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Abstract. We calculated the spectrum of oscillations for the model of the sunspot umbra described in Zhukov (2002, A&A,
386, 653). The calculations were carried out both by resonant filtering and from the solution of the eigenvalue problem. Both
methods yield the same results, thus confirming the concept according to which both 5-min and 3-min oscillations of the
umbra represent the same set of p-like mode oscillations of the sunspot. The calculated frequencies of the oscillations and
corresponding eigenfunctions are consistent with observations.
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1. Introduction

The first attempt to understand the nature of 3-min oscilla-
tions in umbrae of solar spots, which had been recently dis-
covered, was made by Uchida & Sakurai (1975). By analogy
with 5-min oscillations of the Sun, they suggested that 3-min
oscillations are caused by the presence of an Alfvén wave res-
onator in the umbra. Scheuer & Thomas (1981) rejected several
simplifying assumptions used by Uchida & Sakurai (1975).
However, they were unable to find asymptotics of solutions of
the system of MHD equations in deep layers of the umbra.
Therefore, in almost all subsequent studies of umbral oscil-
lations, “closed” boundary conditions were used (Thomas &
Scheuer 1982; Zhukov et al. 1987; Wood 1990, 1997; Hasan
1991; Hasan & Christensen-Dalsgaard 1992; Gore 1997, 1998;
Banerjee et al. 2002). Only Cally & Bogdan (1993) (see also
Cally et al. 1994; Bogdan & Cally 1997; Lites et al. 1998)
were able to calculate the spectrum of umbral oscillations for
“open” boundary conditions, which provide the possibility for
slow magnetoacoustic waves radiation from spots. Note, how-
ever, that these calculations were made for a model of the um-
bra with a polytropic convective zone; the polytropic index was
µ = 3/2.

Along with these studies, in which the spectra of the umbral
oscillations were calculated by the determination of eigenval-
ues, since the early 80 ies some researchers (Z̆ugz̆da et al. 1983,
1984; Gurman & Leibacher 1984; Lee & Yun 1987; Z̆ugz̆da
et al. 1987; Settele et al. 1999, 2001) have developed reso-
nant filter theory, i.e., the theory of filtration of MAG waves
by the atmosphere of the umbra. According to this theory, the
atmosphere of an umbra is transparent to slow magnetoacoustic
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waves only in narrow bands located within the observed 3-min
oscillations.

Up to now, these two views of the nature of 3-min oscil-
lations in the umbra of a solar spot have remained incompat-
ible. It is assumed that the umbra of a spot contains two res-
onators: one for fast magnetoacoustic waves, almost captured
in the photosphere and subphotospheric layers, the other for
slow magnetoacoustic waves, almost captured within the re-
gion of temperature minimum and the transition zone. Thomas
(1984) (see also Bogdan 2000) noted that the main peak in the
power spectrum of 3-min oscillations is caused by the presence
of a photospheric resonator, while the closely-spaced multi-
ple peaks, sometimes observed in the power spectra of chro-
mospheric oscillations, may be explained by the presence of a
chromospheric resonator. Consequently, according to this point
of view, the observed spectrum of 3-min oscillations consists of
two parts, one of which may be calculated with the use of reso-
nant filtering, i.e., by calculation of the transmission coefficient
for a slow magnetoacoustic wave propagating through the at-
mosphere of an umbra, while the other may be obtained from
the calculation of the eigenvalues.

However, despite numerous efforts, the problem of the na-
ture of the umbral oscillations has not yet been convincingly
solved (see reviews by Staude 1999; and Bogdan 2000). In
our opinion, this is due to the fact that different authors used
somewhat different models of the umbra. For example, for deep
layers, Cally & Bogdan (1993) in their study used a polytrope
with the index µ = 3/2, while Settele et al. (1999) developed
a semi-empirical model, which made it impossible to com-
pare correctly the obtained results. Additional difficulties were
due to the fact that until now asymptotic solutions of the sys-
tem of MHD equations have been obtained only for isothermal
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(Hasan & Christensen-Dalsgaard 1992) and polytropic (with
polytropic index µ = 3/2, see Cally & Bogdan 1993; Bogdan &
Cally 1997) atmospheres. It was only recently that the asymp-
totic solutions were found for the atmosphere, in which the
Alfvén speed in sufficiently deep layers is considerably smaller
than the sound speed (Zhukov 2002). This makes it possible to
calculate the spectrum of umbral oscillations for a sufficiently
realistic model of the umbra.

