency in the corotating stellar frame (nega-
tive if the oscillation is retrograde, i.e. if the oscillation pattern
propagates in the direction counter to the stellar rotation). We
will only use positive m-values in this paper, except in Tables 2
and 3, where we compare with other results.

3.1. Separation of variables

A separation of variables can be performed by writing (see
Papaloizou & Savonije 1997):

ξϑ =
∞∑

n=0

Fn(ϑ) Dn(r) ξϕ =
∞∑

n=0

Gn(ϑ) Dn(r)

P′ =
∞∑

n=0

Xn(ϑ) Wn(r), (8)

with ξr, T ′ and ρ′ having expansions of the same form as that
for P′. Here we leave out the known factor eimϕ for the az-
imuthal variation of the perturbed quantities, while Fn,Gn and
Xn are functions of ϑ chosen to obey the relations

−σ̄2 Fn − 2iΩsσ̄ cosϑGn = −
dXn

dϑ
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and

−σ̄2 Gn + 2iΩsσ̄ cosϑFn =
im

sinϑ
Xn.

We obtain an equation for Xn(ϑ) by imposing the constraint

1
sinϑ

d (sinϑFn)
dϑ

− im
Gn

sinϑ
= −
λn

σ̄2
Xn,

where λn is a constant. Then Xn must satisfy the second-order
equation obtained from

1
sinϑ

dQn

dϑ
+

mx cosϑ

sin2 ϑ
Qn = Xn

(
m2

sin2 ϑ
− λn

)
(9)

with

Qn =
sinϑ

(1 − x2 cos2 ϑ)

(
dXn

dϑ
− mx cosϑ

sinϑ
Xn

)
(10)

wherebyXn(ϑ) is an eigenfuction with λn the associated eigen-
value. The solution depends on the rotation parameter x =
2Ωs/σ̄. For Ωs = 0 the functions Xn(ϑ) become the associated
Legendre functions Pm

m+n(cosϑ) with corresponding eigenval-
ues λn = (m + n) (m + n + 1). Normal modes of the rotating
star correspond to normal modes of the non-rotating star with
(m + n) (m + n + 1) replaced by any permissible λn.

Different Xn(ϑ) are orthogonal on integration with respect
to µ = cosϑ over the interval (−1, 1). If the perturbing potential
is expanded in terms of the Xn, such that

ΦT(r, ϑ) =
∞∑

n=1

Ψn(r)Xn(ϑ), (11)

we find from (6) and (7) that

Dn(r) =
1
rρ

Wn(r) +
1
r
Ψn(r). (12)

This equation is exactly the same as in the non-rotating case.
The same is true for the equation of continuity, except that
(m + n) (m + n + 1) is replaced by λn. In this way the adiabatic
stellar response will consist of a superposition of responses ap-
propriate to non-rotating stars with (m+ n) (m+ n+ 1) replaced
by λn obtained from Eqs. (9), (10). However, we are interested
in the oscillatory stability of rotating stars, and for that we need
to include non-adiabatic effects; i.e. we have to consider the en-
ergy Eq. (3). We can write the divergence term on its right hand
side as:

∇ · F′

Fr
=
∂
(
r2 F′r

Fr

)
r2∂r

+
1

r sinϑ

∂
(
sinϑ

F′ϑ
Fr

)
∂ϑ

− im
r sinϑ

(
F′ϕ
Fr

)
·

By adopting T ′(r, ϑ) =
∑

n T ′n(r)Xn(ϑ) and substituting in the
flux Eq. (4), the radial part of the above divergence can be
written in the required separated form Dr(r, ϑ) = H(r)Xn(ϑ).
However, the two angular terms cannot be expressed in this
way, for one can write, after applying Eq. (4) and Eqs. (9), (10),
the angular part of the above divergence as:

Da(r, ϑ) =
1
r2

(
d log T

dr

)−1 T ′(r)
T (r)

Yn(ϑ)Xn(ϑ)

with

Yn(ϑ) = 2µ x2 Qn(µ)
Xn(µ)

+
(
x2 µ2 − m x − λn

)
,

which shows that the energy equation renders the system of
equations inseparable, unless x → 0. Nevertheless, we wish
to apply the traditional approximation and take advantage of
its simple treatment of rotational effects. Therefore we will ap-
proximate the energy equation by a separable equation by av-
eraging the angular part of the divergence over ϑ and using the
averaged value εn for Yn:

εn =

∫
YnXn dµ∫
Xn dµ

so that

Da(r, ϑ) 
 1
r2

(
d log T

dr

)−1 T ′(r)
T (r)

εnXn(ϑ). (13)

For low values of the rotation-parameter x → 0, the exact result
εn → −λn = −(m + n) (m + n + 1) for non-rotating stars is
approached.

Expression (13) takes the radiative diffusion in the hori-
zontal direction, at least qualitatively, into account. Below we
check our results by comparing with other linear stability cal-
culations of rotating stars.

3.2. The radial part of the oscillation equations

Once we have solved the above angular eigenvalue problem
for λn, we can factor out the common, now known, factor
Xn(ϑ) ei(σ t−m ϕ) of the perturbations ξr, F′r, p′, T ′, and ρ′. For
the nth component in expansion (11), the linearized equations
describing the non-adiabatic forced oscillations then form a 1-
dimensional (radial) problem. The remaining radial part of the
oscillation equations can be expressed as:

σ̄2ρ ξr −
dP′

dr
+

dP
dr

(
ρ′

ρ

)
= l ρ f r(l−1), (14)

1
ρr2

d
(
ρr2ξr

)
dr

= −ρ
′

ρ
+
λn

σ̄2r2

[
P
ρ

(
P′

P

)
+ f rl

]
, (15)

P′

P
− Γ1
ρ′

ρ
+A ξr = iη

[
−

1
Fr2

d(r2F′r)

dr
+ εn
Λ

r2

(
T ′

T

)]
, (16)

F′r
F
= Λ

d
dr

(
T ′

T

)
+ (4 − κT )

T ′

T
− (1 + κρ)

ρ′

ρ
(17)

where Γ’s represent Chandrasekhar’s adiabatic coefficients,

Λ =

(
d log T

dr

)−1

; A = d log P
dr

− Γ1
d log ρ

dr
,

the opacity derivatives are given by:

κT =

(
∂ log κ
∂ log T

)
ρ

; κρ =

(
∂ log κ
∂ logρ

)
T

;
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Table 1. (10 log(L/L�),10 log Teff) of the input models; an asterisk
above stellar mass indicates models with Z = 0.03 instead of Z = 0.02.

Model Xc = 0.6 Xc = 0.4 Xc = 0.2
3 M� (1.932, 4.069) (2.025, 4.037)
4 M� (2.411, 4.153) (2.517, 4.124) (2.597, 4.0790)
6 M� (3.173, 4.238) (3.267, 4.199)
6∗ M� (3.112, 4.210) (3.205, 4.167)
8∗ M� (3.562, 4.288) (3.662, 4.247)

η is a characteristic radiative diffusion length:

η = −(Γ3 − 1)F/ (σ̄P) , with F = −4acT 3

3κρ
dT
dr

being the unperturbed (radial) radiative energy flux, and εn,
related to the horizontal radiative diffusion, and is defined
by (13). All other constants have their usual meaning. Note
that the radiative diffusion introduces a factor i, so that the
radial parts of the perturbations are complex-valued. This ex-
presses the induced phase-lags with respect to the external forc-
ing caused by non-adiabatic effects due to radiative diffusion.

