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Abstract. Analytical representations are derived for two equations of state (EOSs) of neutron-star matter: FPS and SLy. Each of
these EOSs is unified, that is, it describes the crust and the core of a neutron star using the same physical model. Two versions
of the EOS parametrization are considered. In the first one, pressure and mass density are given as functions of the baryon
density. In the second version, pressure, mass density, and baryon density are given as functions of the pseudo-enthalpy, which
makes this representation particularly useful for 2-D calculations of stationary rotating configurations of neutron stars.
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1. Introduction

The equation of state (EOS) of dense matter is a crucial input
for the neutron-star structure calculations. Under standard con-
ditions neutron-star matter is strongly degenerate, and there-
fore the matter pressure is temperature independent; exceptions
are the outermost (a few meters thick) envelopes, newly-born
neutron stars, and the envelopes of exploding X-ray bursters.
At ρ >∼ 108 g cm−3 the EOS is not affected by the magnetic field
even as strong as 1014 G and by the temperature T <∼ 109 K.
Therefore, except for a thin outer envelope (which for the
bottom density of 108 g cm−3 is ∼20 m thick and contains
only ∼10−9 M� of matter), the EOS of neutron-star matter has
a one-parameter character. In order to determine the neutron-
star structure up to the maximum allowable mass, Mmax, one
has to know the EOS up to a few times 1015 g cm−3. While
the EOS of the neutron-star crust (ρ <∼ (1−2) × 1014 g cm−3)
is rather well known (e.g., Haensel 2001), the EOS of the liq-
uid core at ρ >∼ 5 × 1014 g cm−3, which is crucial for determin-
ing Mmax, remains uncertain (e.g., Heiselberg & Pandharipande
2000; Haensel 2003).

The EOS of the crust depends on the crust formation sce-
nario. Two limiting cases are: cold catalyzed matter being at the
ground state at a fixed baryon density n, and the accreted crust
formed via compression at T < 109 K from the thermonuclear
ashes of the X-ray bursts in the outer envelopes of accreting
neutron stars (Haensel & Zdunik 1990, 2003). The EOS of the
liquid core does not depend on the formation scenario, and can
slightly deviate from the ground state one only when there are
deviations from the weak interaction equilibrium – e.g., when
rapid matter flow (like in stellar pulsations) is involved. In the

present paper we consider the standard case of the ground-state
matter.

A “unified EOS” is obtained in the many-body calculations
based on a single effective nuclear Hamiltonian, and is valid
in all regions of the neutron star interior. For unified EOSs the
transitions between the outer crust and the inner crust, and be-
tween the inner crust and the core are obtained as a result of
many-body calculation. Alas, up to now only a few models
of unified EOSs have been constructed. All other EOSs con-
sist of crust and core segments obtained using different physical
models. The crust-core interface has there no physical meaning
and both segments are joined using an ad hoc matching proce-
dure. Therefore, neutron-star models based on these EOSs con-
tain a shell with an unphysical EOS. For such “matched EOSs”
it is not possible to study phenomena which are sensitive to
the position of the crust-core interface.

In the present paper we consider two unified EOSs, the
FPS EOS of Pandharipande & Ravenhall (1989) and the
SLy EOS of Douchin & Haensel (2001).

EOSs are usually given in the form of tables. Therefore, in
order to use them, one has to employ interpolation between the
tabulated points. However, the interpolation procedure is not
unique. This introduces ambiguities in the calculated parame-
ters of the neutron star models. Moreover, interpolation should
be done respecting exact thermodynamic relations. This turned
out to be a particularly serious problem in the high-precision
2-D calculations of models of rapidly rotating neutron stars
(Nozawa et al. 1998). In the 3-D calculations of the station-
ary configurations of a close binary neutron-star system one
needs derivatives of pressure with respect to the enthalpy, and
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tabulated non-polytropic EOSs are not useful in this respect
(see, e.g., Gourgoulhon et al. 2001).

In view of the deficiencies and ambiguities inherent in the
tabulated EOSs, which are particularly serious in the case of
matched EOSs, it is of great interest to derive analytical rep-
resentations of the EOSs. They have two important advantages
over the tabulated ones. First, there is no ambiguity of interpo-
lation and the derivatives can be precisely calculated. Second,
these representations can be constructed fulfilling exactly the
thermodynamic relations. In this way, analytical EOSs can al-
low for a very high precision of neutron star structure calcula-
tion in the 2-D and 3-D cases.