Here, we calculate the spectrum of 3-min oscillations for
the model of the umbra described in Zhukov (2002). For the
first time, for the same model of the umbra, the calculations
were made both by the method of resonant filtering and by the
solution of the eigenvalue problem. This eventually has made it
possible to settle the 20-year argument about the correct tech-
nique for the analysis of oscillations in the sunspot umbra.

2. Basic equations

Here, we use the two-layer model of the umbra, described in
Zhukov (2002) (see Appendix A).

The linear oscillations of this two-layer model of the umbra
with a homogeneous vertical magnetic field H0ez in the approx-
imation of ideal magnetohydrodynamics are described by the
following well-known set of equations (Ferraro & Plumpton
1958)

v2A
d2vx

dz2
+

(
ω2 − c2k2 − v2Ak2

)
vx

+ik

(
c2 dvz

dz
− gvz

)
= 0, (1)

c2 d2vz

dz2
− gγdvz

dz
+ ω2vz

+ik

(
c2 dvx

dz
− g(γ − 1)vx

)
= 0, (2)

where c = (γRT (z))1/2 is the sound speed, γ the ratio of specific
heats, g the gravity acceleration, which is assumed to be con-
stant (=0.274 km s−2) and vA = (H2

0/4πρ)
1/2 the Alfvén speed.

In the derivation of the set of Eqs. (1) and (2), the following
dependence of all perturbed quantities on x and t was taken:
∼exp[i(kx + ωt)].

The system (1) and (2) supplemented by the boundary con-
ditions

[vz] = 0, [H] = 0, [p ] = 0 at z = 0 (3)

(continuity of the vertical component of velocity, magnetic
field and pressure) and conditions of radiation of slow magne-
toacoustic waves at infinity (z → ±∞) completely determines
the problem of the sunspot umbral oscillations.

3. Initial conditions in deep layers of a sunspot
umbra

The central problem in the calculations of the eigenoscillations
of a sunspot umbra is related to the selection of the initial con-
ditions for the system (1) and (2) in deep layers of the umbra.

As was shown by Zhukov (2002), in sufficiently deep layers
(at z → −∞), the system (1) and (2) is divided into two inde-
pendent subsystems. One of them has the following solutions

vx ∼ √vA e±i
∫ z ω
vA

dz
, (4)

vz ∼ 0. (5)

These solutions represent slow magnetoacoustic waves.
The other system can be reduced to the equation

c2
(
ω2 − c2k2

) d2vz0

dz2
+

[
c2k2 dc2

dz
− gγ

×
(
ω2 − c2k2

)]dvz0

dz
+

[(
ω2 − c2k2

)2
+

(γ − 1)g2k2

ω2
(6)

×(ω2 − c2k2) − gk
4c2

ω2

dc2

dz

]
vz0 = 0.

For a linear temperature profile, the solutions of this equation
are well known (Nye & Thomas 1976; Evans & Roberts 1990).

Thus, for our model, in sufficiently deep layers of the um-
bra, the asymptotic solutions of the set of Eqs. (1) and (2) have
the form

vx ∼ √vA e±i
∫ z ω
vA

dz
, (7)

vz ∼ 0 at z = zam (8)

and

vz ∼ zb exp(kz) at z = za, (9)

where

b =
µ + 1
γ

ω2

2gk
+
gk

2ω2

(
µ − µ + 1

γ

)
− 1

2
µ.

Here zam and za are depths at which it is possible to use the
asymptotic solutions (7)−(9) accordingly.

In order to determine the spectrum of the eigenoscilla-
tions of the sunspot umbra one should, in particular, inte-
grate the stiff system of two coupled second-order differential
Eqs. (1) and (2), starting from some depth at which the expres-
sions (7)−(9) may be used as the initial conditions. In our study,
all calculations were made for za = −150 z2 and zam = −10 z2,
z2 = 250 km. This is considered in more detail in Appendix B;
here we only note that for the model parameters accepted in our
study, β(≡8πp/H2) = 1, i.e., according the terms introduced in
the study of Rosenthal et al. (2002), the magnetic canopy is
located in the vicinity of z = −250 km.