The oscillation equations are complemented by the lin-
earized equation of state

P′

P
=

(
∂ log P
∂ log T

)
T ′

T
+

(
∂ log P
∂ log ρ

)
ρ′

ρ
+

(
∂ log P
∂ logµa

)
µ′a
µa

(18)

with

µ′a
µa
= −d logµa

dr
ξr

where µa is the mean atomic weight of the stellar gas.
Finally, we prescribe the usual boundary conditions ξr =

F′ = 0 at the stellar centre and require that the Lagrangian
perturbations at the stellar surface obey δP = 0 and δF/F =
4 δT/T (Stefan’s law).

3.3. Stellar input models for the oscillation code

We constructed the unperturbed stellar models for the main-
sequence stars with a recent version (Pols et al. 1995) of
the stellar evolution code developed by Eggleton (1972). The
models represent spherical main-sequence stars with masses
4−8 M� and chemical composition given by various values of
the central hydrogen abundance Xc and Z = 0.02 or Z = 0.03.
These models were constructed by using the OPAL opacities
(Iglesias & Rogers 1996). Table 1 lists the effective tempera-
tures of the various stellar input models characterized by their
mass, core hydrogen mass fraction Xc, and metal content Z,
used in our calculations.

4. Solution method

4.1. Determination of the eigenvalue λn(x)

For a given stellar rotation frequency Ωs, forcing frequency in
corotating frame σ̄, azimuthal index m, and angular order n, the
eigenvalues λn can be determined by numerically integrating
the two first order differential Eqs. (9) and (10). We have used

a shooting-method with fourth-order Runge-Kutta integration
with variable stepsize (Press et al. 1992) to obtain numerical
solutions. It is convenient to rewrite Eqs. (9), (10) as

dXn

dµ
= −

mx µ
1 − µ2

Xn −
(

1 − x2µ2

1 − µ2

)
Qn, (19)

dQn

dµ
= −
(

m2

1 − µ2
− λn

)
Xn +

mxµ
1 − µ2

Qn (20)

where the factor x = 2Ωs/σ̄ expresses the importance of stellar
rotation.

To enable integration away from µ = 1, it is convenient to
write Xn(µ) = (1 − µ2)

m
2 Yn(µ) and expand Yn(µ) in a power se-

ries which can be substituted in Eqs. (19) and (20) to determine
the coefficients. Qn can then be expressed in terms of Yn as

Qn =
(1 − µ2)

m
2

1 − x2µ2

[
mµ(1 − x) Yn − (1 − µ2)

dYn

dµ

]
·

For the even n (including n = 0) solutions, the boundary con-
ditions are Xn = 0 at µ = 1 and Qn = 0 at µ = 0, while the odd
solutions are defined by Xn = 0 at µ = 0. We can now integrate
Eqs. (19), (20) from µ = 1− δ (with δ = 10−4) to µ = 0 with an
estimated value for the eigenvalue λn. We iterate by adjusting
λn until the integrated value for either Qn (even solutions) or
Xn (odd solutions) is sufficiently close to zero for µ = 0.

4.2. Eigenvalues λnm and mode classification (n, m)

Eigenvalues λnm of Eqs. (9), (10) (or its equivalent) have re-
cently been calculated by Bildsten et al. (1996), Papaloizou
& Savonije (1997), Lee & Saio (1997), and Savonije & Witte
(2002). It appears that in the traditional approximation the an-
gular eigenvalue λnm can take both positive and negative val-
ues, including 0. Here we will follow Lee & Saio (1997, see
their Fig. 1) and allow n to assume positive and negative values
(or 0) to discriminate between these cases. The positive values
n = 0, 1, 2, 3,... correspond to gravity (g)-modes (or p-modes)
for which λ > 0 for any x-value, whereby even values of n (or
0) correspond to modes with even symmetry about the stellar
equator and odd values to modes with odd symmetry. For these
modes, n gives the number of nodes in Xn(µ) over the interval
−1 < µ < 1, except when −1 < x−1 < 0 (where x−1 = σ̄/2Ωs),
when there appears an extra set of nodes. This is related to the
existence of quasi g-modes with n = −1, see below.

For n < 0 and x < 0 the eigenvalues are positive for
|x−1| → 0, and negative for large values of |x−1|. In this case
the eigenvalue λnm changes sign for x-value:

x−1
r =

−m
(m + |n|) (m + |n + 1|)

(21)

where m > 0. The oscillation modes corresponding to these
roots xr are the purely toroidal r-modes (Papaloizou & Pringle
1978). The n < 0 branches thus have positive, although low,
eigenvalues λnm for |x−1| < |x−1

r | and these correspond to quasi-
toroidal q-modes (Savonije & Witte 2002). Figure 1 shows the
(λ > 0) q-mode branches with n = −1 and n = −2 for m = 2,
together with the normal g-mode n = 0 branch. The special



G. J. Savonije: Unstable quasi g-modes in rotating main-sequence stars 561

Fig. 1. The eigenvalue λn versus σ̄/(2Ωs) for m = 2 modes. From top
to bottom right: full line: g-modes with n = 0; dashed line: q-modes
with n = −1; dotted line: q-modes with n = −2. The n = −1 branch of
quasi g-modes lies between the normal g-modes and the quasi-toroidal
modes (with λ−2 remaining small as |1/x| → 0). The eigenfunction
Xn(ϑ) corresponding to n = 0, and n = −2 has no nodes, while that of
n = −1 has a node at the equator.

case n = −1 is interesting as this corresponds to a branch of
q-modes where λ does not remain small when |x−1| decreases,
see Fig. 1. For |x−1| < |x−1

r | these n = −1 modes have values of
λnm that remain an order of magnitude lower than those of the
lowest order (n = 0) g-modes. This means that for these spe-
cial “quasi g-modes” the confinement to the equatorial regions
of the rotating star at lower frequencies σ̄ is weak, in sharp
contrast to (retrograde) g-modes. We will see that for sufficient
rotation speeds, n = −1 quasi g-mode oscillations can be desta-
bilized by the opacity bump due to the heavy element ionisation
zone, like normal g-modes.

The n < 0 modes with λnm < 0 (for both positive and neg-
ative x-values) correspond to rotationally stabilized g−-modes
or oscillatory convection (and exists only) in the regions where
the square of the Brunt-Väisälä frequency N2 = gA/Γ1 ≤ 0.
Note that we use a slightly different definition forA than usual.
In this paper only modes with λnm > 0 are explored.

4.3. Solution of radial oscillation equations

For a given stellar rotation speed Ωs and stellar forcing fre-
quency σ̄ (in fact for a given x−1 = σ̄/2Ωs), we can for each
possible combination of (n,m) determine the eigenvalue λn and
corresponding eigenfunctionXn(ϑ) (and auxilliary functionQn

from which εn is calculated), substitute λn and εn in the ra-
dial oscillation Eqs. (15) and (16) and solve the set of radial
Eqs. (14)−(17). The solution of these differential equations is
found by transforming them into algebraic equations by means
of finite differences on a staggered spatial mesh and applying
matrix inversion similar to standard Henyey schemes for stel-
lar evolution (e.g. Savonije & Papaloizou 1983). Hereby the
forcing potentialΦT (l,m) is chosen to have the correct symme-
try; i.e. for given (n,m), we adopt l accordingly: for g-modes
l = m + n and for q-modes l = m + | − n − 2|. By scanning
through a range of (initially) real forcing frequencies σ̄ and
solving the radial oscillation equations, we find the possible

oscillation modes (with a different number of radial nodes
k) when the response becomes resonant for certain values
σ̄k(Ωs, n,m). At resonance (that is what we are interested in),
the stellar response becomes that of the free oscillation mode
(k, n,m) and appears virtually independent (apart from a fixed
overall scaling factor) of the value adopted for l in the forcing
potential, as long as the equatorial symmetry of the forcing is
consistent.