In the present paper we derive analytical representations of
the unified FPS and SLy EOSs. In Sect. 2 we discuss general
properties of the EOS used for the calculations of non-rotating
and rotating neutron-star models. Analytical representations of
the EOSs for non-rotating stars are described in Sect. 3, while
Sect. 4 is devoted to the case of rotating stars. Discussion and
conclusion are presented in Sect. 5.

2. General properties of the one-parameter EOS
of neutron-star matter

A given EOS is usually presented in the form of a table
containing a grid of calculated values of matter density (full
energy density E including the rest energies of the matter con-
stituents divided by c2, i.e., ρ = E/c2), baryon (number) den-
sity n, and pressure P. The EOS {ρi, ni, Pi} (i = 1, . . . ,N) is then
interpolated between the tabulated points so as to get the one-
parameter EOS in the form P = P(n), ρ = ρ(n). The interpo-
lation involves some degree of indeterminacy (there are many
ways of interpolating) and this itself implies some ambiguity as
far as the calculated values of the neutron-star parameters (for
example, the value of Mmax) are concerned.

2.1. Non-rotating configurations

High precision determination of the baryon number A and
gravitational mass M of an equilibrium configuration requires
condition of thermodynamic consistency of functions ρ(n)
and P(n) to be strictly fulfilled. The first law of thermodynam-
ics in the T = 0 limit implies relation

P(n) = n2c2 d
dn

(
ρ

n

)
, (1)

which puts constraints on the interpolation procedure (see, e.g.,
Haensel & Proszynski 1982); the above relation can be also
used in the integral forms,

ρ(n)
n
=
ρs

ns
+

∫ n

ns

P(n′)
n′2c2

dn′, (2)

ln

(
n
ns

)
= c2

∫ ρ
ρs

dρ′

P(ρ′) + ρ′c2
, (3)

where ρs and ns are the values of ρ and n at the neutron-
star surface. In the present paper we put ρs equal to den-
sity of 56Fe at zero pressure and zero temperature, ρs =

7.86 g cm−3. In the outermost neutron-star layers, we fix the

value of mass per nucleon as m0 = 1.66 × 10−24 g, so
that ns = ρs/m0 = 4.73494× 1024 cm−3.

An example of an interpolation recipe which respects
Eqs. (1)–(3) and at the same time yields highly smooth func-
tions P(n) and ρ(n) was presented by Swesty (1996). Only a
thermodynamically consistent interpolation yields neutron-star
models which strictly satisfy the relation connecting the baryon
chemical potential µb = c2dρ/dnb = (ρc2 + P)/n and the met-
ric function Φ(r) at a given circumferential radius r. This strict
relation stems from the equation for the metric function

dΦ
dr
= − ρc2

ρc2 + P
dP
dr
, (4)

and can be written as

µb(r)eΦ(r) = µb(R)eΦ(R), (5)

where Φ(R) =
√

1 − 2GM/Rc2. Here, M and R are the total
gravitational mass and circumferential stellar radius, respec-
tively. Strictly speaking, if Eq. (5) does not hold, the calcu-
lated configuration is not in hydrostatic equilibrium. Alas, this
often happens for the neutron-star models calculated using tab-
ulated EOSs with logarithmic interpolation between the tabu-
lated points (see, e.g., Harrison et al. 1965; Baym et al. 1971;
Arnett & Bowers 1977). Resulting inconsistencies may seem
minor, but they may lead to serious problems if high precision
of a simultaneous determination of M and A is concerned; this
is the case of the energy release due to a phase transition in the
neutron-star core (see, e.g., Haensel & Proszynski 1982). On
the contrary, if Eq. (5) is strictly fulfilled, then the constancy
of µbeΦ and the accuracy of calculating stellar parameters are
limited only by the numerical precision of the computer code.

For a thermodynamically consistent EOS, Eq. (5) implies
the baryon density profile within a static neutron star,

n(r) = ns

[
ρ(r)
ρs
+

P(r)
ρsc2

]
eΦ(r)−Φ(R), (6)

where we have neglected Ps = P(R, T ) because the pressure
within the atmosphere is small compared with ρsc2. Therefore,
what one needs to get n(r) in a static neutron star is just the
surface baryon density, ns; the {ni} column of the tabulated
EOS turns out to be redundant.

