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Abstract. A sample of spectroscopic binaries and a sample of single planetary systems, both having main-sequence solar-type
primary components, are selected in order to compare their eccentricities. The positions of the objects in the (P.(1 − e2)3/2, e)
plane is used to determine parts in the period–eccentricity diagram that are not affected by tidal circularization. The original
eccentricities of binaries and planets are derived and compared. They seem to be weakly or not at all correlated with period in
both samples, but two major differences are found:
(1) The tidal circularization of planetary orbits is almost complete for periods shorter than 5 days, but it is not visible when
P.(1− e2)3/2 is longer than this limit. This suggests that the circularization occurs rapidly after the end of the migration process
and is probably simultaneous with the end of the formation of the planet. By contrast, we confirm that the circularization of the
binary orbits is a process still progressing a long time after the formation of the systems.
(2) Beyond the circularization limit, the eccentricities of the orbits of the planets are significantly smaller than those of binary
orbits, and this discrepancy cannot be due to a selection effect. Moreover, the eccentricities of binaries with small mass ratios
are quite similar to those of all binaries with q < 0.8. This suggests that the low eccentricities of exoplanet orbits are not a
consequence of low-mass secondaries in a universal process.
These remarks are in favor of the idea that binaries and exoplanets are two different classes of object from the point of view of
their formation.
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stars: planetary systems: formation

1. Introduction

It is well known that the orbits of the exoplanets with periods
larger than 5 or 6 days have eccentricities significantly larger
than those of the giant planets of the solar system. Several
mechanisms were proposed to explain this feature, but, up
to now, none is fully convincing. It was proposed that ec-
centric orbits could be a consequence of the dynamic evolu-
tion of systems initially involving several planets (Rasio &
Ford 1996; Lin & Ida 1997; Ford et al. 2001; Papaloizou &
Terquem 2001; Rice et al. 2003), but these models fail to
produce the frequency of giant planets with semi-major axes
smaller than about 1 AU. The giant planets close to their har-
boring stars are often assumed to be produced by migration
within a disk (Ward 1997; Masset & Papaloizou 2003, and ref-
erences therein), but this process hardly produces eccentric or-
bits (Papaloizou et al. 2001; Thommes & Lissauer 2003), al-
though Goldreich & Sari (2003) and Woolfson (2003) leave
some room for hope. Therefore, it is tempting to consider that
the exoplanets are generated by the same process as binary stars

(Stepinski & Black 2000). This implies that giant exoplanets
were not formed by gas accretion onto a heavy rocky core,
as usually assumed, but by an alternative process. They could
come from disk instabilities (Mayer et al. 2002; Boss 2002,
2003), but inward migration in a disk is then invoked again to
explain the short-period orbits; alternatively, planets could be
generated by fragmentation of a collapsing protostellar cloud,
via filament condensation and capture (Oxley & Woolfson
2004), or even exactly as stellar components in binary sys-
tems (see discussion in Bodenheimer et al. 2000, and refer-
ences therein). However, these models may be efficient in form-
ing massive planets or brown dwarfs, but not planets around 1
Jupiter mass or less.

Note that the binary formation models are not very
satisfactory either (see the review by Tohline 2002). The large
eccentricities of binaries are explained by fragmentation of col-
lapsing cores and subsequent interactions between the forming
stars (Bate et al. 2002; Goodwin et al. 2004), but, as for ex-
oplanets, the simulations do not provide the high frequency
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of close systems. Moreover, statistical investigations on main
sequence binaries (Halbwachs et al. 2003, Paper I hereafter)
have shown that the close binaries (i.e. with semi-major axes
less than a few AU) consist in two populations: one with large
eccentricities and mass ratios less than 0.8 (“non-twins” here-
after), and one with moderate eccentricities and nearly iden-
tical components (“twins”). Additionally, the twins are more
frequent among short-period binaries than among the others.
At first, these properties were derived from binaries with F7–K
primary components, but they are also valid for M-type dwarfs
(Marchal et al. 2003).

In the present paper, the period–eccentricity diagram is
used to compare the exoplanets with the binary stars: our main
purpose is to investigate if the properties of exoplanets may be
considered as an extrapolation of the properties of binaries in
the range of very low mass ratios. This would indicate whether
the formation processes of these objects are similar. In the
course of the paper, a few other points are also treated: (1) the
correlation between the eccentricity and the period or the an-
gular momentum; (2) the relation between the eccentricity and
the metallicity of planets; (3) the original distributions of ec-
centricities for planets and for binaries, considering the twins
separately. Comparisons between planets and binaries in the
period–eccentricity diagram were already presented by Mayor
et al. (2001), Mazeh & Zucker (2001), and Udry (2001), who
concluded that planets and binaries are very similar when peri-
ods longer than 50 days are considered. However, their samples
contained around 30 or 40 planets, and a many others have been
discovered since. The question needs to be re-considered.