4. The spectrum of the sunspot umbral
oscillations

In our calculations of the spectrum of umbral oscillations, to
derive the solution describing a slow magnetoacoustic wave,
we numerically integrated the fourth-order equation for the hor-
izontal component of the velocity (B.1) from z = −10z2 to z = 0
rather than the system (1) and (2) (see Appendix B). The cal-
culations were carried out for the same model parameters as in
the study of Zhukov (2002), with the exception that here we
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Fig. 1. The real parts of the frequencies of the π-mode umbral oscilla-
tions.
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Fig. 2. The imaginary parts of the frequencies of the π-mode umbral
oscillations.

assumed H0 = 4000 G. Figures 1 and 2 present the results of
the calculations. According to the classification introduced by
Bogdan & Cally (1997), these are π-modes. Figure 2 indicates
the presence of several undamped trapped π-modes, for which
Im(ω) = 0. Within the frequency interval (3 ÷ 8) mHz, no σ-
modes was found.

Figures 3 and 4 present (in arbitrary units) the eigenfunc-
tion for π6-mode, in the calculation of which the amplitude of
the solution (9) was assumed to be equal to unity. Since abso-
lute values for both the real and imaginary parts of vz are very
large in the transition zone and lower corona, the region z < 0
is shown separately in Fig. 3b, in order to display the variation
of vz in lower umbral layers. Figure 4 presents the variation of
both real and imaginary parts of vx as a function of height in
the umbra; they clearly display the presence of a slow magne-
toacoustic wave (s-wave) in deep umbral layers. In the lower
corona vx tends to zero.

5. The transmission of a slow magnetoacoustic
wave through the atmosphere of the sunspot
umbra

It follows from the asymptotics (7)−(9) that in deep layers of
the umbra (in the area lower than z = za) only slow magne-
toacoustic waves can propagate. Therefore, the analysis of um-
bral oscillations may be restricted to the case of a slow mag-
netoacoustic wave propagating through the atmosphere of the
sunspot umbra.
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Fig. 3. Real (solid curve) and imaginary (dotted curve) parts of vz for
π6-mode (k = 0, 8 Mm−1, H0 = 4000 G).
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Fig. 4. Real (solid curve) and imaginary (dotted curve) parts of vx for
π6-mode (k = 0, 8 Mm−1, H0 = 4000 G).

Let us assume that a fast magnetoacoustic (in fact, acous-
tic) wave is specified, propagating upward at a sufficiently large
depth z = zi, where fast and slow waves do not interact (in our
notation, below the z = zm layer). Further, taking into account
the boundary conditions in the corona (for z → ∞), it is possi-
ble to determine the reflection coefficient for the acoustic wave
and amplitude of the slow magnetoacoustic wave propagating
downwards. This would be warranted if the downward acous-
tic wave did not undergo reflection in lower layers of the um-
bra. However, the Eq. (6), which describes the propagation of
acoustic waves in deep umbral layers, and which is well studied
in the theory of p-mode solar oscillations, indicates that due to
the increase of the sound speed with the depth, the downward
acoustic wave is totally reflected at some depth and for this rea-
son, the solution of Eq. (6) has the form (9) in sufficiently deep
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Fig. 5. The transmission coefficient of a slow magnetoacoustic wave.
The arrows indicate the real parts of π-mode frequencies (k =
0, 8 Mm−1, H0 = 4000 G).

layers. This means that the amplitudes of acoustic waves prop-
agating downward and upward should be related at the level
z = zi by a certain relation. In this case, however, to satisfy the
boundary conditions in the corona (for z → ∞), it has to be
assumed that at the level z = zi, in addition to the slow mag-
netoacoustic wave propagating downwards, there also exists a
slow wave propagating upwards. In this case the only possible
and correct problem is that of the propagation of a slow mag-
netoacoustic wave through the atmosphere of the umbra; this is
the problem considered in this Section.

If we assume that there is no slow magnetoacoustic wave
propagating upwards, then the boundary conditions in the
corona can be satisfied only at complex frequencies, i.e. in this
case we are led to the eigenvalue problem.

Thus, as it was noted above, two approaches can be used to
clarify the nature of the sunspot umbral oscillations: to calcu-
late either the eigenvalue spectrum of the oscillations, or the
coefficient of transmission of a slow magnetoacoustic wave
through the atmosphere of the sunspot umbra. In both cases,
the asymptote of the solutions for the system (1) and (2) in
deep layers of the umbra should be known.

Some peculiarities of the propagation of a slow magne-
toacoustic wave through the atmosphere of the sunspot umbra
were considered in the studies of Zhukov (1985) and Zhukov &
Efremov (1988). However, in these studies the approximation
of an incompressible medium was used, which is not suitable
for high-frequency oscillations. Here, we calculated the trans-
mission coefficient for a slow magnetoacoustic wave without
the simplifying assumptions used in the study of Zhukov &
Efremov (1988).