2.2. Stationary rotating configurations

Rotation breaks the spherical symmetry of the equilibrium con-
figuration. Stationary configurations of a rigidly rotating star
of ideal liquid are solutions of 2-D axially symmetric par-
tial differential equations of hydrostatic equilibrium in coor-
dinates r and θ (rotation of relativistic stars is reviewed by
Stergioulas 2003). As far as the EOS is concerned, it is suitable
to parametrize it in terms of a dimensionless pseudo-enthalpy

H(P) ≡
∫ P

0

dP′

ρ(P′)c2 + P′
· (7)

It can be rewritten in terms of the enthalpy per baryon

h(P) =
ρc2 + P

n
(8)
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as

H(P) = ln

[
h(P)
hs

]
, (9)

where hs = ρsc2/ns. The pseudo-enthalpy H vanishes at the
stellar surface and increases monotonically towards the stellar
center. It is a very useful variable in numerical calculations of
the stationary configurations of rotating stars, because the defi-
nition of H allows one to easily write down the first integral of
motion

H(r, θ) + Φ(r, θ) − ln γ(r, θ) = H(0, 0) + Φ(0, 0), (10)

where Φ is the metric function and γ is the Lorentz fac-
tor connecting the two measured values of a physical quan-
tity: that measured in a local observer’s reference frame at a
point (r, θ, φ) and that measured by the distant observer in an
inertial reference frame at infinity,

γ =
(
1 − U2

)−1/2
, (11)

where U is the fluid velocity in the azimuthal (φ) direction,
as measured by a local observer. Equation (10) is the gen-
eral relativistic version of the Bernoulli theorem for a sta-
tionary ideal fluid flow in gravitational field. Consequently,
the most useful parametrization of the EOS for rotating stars
is ρ = ρ(H), P = P(H). Then, the baryon number density is
given by an exact analytical formula

n(H) = ns

[
ρ(H)
ρs
+

P(H)
ρsc2

]
e−H , (12)

which is the rotating-star analogue of Eq. (6).

3. Analytical representations of the EOS

There are three qualitatively different domains of the interior
of a neutron star, separated by phase transition points: the
outer crust (consisting of the electrons and atomic nuclei), the
inner crust (consisting of the electrons, nuclei, and dripped
neutrons), and the core which contains the electrons, neutrons,
protons, µ−-mesons, and possibly π- and K-mesons, some hy-
perons, or quark matter. The latter species are contained in
the innermost stellar domain called the inner core. In addition,
there can be density discontinuities at the interfaces between
layers containing different nuclei in the crust. In the fitting, we
neglect these small discontinuities and approximate the EOS by
fully analytical functions. However, the different character of
the EOS in the different domains is reflected by the complexity
of the fit, which consists of several fractional-polynomial parts,
matched together by virtue of the function

f0(x) =
1

ex + 1
· (13)

We rely on a tabulated unified EOS (FPS1 or SLy) at ρ >
5 × 1010 g cm−3. At lower densities, 108 g cm−3 <∼ ρ <
5 × 1010 g cm−3, the crustal matter is described by the EOS
of Haensel & Pichon (1994, HP94), based on experimental

1 The FPS table has been kindly provided by N. Stergioulas.

Fig. 1. Neutron-star EOS for non-rotational configurations: BPS (tri-
angles), Haensel & Pichon (1994) (HP94, stars), SLy (dots), OPAL
at T = 106, 107, and 108 K (dashed lines), the fit (14) (solid line) and
the fit modified at low ρ (dotted line).

nuclear data, supplemented by the EOS for cold catalyzed
matter due to Baym et al. (1971, BPS) at still lower den-
sity ρ <∼ 108 g cm−3. The lowest-density parts of the tables
at ρ < 105 g cm−3 have not been used in the fitting, because
at such low density the EOS is no longer one-parametric, but
depends also on temperature (see Fig. 1).