The interpretation of the period–eccentricity diagram is
rather complex, and our investigations are based on the method
presented in Sect. 2. Section 3 is dedicated to the binaries; we
investigate if, additionally to the twins, other classes of mass ra-
tio have specific distributions of eccentricities. A similar treat-
ment is applied to exoplanets in Sect. 4. Binaries and exoplan-
ets are compared in Sect. 5, in which we pay attention to the
difference in the selection effects of both samples. The conse-
quences of our results are discussed in Sect. 6.

2. Method

2.1. Tidal effects

We must pay attention to the fact that the periods (P) and
the eccentricities (e) of the objects are modified by tidal in-
teractions, especially when P is short. As a consequence, the
(P – e) diagram may schematically be divided into two parts:
the short periods, where the orbits are circular or have low
eccentricities, and the periods longer than the circulariza-
tion limit, hereafter called Pcutoff (Mayor & Mermilliod 1984;
Duquennoy & Mayor 1991). Several theoretical models were
proposed to derived Pcutoff , and the treatment is not the same for
binaries (Zahn 1992; Hut 1981, 1982; Keppens 1997, and refer-
ences therein) and for planets (Goldreich & Soter 1966; Trilling
2000). Moreover, several physical processes are invoked, each
of them depending differently on the mass ratios of the systems.

Despite the complexity of the process, a few simple guide-
lines may be drawn. First of all, the efficiency of tides in mod-
ifying the orbits is very sensitive to the distance between the

components. For a given system, the tidal torque depends on
the orientation of the tidal bulge and on the separation be-
tween the components, r. It varies as 1/r6 (Lecar et al. 1976).
Therefore, for systems differing only by period, the transition
from circularized orbits to orbits practically unaffected by tides
is a narrow strip in the (P – e) diagram (see the simulations
by Witte & Savonije 2002). However, this does not mean that
the systems with P > Pcutoff may have any eccentricity. For
a given period the systems with eccentric orbits have compo-
nents much closer than the semi-major axis during a part of
the period, and below a certain limit the orbit rapidly becomes
circular. As a consequence, the upper part of the (P – e) dia-
gram is cleared even for P > Pcutoff . Note that the orbits that
were originally eccentric do not keep the same period when
they are evolving towards e = 0: when the primary star is a
slow rotator, the orbit is circularized keeping the orbital an-
gular momentum unchanged (Witte & Savonije 2002; Hurley
et al. 2002). Therefore, the semilatus rectum, rsr = a(1− e2), is
conserved and it becomes the radius of the final circular orbit.
As a consequence, the final period is:

Psr = P.(1 − e2)3/2 (1)

where P and e refer to the original state of the system. This
gives us a simple but efficient way to explore the transition from
circularized orbits to orbits unaffected by tidal effects. In place
of a (P – e) diagram, the objects are plotted in the (Psr – e)
plane. Therefore, the evolution path toward a circular orbit is
a vertical line in the diagram. Moreover, note that, for a wide
range of eccentricities, the mean value of 1/r6 for a complete
orbit is approximately 1/rsr

6 (Fig. 1). As a consequence, we
expect that, when rsr is small enough to permit efficient tidal
effects for a given eccentricity, these effects will remain im-
portant during the evolution of the orbit, until they eventually
lead to circularization. Therefore, the border between the cir-
cularized systems and the area nearly unaffected by tides in the
(Psr – e) diagram should appear very clearly. If the circular-
ization were not at all related to the ages of the systems, the
diagram should show a strong contrast, with the circular orbits
on the left–hand side, and the orbits with any eccentricities,
including the largest ones, immediately beyond the circulariza-
tion limit. This is almost what is observed in reality, especially
for the exoplanets (see Figs. 2 and 4 below).

In practice, however, a real sample is selected up to a maxi-
mum period PMax, and not all the eccentricities are permitted in
the (Psr – e) diagram. For a given Psr, the eccentricities range
from 0 to the limit:

eSup =
√

1 − (Psr/PMax)2/3. (2)

With Pcutoff so determined, we derive from Eq. (1) the max-
imum eccentricity that the systems unaffected by tides in the
(P – e) diagram may have:

eMax =
√

1 − (Pcutoff/P)2/3. (3)

For comparing two samples which were have been differently
affected by tidal circularization, it is necessary to restrict the
comparison to the smallest of the two limits in eMax in order to
find discrepancies coming only from the original distributions
of e.
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Fig. 1. The mean value of the 1/r6 term of the tidal torque, compared
to 1/r6

sr , where rsr is the semilatus rectum. Except for very large ec-
centricities, 1/r6

sr is an acceptable approximation of 〈1/r6〉.