It is shown in Appendix B that in order to find a solution
describing the propagation of a slow magnetoacoustic wave,
Eq. (B.1) should be integrated with the initial conditions (7).

Figure 5 presents the transmission coefficient of a slow
magnetoacoustic wave calculated for the atmosphere of the
sunspot umbra described in Appendix A, with the same model
parameters as in the study of Zhukov (2002). It follows that the
maximum values of the transmission coefficient coincide with
the frequencies of π-modes of the umbral oscillations, i.e. both
the transmission and eigenfrequency method yield the same
results.

Table 1. Observed and calculated frequencies of umbral ocillations
(in mHz).

Observations µ = 0.829 µ = 1.5

4.0 3.78 3.49
4.8 4.83 5.01
5.2 5.20 5.35

5.6, 5.7 5.86 5.90
6.2 6.41 6.35
6.7 6.91 6.78

6. Discussion

In the previous sections, we calculated the spectrum of um-
bral oscillations using both the method of transmission of a
slow magnetoacoustic wave through the atmosphere of the um-
bra, and the derivation of the eigenvalues. It appeared that both
methods yielded the same results. Thus we have settled the ar-
gument about the preferable way to analyze umbral oscillations
and confirmed the concept that 5-min and 3-min umbral os-
cillations are essentially the same set of p-like mode sunspot
oscillations (Bogdan 2000).

Here, we used the model of the umbra, in which for the
lower layer it was assumed z2 = 250 km and µ = 0.829.
Although we have used a rather simple model of the sunspot
umbra, the calculated frequencies of umbral oscillations are
consistent with the observations of Banerjee et al. (2002), pre-
sented in Table 1.

The first column of Table 1 presents the frequencies of the
oscillations obtained in the study of Banerjee et al. (2002),
the second column – the real parts of calculated frequencies
π-modes for k = 0.8 Mm−1 and µ = 0.829, the third – the
real parts of the frequencies also calculated for k = 0.8 Mm−1,
however, for µ = 1.5. Note that in the studies of Brynilndsen
et al. (2002, 2004) only one peak was found in the power
spectrum close to 6.0 mHz, while in the study Nindos et al.
(2002) two prominent peaks were found at 4.49−5.47 mHz and
6.25−6.45 mHz (see also Rendtel et al. 2003).

Figure 3a indicates that the vz component of the eigenfunc-
tion for the π6-mode increases with height in the upper layers of
the atmosphere of a spot, reaches its maximum in the transition
layer and starts to decrease in the lower corona (vz components
of the other eigenmodes vary with height in the atmosphere of
an umbra in a similar way), which qualitatively corresponds
to observations made by Brynildsen et al. (2002) and O’Shea
et al. (2002).

Until recently, in a theoretical analysis of umbral oscilla-
tions it was not considered possible to take properly into ac-
count the divergence of magnetic field lines of a spot with
height, lateral boundary conditions, non-linear effects, etc.
Therefore, it was not possible to expect sufficiently accurate
results, such as, for example, those obtained in the theory of
p-modes of the solar oscillations. However, the latest studies
of Rosenthal et al. (2002) and Bogdan et al. (2003) provide
hope that these difficulties will be overcome in the near future.
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Appendix A: Model of the sunspot umbra

Here, as well as in Zhukov (2002), we have studied the follow-
ing two-layer model of the sunspot umbra:

Layer 1 (Chromosphere-corona, z > 0)

c2
1(z) = c2

01

(
1 + δ

[
tanh

(
α

(
z
z1
− β

))
− tanh (−αβ)

])
,

ρ1(z) = ρ1(0)
c2

01

c2
1(z)



(
ξ

ξ0

)− 1
a2


ξ2 − a2

ξ20 − a2



a2 + 1
2a2



−gγz1

αc2∞
,

where

ξ = exp

(
α

(
z
z1
− β

))
, ξ0 = exp (−αβ),

a2 =
δ − 1 + δ tanh (−αβ)
δ + 1 − δ tanh (−αβ)

and

c2
∞ = c2

01
[
1 + δ (1 − tanh (−αβ))] .

Layer 2 (convective zone, z < 0)

c2
2(z) = c2

02

(
1 − z

z2

)
,

ρ2(z) = ρ2(0)

(
1 − z

z2

)µ
, µ =

gγz2

c2
02

− 1.