4.4. Search for unstable oscillation modes

The resonances with free oscillation modes are found by vary-
ing the real valued σ̄ and maximizing the absolute value of the
tidal torque integral (interpreting the forcing potential as that
of a spherical harmonic component of an external point mass
companion as in Savonije & Witte 2002):

Tnm(σ̄,Ωs) = π ζnm f
∫ Rs

0
Im
[
ρ′nm(r)

]
rl+2dr (22)

where π results after the integration over ϕ, f is the constant in
the tidal potential defined by Eq. (5), Im stands for imaginary
part, and

ζnm =

[∫ 1

−1
Pm

l (µ)Xn(µ) dµ
]2

∫ 1

−1
X2

n(µ) dµ
·

(The tidal torque follows by multiplyingTnm with m.) This pro-
cedure in fact shows immediately whether the resonance cor-
responds to a stable oscillation mode (if Tnm has same sign as
σ̄) or to an unstable one, when Tnm has opposite sign. This
can be understood physically by considering a stable oscilla-
tion mode: when the forced oscillation is prograde (σ̄ > 0) the
torque should lead to spin-up of the star and must be positive.
For an unstable mode the phase-difference between forcing and
star has the opposite sign. For a check of the stability proper-
ties of a mode and to estimate its growth or damping rate, we
forced the star with a complex frequency σ and searched with
a numerical algorithm, in an interval symmetric about 0, for
that value of the imaginary part Im(σ) for which the integral

over the star J =
∫ R

0
ξr(r)ξ∗r (r) dr becomes maximized. The

resonant forcing of stable oscillation modes becomes enhanced
when the radiative damping is neutralized, so that J becomes
maximal for a positive value ofIm(σ) (identified as the “damp-
ing rate”), analogous with the standard theory for a 1D forced
linear harmonic oscillator with damping. For an unstable mode
with “negative damping”, the enhanced resonant response is
found for Im(σ) < 0, the absolute value of which is identified
as the “growth rate”. Except for modes near the boundaries of
the instability bands, the integral J becomes many orders of
magnitude larger by the search in the complex frequency plane.

Note that in this paper we consider σ to be the real part
of the forcing frequency unless its complex character is made
explicit, like in Im(σ), while σ̄ always refers to the real (part of
the) oscillation frequency (in the corotating frame). Also note
that from now on we normalize all frequencies on the star’s

critical rotation frequency Ωc =
(
G Ms/R3

s

) 1
2 when this is not

indicated.
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4.5. κ-mechanism

The instabilities found in this paper are (checked to be) caused
by the well known κ valve-mechanism by which a fraction of
the outflowing stellar thermal energy-flux is tapped by an in-
crease in the radiative opacity during the compression phase of
the oscillations and heat is released during the expansion phase.
According to a semi-adiabatic analysis assuming constant ra-
diative luminosity, the opacity κ has the correct absorbing be-
haviour in regions of the star where (e.g. Unno et al. 1989):

d
dr

(
κT +

κρ

Γ3 − 1

)
> 0. (23)

Regions where inequality (23) is fulfilled tend to drive the os-
cillation. For adequate driving the oscillation period should be
comparable to the thermal timescale in the driving zone. Let
us define a local “adiabatic frequency” νad = 2π/τleak and use
the leaking time τleak 
 (Rs − r)2 ρκ/c as a crude estimate for
the thermal timescale τth at radius r based on random walk of
photons towards the stellar surface. When the surface is ap-
proached, the leaking time becomes ever shorter and νad rises
steeply, see e.g. Fig. 4. This figure shows the various frequen-
cies as a function of the run of temperature in a 4 M� main-
sequence star with Z = 0.02.

In the surface regions where the oscillation frequency
becomes much smaller than the so-defined adiabatic fre-
quency νad, the oscillations evidently are very non-adiabatic
and no driving occurs when (23) attains positive values in
these regions. For instability (of a mode k) it is required that
in Fig. 4 the horizontal line corresponding to the oscillation
frequency σ̄k cuts the beginning of the steep rise of the curve
corresponding to νad well into the driving region near T 

2 × 105 K where (23) attains a significant positive value.

4.6. Comparison with other stability analyses

We applied our calculation method to a non-rotating star, then
compared the results with those given in Gautschy and Saio
(1996), and found an instability region for a 5 M� MS star
very similar to the one shown in their Fig. 2. We also com-
pared our results for rotating stars with those of Lee (2001),
who used a truncated series expansion in spherical harmon-
ics to describe the non-adiabatic non-radial oscillations in a
rotating star. Lee applied this scheme to a 4 M� ZAMS star
with Xc = 0.7 and Z = 0.02. We compare the results for ro-
tation speeds Ωs = 0.1 in Table 2 and Ωs = 0.3 in Table 3.
Our 4 M� ZAMS stellar input model has 10 log(L/L�) = 2.366
and 10 log Teff = 4.170 and thus is slightly hotter than Lee’s
input model (10 log Teff = 4.164). The results presented in
Tables 2 and 3 show that the two methods yield very similar
instability intervals for a 4 M� ZAMS star. Only for the high-
est rotation rate do we find slighly narrower instability domains
for prograde g-modes, on one hand, and slighly more extended
(to lower frequencies) intervals for retrograde g-modes, on the
other. This may be partly due to the slightly different input
model.

It makes practically no difference to these results whether
we adopt εn = 0 or εn � 0. In the former case the instability

Table 2. Comparison with Lee’s (2001) result for the radial orders
(kmin, kmax) of unstable g-modes for a 4 M� ZAMS star (Z = 0.02),
rotating at angular velocity Ωs = 0.1. The upper pair (kmin, kmax) cor-
responds to the results obtained here, and the lower pair are those
derived by Lee. For easy comparison we give the (l,m) values with
l = n + |m|.

Degree m = −1 m = −2 m = −3 m = 1 m = 2 m = 3
l = 1 (10, 14) .. .. (9, 23) .. ..

(9, 15) .. .. (9, 23) .. ..
l = 2 (9, 19) (9, 19) .. (9, 23) (9, 22) ..

(6, 20) (8, 20) .. (9, 22) (9, 22) ..
l = 3 (10, 24) (10, 23) (10, 23) (10, 24) (10, 24) (10, 24)

(9, 24) (9, 23) (9, 23) (9, 24) (9, 24) (9, 24)

Table 3. Comparison with Lee’s (2001) result for the radial orders
of unstable g-modes for a 4 M� ZAMS star (Z = 0.02), rotating at
angular velocity Ωs = 0.3.

Degree m = −1 m = −2 m = −3 m = 1 m = 2 m = 3
l = 1 (10, 13) .. .. (9, 26) .. ..