2.2. Comparison of two samples

The comparison between different samples of orbiting systems
is based on the median eccentricities. Two approaches are used:
the first is a visual examination, and the second is a statistical
test. In the first approach, the median eccentricity of each sam-
ple is derived as a function of the period. In practice, for any pe-
riod Pi > Pcutoff , the median eccentricity is derived from 6 sys-
tems taken among the periods closest to Pi. Except near the
limit of the period range, 3 of these 6 systems have P < Pi and
the 3 others have P > Pi. The second approach is the statistical
test used in Paper I: the two samples are merged, and the range
of periods longer than Pcutoff is divided into bins, each contain-
ing 12 systems, except for the last one which may contain up
to 23 systems. The common median eccentricity is derived in
each bin, and the systems below the median are counted for one
of the two samples. If this sample actually belongs to the same
statistical population as the other, the probability of getting any
count, P(k), obeys the hypergeometric distribution. The rejec-
tion threshold of the null hypothesis, H0: “all the systems are
equivalent from the point of view of the eccentricities” is then
derived. When the count k is less than half the population of the
considered sample, the rejection threshold of H0 in a two-sided
test is 2 × P(i ≤ k); on the contrary, it is 2 × P(i ≥ k) when k is
larger than the expected number.

Note that setting the content of the bins to 12 systems is a
bit arbitrary. This number is neither too small to derive a re-
liable median nor too large to have a nearly constant period
distribution within each bin. Using other numbers close to 12
would give other results, but it was verified that the differences
are not important.

3. The binaries

3.1. The binary sample

The so–called extended sample of F7–K dwarf binaries se-
lected in Paper I is used again. It consists of 89 spectroscopic
binaries (SB) found in the solar neighborhood or in open clus-
ters, with periods of up to 10 years. We already know that the

1 10 100 1000
Psr = Pdays (1 - e

2
)
3/2

0.0

0.2

0.4

0.6

0.8

1.0

e

KW 181
GJ 719

GJ 233

Fig. 2. Distribution of the SB in the (Psr – e) diagram, where Psr is
the period that the SB would have if their orbits became circular with
the same angular momenta. The symbols represent the systems with
different mass ratios. The code is as follows: q ≤ 0.4, circles; 0.4 <
q ≤ 0.8, squares; q ≤ 0.8 (maximum q for SB1) and minimum q ≤ 0.4,
small diamonds; q > 0.8 (twins), open triangles. The thin dotted line
is the limit eSup corresponding to a maximum period of 10 years, as
derived from Eq. (2).

twins have, on average, eccentricities smaller than the other bi-
naries. However, before comparing binaries to exoplanets, it is
worthwhile to see if the eccentricities of non-twin binaries de-
pend on the mass ratios.

The mass ratios q =M2/M1 of the SB in the sample have
been fixed for 58 binaries, thanks to the combination of the
SB orbital elements with Hipparcos astrometric observations,
or with photometric sequences in the open clusters (Paper I).
For the other 31 SB, we derive intervals containing the actual
mass ratios. The minimum limits are computed from the mass
functions; the maxima are obtained differently for the nearby
SB and for the cluster SB: the former all have q < 0.65, since
otherwise they would be double-lined SB with known q, and
the latter have limits coming from their positions in the photo-
metric sequence of the cluster.

In order to make visible a possible relation between the
mass ratios and the eccentricities, the SB are distributed in sev-
eral groups: q ≤ 0.40 (16 SB), 0.40 < q ≤ 0.80 (20 SB),
and twins (27 SB); we still add a group containing all the SB
with q ≤ 0.80 (62 SB, including the 36 already in the first two
groups).

3.2. Limit of tidal circularization

The SB are plotted in the (Psr – e) diagram (Fig. 2), to delimit
the part of the diagram affected by tidal circularization.

Several relevant features appear in Fig. 2. First of all, the
range of eccentricities jumps from 0 to almost 1 between 4
and 9 days. All SB with Psr shorter than 4 days are at present
on circular orbits, and no evidence of circularization is visi-
ble when Psr exceeds 10 days. The SB with Psr between 4 and
around 10 days have medium eccentricities, and some of them
are even circularized.
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At least one of the short period SB may have been gen-
erated with a very large eccentricity, and may be too young
for to have been circularized: KW 181 has the most eccen-
tric orbit among the periods shorter than 10 days. This system
belongs to the Praesepe cluster, and its age is therefore only
0.8 × 109 years. Its circularization will be complete within only
0.1×109 years (Duquennoy et al. 1992). The other two SB with
e > 0.1 and P > 10 days may have eccentricities due to per-
turbations by a third component (Kozai mechanism or secular
perturbations, see Mazeh & Shaham 1979): GJ 719 has a CPM
companion with a minimum separation of 280 AU (Zuckerman
et al. 1997), and GJ 233 is a visual binary with a possible period
of 200 years (Heintz 1988). When these 3 SB are discarded, we
find Pcutoff ≈ 8 or 10 days, as in Duquennoy & Mayor (1991).