Appendix B: The fourth-order equation
for the horizontal component of velocity

In order to determine the spectrum of the eigenoscillations of
the sunspot umbra one should, in particular, integrate the sys-
tem (1) and (2), starting from some depth at which the ex-
pressions (7) and (8) may be used as the initial conditions.
Figure B.1 presents the results of the numerical integration for
the system (1) and (2) from z = −30z2 to z = 0 with the initial
conditions (7) and (8). The calculations were carried out for a
slow magnetoacoustic wave with the parameters ω = 0.03 s−1,
k = 0.9 Mm−1. For lower layers of the sunspot umbra, we used
the same parameters as in the study of Zhukov (2002), with
the exception that here the magnetic field in the umbra was as-
sumed to be 4000 G.

It is apparent that the numerical solution of the system (1)
and (2) does not coincide with the asymptotic solution even in
deep layers of the sunspot umbra. This means that when the
system (1) and (2) is integrated, the initial conditions specified
at these depths cannot be restricted by the leading terms of the
asymptotes (7) and (8). On the other hand, if the integration is
started from substantially greater depths, the solution becomes
numerically unstable.
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Fig. B.1. The solution for a slow magnetoacoustic wave obtained by
the integration of the system (1) and (2) with the initial data (7) and (8)
specified for z = −30 z2 (solid curve). The dotted curve represents the
asymptotic solution (see Eq. (7)).

It may be shown, however, that the system of Eqs. (1)
and (2) may be reduced to a single fourth-order differential
equation for the horizontal component of the velocity vx:

d4vx

dz4
− A3

d3vx

dz3
+ A2

d2vx

dz2
− A1

dvx
dz
+ A0vx = 0, (B.1)

where

A3 =
s
c2
− 2

v2A

dv2A
dz
+

1
f

d f
dz
+
g

c2
,

A2 =

(
1
f

d f
dz
+
g

c2

) 
s

c2
− 1

v2A

dv2A
dz



− 1

v2A

d
dz


v2As

c2
− dv2A

dz

 +
f

c2
+
ω2

v2A
− k2,

A1 = 2k2 1

v2A

dv2A
dz
+

(
s

c2
+

1
f

d f
dz
+
g

c2

) 
ω2

v2A
− k2

 ,

A0 =
f

c2

ω2 − (c2 + v2A)k2

v2A

− 1

v2A

d
dz

k2 dv2A
dz
+

s
c2

(
ω2 − v2Ak2

)

+

(
1
f

d f
dz
+
g

c2

) k2 1

v2A

dv2A
dz
+

s
c2

ω2 − v2Ak2

v2A



here

s =
dc2

dz
+ g(γ − 1), f = ω2 − g

c2
s.

Figure B.2 presents the results of the numerical integration of
the Eq. (B.1) with the initial conditions (7), with the same
parameters as those used in the integration of the system (1)
and (2). We can see from Fig. B.2 that the numerical solution
obtained by the integration of the Eq. (B.1) differs substantially
from that described by the asymptotic formula (7) only within
a sufficiently thin layer in the vicinity of the minimum temper-
ature. In this sense, a sunspot is a shallow formation.
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Fig. B.2. The solution for a slow magnetoacoustic wave obtained by
integration of the Eq. (B.1) with the initial data (7) specified for
z = −30 z2 (solid curve). The dotted curve represents the asymptotic
solution (see Eq. (7)).
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Fig. B.3. The solution for a slow magnetoacoustic wave obtained by
the integration of the system (1) and (2) with the initial data specified
for z = −29.9 z2 and derived from the integration of the Eq. (B.1)
(solid curve). The dotted curve represents the asymptotic solution (see
Eq. (7)).

Figure B.3 presents the results of the integration of the sys-
tem (1) and (2) with the initial data obtained by the integra-
tion of the Eq. (B.1) from z = −30 z2 to z = −29.9 z2. It fol-
lows that if the integration of the system (1) and (2) is started
from moderate depths, then we cannot restrict the initial data
only by the primary terms of the asymptotics (7) and (8) (see
Fig. B.1). Moreover, the comparison between Figs. B.2 and B.3
indicates that when the same code is used for the numerical in-
tegrating, better results are obtained from the integration of the
fourth-order equation, rather than the system of two coupled
equations.
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Z̆ugz̆da, Y. D., Locāns, V., & Staude, J. 1987, Astron. Nachr., 308, 257