(4, 15) .. .. (11, 24) .. ..
l = 2 (9, 22) (9, 19) .. (9, 26) (9, 26) ..

(7, 23) (6, 20) .. (7, 22) (8, 22) ..
l = 3 (10, 26) (10, 25) (10, 22) (10, 27) (10, 27) (10, 26)

(7, 21) (9, 24) (8, 23) (8, 20) (9, 20) (10, 24)

interval is, for the case Ωs = 0.3, sometimes extended
whereby kmin decreases by one. The great benefit of the present
calculation method is that there is no truncation problem in the
solution of the angular eigenfunctions (although by neglecting
the horizontal component ofΩs which, however, seems reason-
able for the considered modes). Also, the horizontal part of the
energy flux perturbation can only be treated approximately, see
Eq. (13). But, since the approach in this paper greatly simplifies
the analysis of the stability of oscillation modes in rotating stars
and seems to provide a qualitatively correct picture of the linear
stability properties of these modes without excessive computer
use, it seems a good initial approach. Townsend (2005) uses a
similar approach (but neglected the horizontal diffusion alto-
gether by adopting εn = 0) to study the stability of g-modes in
rotating SPB-stars in more detail than is done here where we
focus on q-modes. Where the results overlap, they seem qual-
itatively consistent with each other, although Townsend finds
unstable n = 0 g-modes even in ZAMS stars that are somewhat
less massive than 3 M�, while the n = 0 g-modes all appear
stable in our 3 M� models, see below. This seems related to the
higher effective temperatures of the lower mass stellar models
used by Townsend, as compared to ours.

5. Results

5.1. Unstable n = –1 q-modes in a 3 M� MS star
(Z = 0.02)

Before exploring the stability of more massive MS stars, let us
search for the lower mass limit for which overstable q-modes
can exist. We studied the stability of two MS models with
masses 3 M� and 2 M�. For the 2 M� MS star no q-mode
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Fig. 2. MS star of 3 M� with Xc = 0.6 and Z = 0.02. Full line: the
Brunt-Väisälä frequency νBV = sign(N2)

√
|N2|; dashed line: the “adi-

abatic frequency” νad = 2 π/τleak, see text; dot-dashed line: again νad,
but now for Xc = 0.4; dotted line: the value of the radial derivative in
expression (23) in arbitrary units, all versus temperature.

Fig. 3. Unstable n = −1 q-modes: σ̄k/(2Ωs) versus the number of ra-
dial nodes k. Ωs = 0.3: plusses: m = 1, crosses: m = 2, asterisks:
m = 3 and dotted squares: m = 4. Then for Ωs = 0.4: filled squares:
m = 2; dotted circles: m = 3 and filled circles: m = 4. Note that for
given Ωs the n = −1 q-mode frequencies |σ̄k| decrease with increas-
ing m. Model: 3 M�, Xc = 0.6, Z = 0.02.

instabilities (or any unstable n = 0 g-modes) could be found,
so that the lower boundary of the q-mode instability region
lies between 2 M� and 3 M�, coinciding by the way with the
lower boundary for SPB stars. It can be seen in Fig. 2 that
for these lower stellar masses the Z-bump in the opacity near
10 log T 
 5.3 is rather modest; and because it lies quite deep
inside the star, where the local thermal timescale τth is rela-
tively long, only very low frequency oscillation modes can be
sufficiently non-adiabatic in this driving zone to give rise to
overstability. It appears that the very low frequency quasi g-
modes (or n = −1 “q-modes”) can indeed be excited in the
3 M� star, see Table 4 for a list of unstable modes. No unstable
g-modes could be detected in a 3 M� MS star: the required low
frequencies can only be reached for high radial order modes,
for which internal damping connected with short wavelengths
seems too strong.

Figure 3 shows the (reciprocal) rotation parameters
σ̄k/(2Ωs), where σ̄k is the oscillation frequency in the corotat-
ing frame, of unstable n = −1 q-modes for several rotation rates
Ωs of a slightly evolved 3 M� model. The (absolute values) of
the frequencies in the corotating frame |σ̄k | are for m > 1 sig-
nificantly lower than those of unstable normal g-modes.

For givenΩs the mode frequencies |σ̄k | are seen to decrease
with increasing m-value, while for given m the frequencies |σ̄k |
increase with rotation speed Ωs. That |σ̄k | decreases with m
follows from Eq. (21), which tells us that the roots |x−1

r | from
where λnm > 0 for n = −1 modes shift towards 0 (respectively
x−1

r = −1/2,−1/3 and −1/4 for m = 1, 2 and 3), so that the
lowest radial order mode frequency for a given m is larger than
that for m + 1, and consequently |σ̄k(m)| > |σ̄k(m + 1)| for not
too large k.

For m > 1 the mode frequencies of adjacent radial orders k
are very densely packed, so that the oscillation periods Pk of
all q-modes in an instability interval (kmin, kmax) can only be
distinguished if the observations have good time coverage, see
Table 4. This property of q-modes tends to give a much simpler
observable oscillation spectrum in rotating stars than g-modes.
Note also that, although in the corotating frame the q-modes
are retrograde modes, in the observer’s frame the periods are
always positive, that is for an observer the q-modes are invari-
ably prograde, in contrast to g-modes.

The location and extent of the instability bands are very
sensitive to the thermal timescale τth in the opacity Z-bump
region. In the more evolved MS models, with cooler sur-
face layers, the driving region lies deeper inside the star, so
that τth is longer and the steep rise of the “adiabatic frequency”
curve takes place at lower T , see dot-dashed curve in Fig. 2.
Instabilities in the less evolved Xc = 0.6 model, with shorter τth

in the driving region, require somewhat higher oscillation fre-
quencies for instability and can thus occur at higher rotation
rates (Ωs = 0.4) than in the more evolved Xc = 0.4 model in
which the q-modes are stable for Ωs = 0.4, see Table 4. In an
evolved Xc = 0.4 model with Ωs = 0.3, instabilities can only
be found for m ≥ 3 (i.e. for the lowest mode frequencies). We
also see in Table 4 that the modes with higher m-values (i.e.
with lower frequencies |σ̄k|) become stable when Ωs decreases
as the oscillations then become too slow and hence too non-
adiabatic.

5.2. Unstable modes in a 4 M� evolved MS-star

5.2.1. Unstable retrograde n = 0 g-modes

Let us now turn to 4 M� MS star models of decreasing cen-
tral hydrogen abundance Xc. For a slightly evolved (Xc = 0.60)
4 M� MS model, the Brunt-Väisälä frequency, the adiabatic
frequency, and the driving/damping zones, all as a function
of the temperature through the star, are shown in Fig. 4. The
opacity Z-bump near 10 log T 
 5.3 coincides with the region
where non-adiabicity of low-frequency, |σ̄/(2Ωs)| < 1, oscil-
lations becomes noticeable. A little further out the driving is,
according to inequality (23), replaced by damping, but the ex-
tra thermal energy exchange for relevant frequencies is small
because of the existing strong non-adiabaticity. By comparing
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Table 4. Unstable n = −1 q-modes for a 3 M� star with Z = 0.02 at
two evolution stages indicated by the core hydrogen mass fraction (be-
tween curly brackets). The unstable radial orders (kmin, kmax) for differ-
ent rotation rates Ωs (in units of Ωc) and m-values are listed between
round brackets. The numbers between square brackets list the oscil-
lation periods (days) corresponding to kmin and kmax in the observer’s
frame. Positive periods correspond to prograde (in observer’s frame)
modes, negative periods to retrograde modes. Empty slots mean that
no unstable modes could be detected. Ps is the stellar rotation period.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.4 0.57 (15, 18) (15, 19) (17, 20)