Nevertheless, it is striking that all the SB with eccentric
orbits and P < 10 days have large mass ratios. In order to see
if this feature is significant we look at the period–eccentricity
diagram of the 205 SB found by Latham et al. (2002) among
stars with large proper motions. They also found a range of
period where circular orbits and eccentric orbits both exist, but
between around 10 and 20 days (see their Fig. 9). It is visible
in their plot that the double-lined SB (SB2), which have the
largest q, are not abnormally frequent among the systems with
eccentric orbits and short periods. Therefore, we admit that the
frequency of twins with large eccentricity and P < 10 days is
just due to chance.

The sample of Latham et al. contains a few SB with circular
orbits and periods between 10 and 20 days. However, they are
stars with large proper motions, and they generally belong to
the old galactic disk or even to the halo. Therefore, the long
periods of some circularized orbits may be an effect of the ages
of the systems, in agreement with theoretical predictions (see
e.g. Duquennoy et al. 1992). Moreover, these old stars are not
representative of the stars observed for planet detection. For
the parent population of stars harboring planets, the limit of the
area affected by tidal effects in the (Psr – e) diagram is Pcutoff =

10 days.

3.3. The binaries in the (P – e) diagram

The (P – e) diagram of the SB is plotted in Fig. 3. The values
of the median of the four classes of q are drawn in this figure
for visual comparison.

As shown in Paper I, the twins often have below-average
eccentricities when periods longer than 5 days are considered;
the probability to get so large a discrepancy by chance, as de-
rived by the two-sided test, is only 2.7%. By contrast, the two
groups with q ≤ 0.80 have nearly the same distribution of ec-
centricities : the significance of the two-sided test is 100%. In
order to check that even the SB with the smallest mass ratios
have the same eccentricity distribution as the others, the test is
done again by comparing the SB with q ≤ 0.25 (10 SB with
P > 10 days) to those with 0.25 < q ≤ 0.80 (32 SB with
P > 10 days). Again, exactly half of the low-mass ratio SB are
below the median, providing a 100% significance. Therefore,
all the non-twin SB may be considered together in the compar-
ison to the exoplanets.
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Fig. 3. Distribution of the SB in the period–eccentricity diagram. The
symbols are the same as in Fig. 2. The lines refer to the median eccen-
tricities of the different classes of mass ratios : q ≤ 0.4, thick full line;
0.4 < q ≤ 0.8, thick dashes; all q ≤ 0.8, thick dot–dashed line; q > 0.8
(twins), thin line. The 2 thin dotted lines are the limits of the location
of SB with Psr between 5 and 10 days, as derived from Eq. (3).

We now come back to the distribution of e of all SB. It
is clearly visible in Fig. 3 that the median eccentricity in-
creases with the period. However, we suspect that this may
be entirely explained by tidal circularization, because the or-
bits having initially P > Pcutoff and e > eMax are now circu-
lar with P = Psr < Pcutoff . In other words, we want to see if
the distribution of eccentricities depends on the periods, apart
from the cut–off at e = eMax. A Spearman test is performed to
check this hypothesis. In order to discard the area affected by
tidal circularization, the test is restricted to the rectangular box
(P > 20 d, e < 0.61). The non-twins and the twins are consid-
ered separately. The Spearman correlation coefficient is 0.26
for the former, and 0.29 for the latter; taking into account the
numbers of objects, the probabilities to get by chance values so
far from zero are 10% and 20% respectively. Although these
levels of significance are a bit low, they are still too large to
reject the hypothesis that the eccentricities are not correlated
with the periods as soon as the semilatus rectum of the orbit is
larger than the radius of a circular orbit with period Pcutoff .

3.4. Correlation eccentricity versus angular
momentum

Since Psr is related to the angular momentum of the orbit, it
seems relevant to see if the eccentricities are correlated with
this parameter. This question looks similar to the (P – e) cor-
relation investigated just above, but it is different in reality,
since changing the (P – e) plane into the (Psr – e) plane modi-
fies the density in relation with the distribution of the periods.
Therefore, the absence of correlation between P and e does not
necessarily imply an absence of correlation between Psr and e,
and vice versa.

A Spearman test is used again, but in a box in the (Psr –
e) diagram. Since the selection of the sample was limited by
the condition P < 10 years, we must take into account the
limit eSup derived from Eq. (2) (the thin dotted line in Fig. 2).
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Therefore, the limits of the box considered in the Spearman test
are Psr ∈ [10 d, 789 d] and e < 0.8, in order to avoid the area
with e > eSup. Again, the rejection threshold of the hypothe-
sis that e and Psr are correlated is between 10 and 20%, and
the eccentricities may not depend on the angular momenta of
the SB.

4. The exoplanets

4.1. The planet sample

We start from the up-to-date list of exoplanets that is provided
on the Geneva web site1. However, several planets cannot be
used in a comparison to the SB, for several reasons:

– Since the binaries all have main-sequence primary compo-
nents, the planets orbiting subgiant or giant stars are dis-
carded. The specific problem of tidal circularization in a
system containing an evolved star is thus avoided, as well
as the uncertainty coming from the evaluation of the mass
of an evolved primary component.

– The eccentricities must be reliable, and therefore derived
from an orbit with good quality. For that purpose, the resid-
uals of the radial velocity (RV) measurements, rms, are
compared to the semi-amplitudes of the spectroscopic or-
bit, K. Five planets having rms larger than K/3 are dis-
carded. This criterion looks a bit rough, since several other
factors could also be taken into account, such as the number
of measurements, the phase distribution, and the fact that
some orbits refer to a second companion. Nevertheless, it
has the advantage of being simple, and it is worth noticing
that all the SB in our sample satisfy this condition.
Moreover, the planets that were not followed by RV obser-
vations during a complete period are also discarded. Since
this last condition results in removing the majority of the
planets with periods longer than 2200 days, this value is
adopted as a selection limit of the sample.

– It seems that the planets found in binary or multiple stellar
systems have eccentricities smaller than the others when
their periods are less than 30 days (Eggenberger et al.
2004). Three more planets are removed from the sample
for this reason.

– Multiple planetary systems are supposed to be different
from those with single planets, since the eccentricities may
be affected by resonant perturbations. It is worth noticing
that the distribution of these systems around the median ec-
centricity is not significantly different from that of the sin-
gle planets: we find an excess of only one planet with a low
eccentricity (when an excess of large e is expected), and the
probability to get this excess or a larger one just by chance
is as large as 38%. Nevertheless, for security, we still dis-
card 14 planets belonging to multiple planetary systems.

A sample of 72 exoplanets orbiting main-sequence stars with
periods shorter than 2200 days and with reliable orbits is thus
finally obtained.

1 http://obswww.unige.ch/Exoplanets
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Fig. 4. Same as Fig. 2 for the planets. The circles are the planets with
minimum mass <2 Jupiter, and the open squares refer to the others.
The thin dotted line is the limit eSup corresponding to a maximum
period of 2200 days.

4.2. The exoplanets in the (Psr – e) diagram

As for the SB, the planets are plotted on the (Psr – e) diagram
(Fig. 4), in order to investigate the effects of tidal circulariza-
tion. The sample is split into two nearly equal groups, one con-
taining the planets with minimum mass less than 2 Jupiter,
and one with the planets heavier than this limit. In contrast
to the SB, for which circular orbits and moderate eccentrici-
ties are mixed in a small range of Psr, the separation between
the circularized orbits and the others is remarkably well deter-
mined, at Pcutoff = 5 days. The most eccentric planetary orbit,
HD 80606b (Naef et al. 2001), is actually found for this period,
but Wu & Murray (2003) demonstrated that it may be excited
by a distant companion through the Kozai mechanism.

It appears in Fig. 4 that the clustering of planets with
P < 10 days (Udry et al. 2003) is even more marked when
Psr is used in place of P: the planets are concentrated in orbits
with the semilatus recta corresponding to Psr between 2.5 and
10 days, since we count 18 planets in this range, but only 1
between 10 and 20 days.

It would be relevant to check if the eccentricities are corre-
lated with Psr, but our sample does not permit this: the detec-
tion of the planets is far from complete, and the incompleteness
increases with the period. Therefore, since the eccentric orbits
correspond to a longer period for a fixed Psr, the (Psr – e) di-
agram of the planets is biased against large eccentricities. For
that reason, the (Psr – e) diagram of the planets can be used only
for investigating the circularization limit. As a consequence, it
cannot be used to compare the SB to the exoplanets in Sect. 5.

4.3. The exoplanets in the (P – e) diagram

The (P – e) diagram of the exoplanets is given in Fig. 5. Only 1
planet above 2 Jupiter masses has P between 5 and 70 days.
This paucity of heavy-mass planets with short periods has al-
ready been pointed out (Zucker & Mazeh 2002; Udry et al.
2003), and it makes the median eccentricity of these planets
unreliable in this range of period. A two-sided test based on
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Fig. 5. Same as Fig. 3 for the exoplanets. The symbols are the same
as in Fig. 4. The full line is the median eccentricity of the planets
with minimum mass <2 Jupiter, and the dashes refer to the masses
heavier than 2 Jupiter. The thin dotted line is the eccentricity eMax

corresponding to a circularized period of 5 days.

the common median for P in the range 5 to 2200 days shows
that the probability to get differences at least as large as that
obtained is 60%. It is then quite possible that the eccentricities
of planetary orbits are not related to the masses of the planets.
This question is considered again in Sect. 5.2.