{0.6} [.396, .390] [.224, .223] [.157, .157]
0.3 0.76 (15, 19) (14, 21) (14, 21) (17, 20)

{0.6} [3.6, 2.9] [.54, .53] [.301, .298] [.210, .210]
0.2 1.14 (13, 22) (14, 22) (15, 20)

{0.6} [11., 6.] [0.83, 0.81] [.453, .452]
0.1 2.28 (13, 21)

{0.6} [79., 36.]
0.3 1.11 (25, 27) (25, 26)

{0.4} [0.438., 0.437] [.307, .307]
0.2 1.66 (21,27) (21,31) (21, 30)

{0.4} [15.9, 10.9] [1.22, 1.20] [.662, .660]
0.1 3.33 (20, 32) (22, 29)

{0.4} [121., 53.] [2.48, 2.47]

Fig. 4. MS star of 4 M� with Xc = 0.6 and Z = 0.02. Full line: the
Brunt-Väisälä frequency νBV = sign(N2)

√
|N2|; dashed line: the “adi-

abatic frequency” νad = 2π/τleak; dot-dashed line: again νad, but now
for Xc = 0.2; dotted line: the value of the radial derivative in expres-
sion (23) in arbitrary units, all versus temperature.

the dashed and dot-dashed curves, it is seen that the thermal
timescale τth in the driving zone increases significantly when
the star evolves further from the ZAMS and its surface layers
become cooler. We determined the unstable n = 0 g-modes
with m = 1 to m = 4 in a 4 M� main-sequence star rotating at
various angular speeds, for two evolution phases: Xc = 0.6 and
Xc = 0.2, see Table 5. Note that the (retrograde) g-mode fre-
quency |σ̄k | increases with Ωs, as the increasing Coriolis force
renders the star “stiffer” against oscillatory motions. In Fig. 5 it
can be seen that, for a given rotation rate Ωs, the n = 0 g-mode
frequencies |σ̄k | increase with increasing m-values, contrary to
the behaviour of n = −1 q-modes in Fig. 3. This is the usual
g-mode behaviour; remember that n = 0 means m = l in the

Fig. 5. Unstable n = 0 retrograde g-modes: σ̄k/(2Ωs) versus radial
node number k. For meaning of symbols see legend above, whereby
“m1o2” denotes case with m = 1 and Ωs = 0.2, etc. For given Ωs the
absolute values of the mode frequencies |σ̄k | increase for increasing
m(=l). Model: 4 M� with Xc = 0.6 and Z = 0.02.

Table 5. Unstable n = 0 retrograde g-modes for a 4 M� star with
Z = 0.02. See Table 4 for explanation.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.4 0.63 (10, 31) (10, 31) (11, 31) (12, 30)

{0.6} [−1.,−158.] [3.1, .64] [.62, .33] [.35, .22]
0.3 0.84 (10, 30) (10, 30) (11, 30) (12, 30)

{0.6} [−1.,−5.] [−4.9, 1.1] [1.7, .50] [.70, .33]
0.2 1.27 (10, 29) (11, 29) (11, 30) (12, 30)

{0.6} [−1.,−2.9] [−1.7, 27.] [−2.4, .97] [−29., .62]
0.1 2.53 (10, 24) (10, 27) (11, 29) (12, 30)

{0.6} [−.99,−2.3] [−.74,−5.1] [−.68,−202.] [−.60, 6.1]
0.4 1.45 (37, 44)

{0.2} [−3.3,−4.3]
0.3 1.93 (36, 53) (37, 48)

{0.2} [−3.,−4.9] [11.5, 4.5]
0.1 5.79 (30, 67) (35, 65) (42, 49)

{0.2} [−2.4,−5.6] [−2.3,−8.8] [−2.8,−4.1]

non-rotating star terminology. The results in Table 5 show that
in the little evolved MS model all combinations of Ωs and
m yield unstable g-mode intervals. However, for the evolved
model with Xc = 0.2, the opacity bump region has moved
into the star with a corresponding longer local value for τth.
As a result the parameter combinations that correspond with
higher mode frequencies, i.e. the larger m-values and higher
rotation rates, no longer yield unstable g-modes because the
oscillations have become too adiabatic for destabilization by
the κ-mechanism. For Ωs = 0.5, all considered g-modes appear
stable.

5.2.2. Unstable n = −1 q-modes in a 4 M� MS-star

Let us now consider the behaviour of the n = −1 q-modes
in a 4 M� main-sequence star. In Table 6 we list the n = −1
unstable q-modes with m = 1 to 4 for an 4 M� star at var-
ious evolutionary stages. In order to understand the shifting
boundaries of the instability regions with m andΩs, one should
again realize that for a given rotation speed Ωs the absolute
value of the oscillation frequency |σ̄k | for n = 0 (i.e. l = m)
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Fig. 6. The angular eigenfunction Xn(ϑ) versus µ = cosϑ for four
different m = 2 modes, with respectively n = −1 and n = 0, which
bracket two instability domains for Ωs = 0.3, see Tables 5 and 6.
From top to bottom: full line: q12; long dashes: q21; short dashes: g10

and dotted line: g30 (the latter shows the extra node and rotational
confinement) all as listed in Tables 5 and 6. The normalisation of the
y-axis is arbitrary. Model: 4 M�, Xc = 0.6, Z = 0.02.

g-modes increases with m, see Fig. 5, while Fig. 7 shows that
for n = −1 q-modes the reverse is true. We have extended the
calculations to a rather high angular rotation speed of Ωs = 0.5
for which the neglect of centrifugal distortion is questionable,
just to see the effect of stronger Coriolis forces on the oscilla-
tion. The q-modes, in spite of their weak compressions also
unstable due to the κ-mechanism, extend the instability re-
gion down to lower frequencies in comparison to the normal
g-modes listed in Table 5. Figure 6 shows for Ωs = 0.3 and
m = 2 the angular eigenfunctions Xn(µ) for the first and last
unstable (n = 0) g- and (n = −1) q-mode of an instability
band, as listed in Tables 5 and 6. The two unstable g-modes,
bracketing their instability band, have (reciprocal) rotation pa-
rameters 1/x 
 −1.09 and -0.60 and thus are near the bound-
ary, respectively well inside, the inertial range. For the latter
low frequency g30-mode rotational effects are significant, and
its angular eigenfunction Xn(µ) exhibits the typical equatorial
confinement of these modes: the eigenfunction has significant
amplitude only for |µ| < 1/x. The two q-modes, by defini-
tion both inside the inertial regime, have (reciprocal) rotation
parameters 1/x 
 −0.302 and −0.271, respectively (these q-
modes are odd and vanish at the equator). The q-modes have
small λ-values and do not show the significant confinement to
the equatorial region of retrograde g-modes of similar x-values.

Sometimes not all radial orders in an instability band are
unstable according to our criteria (see Fig. 7); for that we re-
quire the mode amplitude to increase when the search for the
resonant forcing frequency is made in the complex frequency
plane. In some cases the resonances remain too weak.