The median eccentricities of the exoplanets in Fig. 5 seem
approximately constant. A test confirms this impression: the
Spearman coefficient of the 52 planets with P > 20 days and
e < 0.78 is 0.21, providing a threshold between 10 and 20%. It
is thus not possible to rule out the hypothesis that, apart from
circularization due to tidal effects, the distribution of the ec-
centricities of the planets is the same for any period between
20 and 2200 days. Therefore, if the eccentricities are modi-
fied by migration, they are changed almost independently of
the periods. However, this applies essentially to periods longer
than 200 days, since we have very few planets between 20 and
200 days.

4.4. (P – e) diagram and metallicities

Santos et al. (2004) have shown that the percentage of stars har-
boring planets jumps from less than 5% to more than 20% when
stars with [Fe/H] larger than 0.2 are considered. In order to see
if this limit of 0.2 dex also corresponds to other orbital proper-
ties, we use the [Fe/H] of Santos et al. to distinguish the planets
orbiting “metallic” stars and the others. In the (P – e) diagram,
we count 27 “metallic” planets, of which 14 have eccentrici-
ties smaller than the median. We conclude with a significance
of 79% that metallicity is not related to the eccentricity, con-
firming the result obtained by Santos et al. (2003) with another
test.

5. The planets compared to the binaries

5.1. The period–eccentricity diagram

Non-twin binaries and planets are plotted in the (P – e) dia-
gram in Fig. 6. The median eccentricities are derived from the
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Fig. 6. The exoplanets compared to the non-twin binaries in the
(P – e) diagram. The circles refer to the planets, and the open squares
to the SB with q ≤ 0.8. The thin dotted line is eMax, the maximum
eccentricity when the circularization limit is Pcutoff = 10 days. The
median eccentricities are derived after discarding the systems above
this limit, in order to have the same selection effects for both samples.
The median eccentricity of the planets is given by a full line, and that
of the SB by a a dashed line.

systems with e < eMax. In order to make the comparison free
of differences in the tidal circularization, eMax is derived from
Eq. (3) assuming Pcutoff = 10 days for both samples. It ap-
pears clearly that, although all objects are distributed in the
same area of the (P – e) diagram, the planets have eccentricities
that are on average smaller than those of the SB. The test of the
distribution around the common median confirms this discrep-
ancy: Among 53 planets included in a sample of 102 objects,
we count 33 planets below the median eccentricity. The null
hypothesis is rejected at the 1.7% level of significance.

It appears from Fig. 5 that several planets with long periods
and minimum masses below 2 Jupiter have very small eccen-
tricities. Therefore, although we have seen that the (P – e) re-
lation may be the same for all planets, it is relevant to compare
the SB only to the planets with masses larger than 2 Jupiter.
When the planets above 2 Jupiter masses are compared with
all the non-twin SB, the null hypothesis is rejected again at
the 4.8% level of significance, confirming that the heavy–mass
planets have less eccentric orbits than the binaries.

5.2. The intrinsic distribution of eccentricities

A direct comparison of the distributions of the eccentricities of
planets and of SB is not feasible, since the possible range of
eccentricities varies with the period, and the distribution of P
is not the same for planets as for SB. Fortunately, another ap-
proach may be used to visually compare these objects, which
is to derive the original distributions of eccentricities corrected
for the bias coming from tidal circularization. The low signifi-
cance values of the Spearman correlation tests performed above
allows us to assume that, apart from the area affected by circu-
larization, the eccentricity distribution does not vary with the
period. Therefore, it is possible to derive the intrinsic distri-
bution of the eccentricities for planets and for SB, using the
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Fig. 7. Distribution of the eccentricities of SB and planets corrected
for tidal circularization.

method of the “nested boxes”. For that purpose, we use Eq. (3)
to compute, for each system, the maximum eccentricity unaf-
fected by tides, eMax. We then apply the method given in the
Appendix. The results are shown in Fig. 7.

The frequency of planets with low eccentricities is mainly
due to the planets with masses below 2 Jupiter. The largest
difference between the two groups of planets is obtained for
e = 0.20 exactly: 40% of the planets below 2 Jupiter masses
have orbits with e ≤ 0.20, instead of 18% for the others.
However, a Smirnov test indicates that this discrepancy is far
from sufficient to reject the hypothesis that all planets obey
the same distribution, since the rejection threshold is as large
as 38%. An anonymous referee wondered whether this test
could be affected by a bias related to the radial velocity semi-
amplitude. However, this bias is unfavorable to the planets with
the lowest masses, since they are the most difficult to detect,
and its efficiency is maximum when they have eccentric orbits
(see Sect. 5.3 hereafter). As a consequence, correcting this bias
would slightly decrease the proportion of e ≤ 0.2 among the
planets below 2 Jupiter, and then still increase the threshold of
the test. We conclude again that we can assume that the eccen-
tricity distribution of the planets does not depend on mass.

The differences pointed out by the tests and by the com-
parison of the medians are clearly visible in this figure. The
maximum of the distribution is around 0.4 or 0.5 for the non-
twin SB, and between 0.3 and 0.4 for the planets. Moreover,
the distribution of e decreases rapidly after the maximum for
the planets, but it is rather flat until 0.8 for the non-twins SB. A
comparison between the median e of the exoplanets and of the
twins could suggest that these two kinds of objects have simi-
lar distributions of eccentricities. However, differences appear
in Fig. 7: instead of exhibiting a maximum like the exoplanets,
the distribution of eccentricities of twins is nearly flat over a
wide range, from e = 0.1 to e = 0.7.

5.3. Is this difference real?

We now want to check that the lack of planets with large eccen-
tricities is not due to a selection effect against the detection of
these systems. In contrast to the SB, the detection of planets is

far from complete, and our sample is obviously biased in favor
of those which are easiest to detect. The most obvious bias is
against the detection of long period systems, but this does not
affect the reliability of our test based on the median e; it just de-
creases the contribution of the long-period planets. However,
another bias is directly related to the eccentricity: a large ec-
centricity increases the semi-amplitude in RV, but, at the same
time, it decreases the rms of the RV measurements. Therefore,
the detection of a system close to the limit of the instrument
is more difficult when the eccentricity is large. Another conse-
quence of this effect is a bias in the distribution of the perias-
tron longitude, ω. The orbits with ω around 0 or π are more
difficult to detect than those with ω around π/2 or 3π/2. This is
visible, although not very significant, in our sample of planets:
we count only 19 orbits with ω ∈ [−π/4,+π/4]∪ [3π/4, 5π/4]
among 43 planets with eMax > e > 0.1 (the orbits with e < 0.1
are not taken into account since ω is then not reliable).

Simulations have been performed to investigate if this bias
may explain the discrepancy between planets and SB. Each
planet receives the eccentricity of a SB, randomly taken among
the 10 SB with periods closest to that of the planet. The pe-
riastron longitude of the planet is randomly generated, and
3 radial velocity measurements are produced for 3 epochs ran-
domly chosen, adding errors drawn from the residual rms of
the true orbit; (in reality, each star observed for planet detec-
tion receives much more than 3 observations, but our aim is to
derive an upper limit to the bias). When the standard deviation
of the simulated RV is larger than the threshold corresponding
to P(χ2) = 1%, the planet is counted as detected; if not, another
eccentricity is generated, and the simulation of the detection is
performed again, until the planet satisfies the detection condi-
tion. When the complete sample has thus been detected by the
simulation, the test of the median eccentricity in the (P – e) di-
agram is performed. The simulation of the diagram is repeated
50 000 times.

It appears from this calculation that the effect of the bias
is to shift on average 0.6 more planets below the common me-
dian. Assuming that the number of planets below the median
would be 32 in the absence of bias (instead of 33, see Sect. 5.1),
the rejection threshold of H0 becomes 4.7%. This is still small
enough to maintain rejection. At the same time, we count the
planets with ω ∈ [−π/4,+π/4] ∪ [3π/4, 5π/4] which are de-
tected in the simulation. Among the planets with e > 0.1, their
proportion is 45.5%, in very nice agreement with the observed
one, which is 19/43 = 44%. We conclude then that the bias
against detection of orbits with large eccentricities cannot ex-
plain the excess of planets with e smaller than the common
median in the (P – e) diagram.

6. Discussion and conclusion

We have found some relevant features in comparing the eccen-
tricities of the SB to those of the exoplanets :

– The (Psr – e) diagram, based on Psr defined in Eq. (1), is
a powerful tool for determining the limit between the cir-
cularized orbits and the others. The contrast between the
two areas in the diagram suggests that the tidal effects are
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efficient only when the semilatus rectum of the orbit is less
than a fixed limit.

– The transition from the circularization to the part not af-
fected by tidal effects looks sharper for the exoplanets than
for the SB. For the SB, it corresponds to Psr between around
5 and 10 days, in agreement with Mathieu & Mazeh (1988),
Duquennoy et al. (1992), Mathieu et al. (1992) and Witte &
Savonije (2002), who consider that circularization is not re-
stricted to the time of binary formation, but is still progress-
ing during the whole lifetime of the main sequence com-
ponents. For the exoplanets, the fast transition observed
for planets with different ages is consistent with the idea
that the tides were efficient only during the formation of
the system. The inefficiency of tides for a formed planet is
in agreement with the circularization time derived by Zahn
(1977), which is a function of (1+ q)/q. If the planets were
brought closer to their host stars by migration, that means
that migration occurred when the formation of the planets
or of the host stars was not completed. Tidal circularization
was then dominated by the tidal bulge on the planet, which
was hotter, and therefore larger than it is today.