Figure 8 shows the imaginary parts of the complex forcing
frequencyσ for which the resonant response in a 4 M� model is
maximized for both the unstable n = −1 q-modes and n = 0 g-
modes with m-values in the range 1−3. For the quasi g-modes
the highest growth rates are attained by the m = 1 modes, which
have the largest λ-values and highest oscillation frequencies σ̄

Fig. 7. Unstable n = −1 q-modes: σ̄k/(2Ωs) versus radial node num-
ber k. For meaning of symbols see legend above, whereby “m1o2”
denotes case with m = 1 and Ωs = 0.2, etc. Contrary to the g-modes
in Fig. 5 the absolute values of the mode frequencies |σ̄k | decrease for
increasing m for a given Ωs, see text. Model: 4 M� with Xc = 0.6 and
Z = 0.02.

Fig. 8. Growth rates −Im(σ) versus λ for unstable n = −1 q-modes
and n = 0 g-modes. Symbols: q-modes with m = 1, 2 and 3: +, ×
and *; g-modes with m = 1, 2 and 3: dotted squares, filled squares and
dotted circles. Model: 4 M� with Xc = 0.6 and Z = 0.02 for Ωs = 0.3.

(see Fig. 7) and are thus closest in character to the g-modes. But
in this barely evolved stellar model (Xc = 0.6) the driving layer
is relatively close to the stellar surface and the (low-frequency)
modes have rather small growth rates.

For the lowest rotation speed Ωs = 0.1 the m = 2 and
m = 3 q-modes in the more evolved (Xc = 0.4) stellar model
have oscillation frequencies that are apparently too small for
the κ instability to be effective: the slow oscillations are too
non-adiabatic in the κ-bump region. Note again that for m ≥ 2,
the subsequent radial orders of the n = −1 q-modes in an in-
stability interval are densely spaced in period. For normal g-
modes similar close spacing of radial orders k generally occurs
for much larger values of k.

5.3. Unstable n = –2 q-modes in 3–4 M� MS stars

It appears that in the evolved 3−4 M� MS models even higher
angular order (n = −2) quasi-toroidal modes are excited by
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Table 6. Unstable n = −1 q-modes for a 4 M� star with metal content
Z = 0.02, see Table 4 for explanation.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.5 0.51 (10, 27) (11, 25) (12, 22) (13, 21)

{0.6} [1.8, 1.0] [0.35, 0.32] [.198, .194] [.139, .138]
0.3 0.84 (11, 22) (14, 21) (14, 17)

{0.6} [4.9, 2.5] [0.60, 0.58] [.333, .332]
0.2 1.27 (11, 20)

{0.6} [13.4, 6.1]
0.1 2.53

{0.6}
0.5 0.74 (16, 43) (16, 41) (17, 39) (19, 36)

{0.4} [2.6, 1.5] [0.52, 0.47] [.291, .283] [.204, .202]
0.3 1.23 (15, 39) (16, 35) (18, 25) (21, 25)

{0.4} [8.6, 3.4] [0.90, 0.84] [.489, .486] [.3416, .3412]
0.1 3.70 (19, 23)

{0.4} [118, 84]
0.5 1.16 (28, 65) (28, 66) (30, 65) (31, 62)

{0.2} [4.1, 2.4] [0.81, 0.74] [0.45, 0.44] [.319, .316]
0.3 1.93 27, 66) (28, 63) (30, 58) (32, 53)

{0.2} [13.1, 5.3] [1.4, 1.3] [0.77, 0.75] [.534, .532]
0.1 5.79 (28, 50)

{0.2} [253, 88]

Table 7. Unstable n = −2 q-modes for a 3 M� MS star with Z =
0.02, see Table 4 for explanation. ForΩs lower than listed, no unstable
modes could be found.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.4 0.57 (13, 18) (14, 19) (16, 18)
{0.6} [0.32, 0.31] [.206, .204] [.1509, .1507]

0.3 0.76 (14, 17) (16, 17)
{0.6} [.434, .429] [.2764, .2760]

0.4 0.83 (19, 25) (19, 30) (21, 31) (22, 29)
{0.4} [0.98, 0.95] [0.47, 0.46] [.301., .297] [.221, .220]

0.3 1.11 (20, 23) (20, 29) (21, 28) (24, 27)
{0.4} [1.36, 1.32] [0.64, 0.62] [.405., .402] [.295, .295]

0.2 1.66 (21, 22) (20, 26)
{0.4} [2.17, 2.16] [.975, 0.964]

the κ-mechanism. These modes have small eigenvalues λ−2 and
very low oscillation frequencies, see Tables 7–8 and Fig. 9.
In the less evolved stellar models with Xc ≥ 0.4, the n =
−2 q-modes appear all stable. The angular eigenfunctionXn(ϑ)
for three (unstable) n = −2 q17-modes with m = 2, 3, and 4, all
with (reciprocal) rotation parameters |1/x| < 0.115 (see Fig. 9),
are depicted in Fig. 11. The eigenfunction Xn(ϑ) determines
the latitudinal distribution of temperature, density, and radial
velocity over the stellar surface. The shape varies little as a
function of m. Figures 2 and 4 show that in the evolved stars
the “adiabatic frequency” rises steeply only near the outer edge
of the opacity bump region. Low frequency q-mode oscillations
apparently can still absorb sufficient heat during compression
in the opacity bump zone, at least for rotation speeds Ωs ≥ 0.3.
When the opacity derivatives κT and κρ are put to zero the in-
stabilities disappear.

For the higher stellar masses on the main sequence, the
opacity bump is closer to the surface and the non-adiabaticity

Table 8. Unstable n = −2 q-modes for a 4 M� star with Xc = 0.2 and
metal content Z = 0.02, see Table 4 for explanation. The oscillation
periods in the corotating frame (between square brackets) are on the
order of the rotation period over m due to the small values of |σ̄k |.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.5 1.16 (28, 43) (29, 47) (32, 47)

{0.2} [0.65, 0.63] [0.418, 0.410] [.306, .304]
0.4 1.45 (29, 40) (30, 44) (34, 43)

{0.2} [0.82, 0.80] [0.525, 0.519] [.384, .382]
0.3 1.93 (32, 37) 37

{0.2} [1.106, 1.096] [0.70]

Fig. 9. Unstable n = −2 q-modes: σ̄k/(2Ωs) versus radial order k, for
rotation rate Ωs = 0.4: asterisks: m = 4, crosses: m = 3, plusses:
m = 2. Model: 3 M� with Xc = 0.6 and Z = 0.02.

too strong for destabilization of the very low frequency n = −2
q-modes.

Figure 9 shows that the absolute values of the n = −2 mode
frequencies |σ̄k | behave differently as a function of azimuthal
index m than the n = −1 modes shown in Fig. 7; here the ab-
solute value of the frequencies of e.g. m = 3 modes are higher
than those of m = 2. This can again be explained (Sect. 5.1)
by considering Eq. (21). For n = −2 the roots x−1

r (where λ be-
comes positive) have values −1/6,−3/20 and −1/10 for m = 2,
3, and 4, respectively, i.e. lie more closely together than the
roots for the n = −1 q-modes, so that for relatively small k-
values we get the behaviour stated above.