– Before tidal effects had modified them, the eccentricities of
planets or binaries were not strongly related to the periods,
or to the angular momenta. It is even quite possible that they
were not correlated at all with these parameters, since the
absence of correlation is not clearly rejected by statistical
tests, and also because our assumption that tides did not
affect at all the orbits with Psr > Pcutoff is possibly a bit
too simple. Since the planets in the sample are supposed to
have migrated, this suggests that migration did not alter the
eccentricities significantly; alternatively, it is possible that
the eccentricities were modified, but almost independently
of the final periods.

– The exoplanets have orbits with eccentricities significantly
smaller than those of the SB with the same period and with
mass ratios larger than 0.8 (the non-twin binaries). A sim-
ilar feature has already been pointed out for P < 50 days
(Udry 2001), but neglecting the difference between the dis-
tributions of periods of binaries and of planets. Moreover,
it is now certain that the low eccentricities of planets are
not an effect of the selection of the observed sample.
Additionally, it seems that the distributions of the eccen-
tricities are not related to the masses of the companions,
neither among the non-twin binaries, nor among the plan-
ets. Therefore, this discrepancy is probably not an effect of
the low masses of planets in a formation/evolution process
common to planets and binaries: this would imply a process
depending on the secondary mass, but only around the tran-
sition between stellar and planetary companions. In fact,
the SB most similar to the planets are the twins, perhaps
because these systems were also interacting with a disk at
the time of their formation, as Tokovinin (2000) suggested.

Our most relevant conclusion is that the eccentricities of
the exoplanet orbits are rather in favor of the hypothesis
that exoplanets and binary stars are not the products of
the same physical process. After the “brown dwarf desert”
(Halbwachs et al. 2000) separating the stellar components from

the planets in the distribution of the secondary masses, it is an-
other argument in that sense which was derived from statistical
investigations.
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Appendix A: The method of the nested boxes
applied to the distribution of eccentricities

This method was initially dedicated to the derivation of a bias-
free distribution of mass ratios of visual binaries (Halbwachs
1983; Halbwachs et al. 1997), as is explained in detail in
Halbwachs (2001). It is adapted hereafter to the derivation of
the intrinsic distribution of the eccentricities.

We consider a sample with periods P larger than Pcutoff , the
period corresponding to tidal circularization, as explained in
Sect. 2.1. For each system, P and Pcutoff are used to derive eMax,
the maximum eccentricity of the orbits unaffected by tidal ef-
fects. The systems having eccentricities e > eMax, if any, are
discarded from the sample.

The principle of method is as follows:

– We define a first “box” by setting a small minimum value of
eMax, called e1 hereafter. The eccentricities of the systems
having eMax ≥ e1 are used to derive a first estimation of
the intrinsic distribution of eccentricities, f1(e), which is
defined from e = 0 up to e = e1. Since e1 is small, this
distribution is based on a large number of systems, and it is
fairly reliable; unfortunately, it concerns only a small range
of eccentricities.

– A second box is defined, using a limit e2 > e1. The ec-
centricities of the systems with eMax ≥ e2 provide a sec-
ond estimation of the distribution, f2(e), which applies to
e ≤ e2. We have then an estimation of f (e) which is valid
between e1 and e2, but for e ≤ e1, f2(e) is less reliable
than f1(e), since it is derived from fewer systems in this
range.

– The two boxes defined above are “nested”, since the sys-
tems with e ≤ e1 belonging to the second box are all also
present in the first box. This common part is used to de-
rive f (e) by connecting f2(e > e1) to f1(e ≤ e1). Let N1

and N2 be the numbers of systems in the first box and in the
second box, respectively. If the second box contains n2(e1)
systems with e ≤ e1, the best estimation of f (e) is:

f1,2(e) = f1(e) + θ(e − e1)
N1

n2(e1)
f2(e) (A.1)

where θ is the Heaviside function; it is unnecessary to nor-
malized the distributions so early in the calculation.

– We may still add several boxes, using limits ei with increas-
ing values. If Ni−1 is the norm of the distribution derived
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from the boxes 1 to i−1, f1,i−1, and if box i contains ni(ei−1)
systems with e ≤ ei−1, Eq. (A.1) becomes :

f1,i(e) = f1,i−1(e) + θ(e − ei−1)
Ni−1

ni(ei−1)
fi(e). (A.2)

The distribution is normalized after adding the last box.

In practice, the values of the ei terms are i × 0.01 when the
eccentricities are provided with two decimals, in order to take
into account all the systems with e ≤ eMax. At the end of the
calculation, the 0.01–bins are merged into 0.1–bins, in order to
make the final distribution more readable.
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