Figure 10 shows the imaginary parts of the complex forcing
frequency σ for which the resonant response is maximized for
the unstable n = −2 q-modes with m-values in the range 2−4.
The real parts of the oscillation frequencies are shown in Fig. 9.
The very low frequency n = −2 q-modes have significantly
smaller growth rates than the n = −1 q-modes. Here, the m =
3 modes have the highest frequencies and attain the highest
growth rates.
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Fig. 10. Growth rates −Im(σ) versus λ for the unstable n =

−2 q-modes shown in Fig. 9. Symbols: m = 2, 3, and 4 are repre-
sented by +, ×, and *, respectively. Model: 3 M� with Xc = 0.6 and
Z = 0.02.

Fig. 11. The angular eigenfunction Xn(ϑ) versus µ for the unstable
k = 17 n = −2 modes at rotation rate Ωs = 0.4. Solid line: m = 2;
dashed line: m = 3; and dotted line: m = 4. Model: 3 M�, Xc = 0.6,
Z = 0.02.

5.4. Unstable modes in a 6 M� MS star

5.4.1. Unstable n = 0 retrograde g-modes
for Z = 0.02

Figure 12 shows the unstable n = 0 g-modes in the slightly
evolved (Xc = 0.6) 6 M� model for rotation speeds Ωs = 0.1
and 0.3. By comparing with Fig. 5, which depicts the same
for a 4 M� stellar model, it appears that in this more massive
star the instability intervals are less extended and terminate at
smaller k-values. This is due to the shorter thermal timescale
in the driving zone of the more massive star causing the lower
oscillation frequencies to be stable.

Table 9 lists the g-mode instability intervals for various ro-
tation rates and evolution stages of the 6 M� MS star. The table
shows that we expect to observe many unstable g-modes with a
retrograde character in the observer’s frame (negative periods).
By writing σ = σ̄+mΩs, we can understand that for the larger
m-values and/or higher stellar rotation rates, the modes become
prograde in the observer’s frame, as can be seen in Table 9. The

Fig. 12. Unstable n = 0 retrograde g-modes: σ̄k/(2Ωs) versus radial
node number k. For meaning of symbols, see legend in the figure,
whereby “m1o2” denotes the case with m = 1 and Ωs = 0.2, etc. For
given Ωs the absolute values of the mode frequencies |σ̄k| increase for
increasing m. Model: 6 M� with Xc = 0.6 and Z = 0.02.

Table 9. Unstable n = 0 g-modes for a 6 M� MS star with Z = 0.02,
see Table 4 for explanation.

Ωs Ps(d) m = 1 m = 2 m = 3
0.3 0.98 (9, 18) (9, 18) (9, 20)

{0.6} [−1.3,−2.8] [−16., 1.7] [2., .65]
0.2 1.47 (10, 14) (9, 16) (9, 18)

{0.6} [−1.4,−1.9] [−1.9, 28.] [−2.6, 1.7]
0.1 2.53 (10, 24) (10, 27) (11, 29)

{0.6} [−.99,−2.3] [−.74,−5.1] [−.68,−202.]
0.5 0.85 (12, 37) (12, 37) (13, 38)

{0.4} [−1.6, 11.0] [2.5, 0.8] [0.7, 0.4]
0.3 1.55 (13, 31) (13, 32) (13, 34)

{0.4} [−1.7,−5.0] [−6.6, 2.1] [5.5, 0.89]
0.1 4.26 (14, 20) (13, 25) (13, 29)

{0.4} [−1.8,−2.5] [−1.2,−3.5] [−0.95,−6.1]
0.5 1.32 (21, 68) (21, 60) (21, 59)

{0.2} [−2.5, 13.2] [4.0, 1.2] [1.2, 0.67]
0.3 2.20 (21, 61) (21, 62) (21, 63)

{0.2} [−2.4,−10.4] [−6.5, 2.9] [31.0, 1.3]
0.1 6.59 (21, 42) (21, 50) (21, 57)

{0.2} [−2.3,−4.7] [−1.7,−7.6] [−1.3,−21.1]

unstable g-modes, both prograde and retrograde, occur in many
wide instability bands, which is not observed in SPB stars. We
list here only the n = 0 g-modes, but there also exist many
higher angular order (n > 0) unstable g-modes. It is a serious
puzzle as to why all these apparently unstable g-modes are not
observed.

5.4.2. Unstable n = −1 q-modes for Z = 0.02

The frequencies of unstable n = −1 q-modes detected in an
evolved (Xc = 0.2) 6 M� model are shown in Fig. 14. The in-
stability regions (kmin, kmax) are smaller than for the g-modes;
due to the lower oscillation frequency of q-modes, the low-
frequency (high k) end is less extended as the opacity bump
region becomes too non-adiabatic. In Table 10 we list the un-
stable n = −1 modes with m = 1, 2, or 3 for a 6 M�
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Fig. 13. MS star of 6 M� with Xc = 0.6 and Z = 0.02. Full line:
the Brunt-Väisälä frequency νBV = sign(N2)

√
|N2|; dashed line: the

“adiabatic frequency” νad = 2π/τleak; dot-dashed line: again νad, but
now for Xc = 0.4; dotted line: the value of the radial derivative in
expression (23) in arbitrary units, all versus temperature.

Fig. 14. Unstable n = −1 q-modes: σ̄k/(2Ωs) versus the number of
radial nodes k. For meaning of symbols, see legend in the figure,
whereby “m1o3” denotes case with m = 1 and Ωs = 0.3, etc. Model:
6 M�, Xc = 0.2, Z = 0.02.

main-sequence star. The frequency of the m = 4 q-modes ap-
pears too low for destabilization by the κ mechanism. With in-
creasing stellar mass the opacity bump driving region for the
instabilities moves closer to the stellar surface and the steep
rise of τad occurs in the 6 M� model at higher temperature, see
Fig. 13. For the unevolved 6 M� models (with Xc > 0.4) the
thermal timescale in most of the opacity bump region is there-
fore shorter than the oscillation periods (in corotating frame)
of the q-modes, except for the fastest rotation rates considered.
For this reason we find only m = 1 instabilities and those only
for Ωs ≥ 0.4. When the star evolves away from the ZAMS,
the effective temperature decreases and the driving zone moves
inwards, so that the local thermal timescale increases. For the
models with Xc < 0.4, we therefore find more unstable q-modes
and also instabilities at lower rotation rates, although not for
Ωs < 0.3 as in a 4 M� star: the oscillation frequencies are in
that case too low.

Table 10. Unstable n = −1 q-modes for a 6 M� MS star with Z = 0.02,
see Table 4 for explanation. For Xc = 0.4 no unstable q-modes were
found for Ωs ≤ 0.3.

Ωs Ps(d) m = 1 m = 2 m = 3
0.5 0.85 (15, 23)

{0.4} [2.7, 2.1]
0.4 1.07 (16, 20)

{0.4} [4.0, 3.3]
0.5 1.32 (22, 49) (24, 43) (27, 37)

{0.2} [4.9, 2.9] [.92, .87] [0.516, 0.511]
0.4 1.65 (22, 44) (25, 38)

{0.2} [7.8, 4.4] [1.16, 1.12]
0.3 2.20 (24, 39)

{0.2} [13.6, 8.0]

Table 11. Unstable n = −1 q-modes for a 6 M� MS star with Z = 0.03,
see Table 4 for explanation. The enhanced opacity bump for Z = 0.03
destabilizes more q-modes, compare with Table 10.

Ωs Ps(d) m = 1 m = 2 m = 3 m = 4
0.5 0.93 (14, 32) (15, 27) (17, 24)

{0.4} [3.4, 2.0] [.65, .61] [.365, .361]
0.4 1.17 (14, 28) 16, 25)

{0.4} [5.3, 2.9] [.82, .79]
0.3 1.55 (15, 26)

{0.4} [9.3, 5.3]
0.5 1.47 (22, 56) (24, 58) (25, 53) (27, 47)

{0.2} [6.0, 3.1] [1.03, 0.94] [.578, .564] [.406, .403]
0.4 1.84 (22, 60) (24, 54) (26, 47) (32, 37)

{0.2} [9.6, 4.2] [1.31, 1.22] [.726, .714] [.508, .507]
0.3 2.45 (23, 53) (25, 46) (28, 34)

{0.2} [18., 7.2] [1.77, 1.69] [.971, .968]

5.4.3. Unstable n = −1 q-modes for Z = 0.03

When the metal fraction is increased to Z = 0.03, the opacity
bump effect gets stronger and more modes become unstable,
as can be seen by comparing Table 10 with Table 11. With the
enhanced opacity bump, also the higher m modes can be desta-
bilized, for high rotation rates Ωs > 0.3 even m = 4 in the
evolved Xc = 0.2 stellar model.

Figure 15 shows the imaginary parts of the complex forcing
frequency σ for which the resonant response is maximized for
both a set of n = −1 q-modes and n = 0 g-modes for various
m-values. Again the highest frequency m = 1 q-modes have the
largest eigenvalues λ and show the largest growth rates. It can
be seen that the highest growth rate of m = 1 q-modes becomes
almost comparable (∼20%) to that of n = 0 g-modes in this
more evolved (Xc = 0.2) main-sequence model.

5.5. Unstable n = –1 modes in an 8 M� MS star
with Z = 0.03→ LPV in Be stars?

Figure 16 shows the driving/damping regions in an 8 M� MS
star with Xc = 0.2 and Z = 0.03. It can be seen that for this
more massive star the opacity bump region is convectively un-
stable. Nevertheless, by assuming the convective flux is not
heavily perturbed by the oscillation, we have sought unstable
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Fig. 15. Growth rates −Im(σ) versus λ of unstable n = −1 q-modes
and n = 0 g-modes. Symbols: q-modes with m = 1, 2, and 3: +, × and
*; g-modes with m = 1, 2 and 3: dotted squares, filled squares, and
dotted circles. Model: 6 M� with Xc = 0.2 and Z = 0.03 for Ωs = 0.3.

Fig. 16. MS star of 8 M� with Xc = 0.2 and Z = 0.03. Full line: the
Brunt-Väisälä frequency νBV = sign(N2)

√
|N2|; dashed line: the “adi-

abatic frequency” νad = 2π/τleak; dotted line: the value of the radial
derivative in expression (23) in arbitrary units, versus temperature.

modes, see Table 12. We extended the calculations up to com-
pletely illegal rotation speeds for which the (neglected) rota-
tional deformation of the star becomes strong in order to com-
pare our results with observations of rapidly rotating Be-stars.
It is tempting to identify the observed line profile variability

(LPV) in the well observed Be star µ Cen (Rivinius et al. 2001)
in terms of n = −1 q-mode oscillations in a rapidly rotating
B-star. The observed variations in this star are indeed all pro-
grade in the observer’s frame and fall into two narrow period
intervals of about 0.50 days (m = 2) and 0.28 days (m = 3).
Qualitatively, this is exactly what is found for the unstable
n = −1 q-modes calculated here (see Table 12), although the
exact periods do not match. But that is not surprising in view
of the over-simplistic modelling of extremely rapidly (differen-
tially) rotating Be-stars.

6. Summary and discussion

In this paper we have studied the stability of quasi g-modes
(n = −1 “q-modes”), a branch of oscillation modes that

Table 12. Unstable n = −1 q-modes in a 8 M� MS star with Z = 0.03,
see Table 4 for explanation. The high rotation speeds, in the range of
Be-stars, are far outside the range for which rotational deformation of
the star can be neglected.

Ωs Ps(d) m = 1 m = 2 m = 3
0.9 0.90 (20, 34) (21, 44) (23, 39)

{0.2} [2.21, 1.70] [.592, .552] [.345, .334]
0.7 1.15 (21, 37) (22, 38) (25, 33)

{0.2} [3.3, 2.4] [.78, .74] [.446, .442]
0.6 1.34 (21, 36) (23, 35)

{0.2} [4.3, 3.0] [.92, .88]
0.5 1.61 (21, 34) (25, 31)

{0.2} [6.0, 4.1] [1.11, 1.09]
0.4 2.02 (23, 30)

{0.2} [8.7, 6.6]

exists in between the normal retrograde g-modes and the r-
modes in rotating stars. It appears that these retrograde (in coro-
tating frame) low frequency oscillations can be destabilized by
the κ-mechanism in the driving region connected with the opac-
ity bump close to the stellar surface. From relatively low angu-
lar rotation speeds upwards the unstable q-modes with m > 1
occur in a few narrow period intervals in which the different
radial orders lie densely packed together. For m = 1 the pe-
riods of n = −1 q-modes are typically larger than a day, up
to many days for low radial orders. In the observer’s frame all
q-modes are prograde. The predicted observable q-mode spec-
trum thus sharply contrasts to that of unstable g-modes which
occur in much wider period bands, whereby modes of differ-
ent radial order k should be separately observable with even
modest time resolution. The unstable q-modes seem to fit the
observed, rather scarce frequency spectrum in SPB stars and
β-Cephei stars (e.g. Stankov et al. 2002) better than normal
g-modes do. The observed closely spaced frequencies in e.g.
HD 160124 (Waelkens 1991) cannot be explained by unstable
g-modes, but is typical of the q-mode spectrum.

It is, however, doubtful whether the rotational confine-
ment of g-modes towards the stellar equator in rotating stars
can explain away the many predicted unstable g-modes (see
Townsend 2005). It helps in any case that the unstable q-modes
hardly tend to focus on the equatorial region of rotating stars.

Although the more massive β-Cephei pulsators seem to
show clustered periods similar to SPB stars (but with smaller
periods), they cannot be explained straightforwardly in terms
of q-modes, because in stars more massive than 8 M�, the ther-
mal timescale in the opacity bump region becomes too short
to enable destabilization of the q-modes. Q-mode instability
for these more massive β-Cephei pulsators would require the
Z-bump region to be deeper inside the star than predicted by
the current stellar evolution models.

It is interesting that the observed line profile variability in
rapidly rotating Be stars like µ Cen is (qualitatively) consis-
tent with the calculated properties of unstable q-modes in a
rapidly rotating 8 M� B-star: two narrow period intervals cor-
responding to two unstable series (for m = 2 and m = 3) of
closely spaced q-modes; see previous section. One may spec-
ulate about the cause of the related outbursts in this Be-star in
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terms of q-modes. Excitation of the (negative angular momen-
tum) retrograde q-modes in the star will accelerate the rota-
tion of the stellar material in the driving region just beneath the
stellar surface, perhaps bringing the surface layers up to ejec-
tion velocities. A good understanding of the Be phenomenon
requires a much more detailed study with differential rotation
including the centrifugal force and non-linear effects.
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