3.1. Non-rotating stars

For non-rotating configurations, we have parametrized the
pressure as function of density. Let us denote ξ =

log(ρ/gcm−3), ζ = log(P/dyn cm−2). Then the parametrization
reads

ζ =
a1 + a2ξ + a3ξ

3

1 + a4 ξ
f0(a5(ξ − a6))

+(a7 + a8ξ) f0(a9(a10 − ξ))
+(a11 + a12ξ) f0(a13(a14 − ξ))
+(a15 + a16ξ) f0(a17(a18 − ξ)). (14)

The parameters ai for FPS and SLy EOSs are given in Table 1.
The typical fit error of P is 1–2% (for ξ >∼ 5). The maximum er-
ror is determined by the jumps near the phase transitions in the
tabulated EOSs, which are smoothed by the fit (14). For FPS,
the maximum error is 3.6% at ξ = 14.22 (crust-core interface).
For SLy, the maximum error is 2.9% at ξ = 8.42 (62Ni−64Ni in-
terface in the HP94 part of the table).

Figure 1 shows log P against log ρ for a tabulated EOS
(symbols) and the corresponding fit (solid line). Triangles
correspond to BPS, stars to HP94, and dots to SLy data.
By construction, the fit is accurate at ρ >∼ 105 g cm−3. As
stated above, at lower density the EOS becomes temperature-
dependent (for T values typical for neutron star envelopes).
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Table 1. Parameters of the fit (14).

i ai(FPS) ai(SLy) i ai(FPS) ai(SLy)

1 6.22 6.22 10 11.8421 11.4950

2 6.121 6.121 11 −22.003 −22.775

3 0.006004 0.005925 12 1.5552 1.5707

4 0.16345 0.16326 13 9.3 4.3

5 6.50 6.48 14 14.19 14.08

6 11.8440 11.4971 15 23.73 27.80

7 17.24 19.105 16 −1.508 −1.653

8 1.065 0.8938 17 1.79 1.50

9 6.54 6.54 18 15.13 14.67

Fig. 2. Comparison of the data and fits for SLy and FPS EOSs for non-
rotational configurations. Upper panel: rarefied tabular data (symbols)
and the fit (14) (lines); lower panel: relative difference between the
data and fit. Filled dots and solid line: SLy; open circles and dot-
dashed line: FPS (triangles and stars on the upper panel are BPS
and HP94 data at ρ < 5 × 1010 g cm−3).

This is illustrated by the dashed lines, that show the OPAL EOS
(Rogers et al. 1996) for T = 106, 107, and 108 K.2 However,
a reasonable continuation of the fit to lower densities can be
constructed by a simple interpolation. For instance, the dot-
ted line in Fig. 1 corresponds to P = Pfit + P0, where Pfit =

10ζ is given by Eq. (14) (where we always assume ξ > 0),
and P0 = 3.5×1014 ρ approximates the OPAL EOS near ρ ∼ ρs

at T = 107 K (here P is in dyn cm−2 and ρ in g cm−3).
In Fig. 2 we compare the FPS and SLy EOSs. Symbols on

the upper panel show the data (triangles, stars, dots, and open

2 The OPAL table for iron has been kindly provided by F. J. Rogers.

Table 2. Parameters of the fits (15) and (16).

i pi(FPS) pi(SLy) qi(FPS) qi(SLy)

1 0.320 0.423 0.608 0.183

2 2.17 2.42 2.41 1.26

3 0.173 0.031 2.39 6.88

4 3.01 0.78 3.581 3.612

5 0.540 0.238 1.681 2.248

6 0.847 0.912 0.850 0.911

7 3.581 3.674 11.64 11.56

circles for BPS, HP94, SLy, and FPS, respectively) and lines
show the fit (solid for SLy and dot-dashed for FPS). In order to
make the differences between the data and fits and between SLy
and FPS EOSs visible, we plot the difference log P − 1.4 logρ,
where P is in dyn cm−2 and ρ in g cm−3. The lower panel shows
the relative difference between the tabulated and fitted EOSs
(solid and dot-dashed lines for SLy and FPS, respectively). It
illustrates the accuracy of the fit (14).

Now, n(ρ) can be easily obtained from Eq. (3). Doing this
and substituting P(ρ′) in the integrand of Eq. (3) from Eq. (14),
we recover the original tabular values with maximum differ-
ence <0.4% for FPS and <0.12% for SLy.

In some applications, it may be convenient to use n as in-
dependent variable, and treat ρ and P as functions of n. For this
purpose one can use the following fit:

ρ

nm0
= 1 +

p1np2 + p3np4

(1 + p5n)2
f0(−p6(log n + p7))

+
n

8 × 10−6 + 2.1 n0.585
f0(p6(log n + p7)), (15)

where n is in fm−3. The inverse fit n(ρ) is given by the formula

x
n
= 1 +

q1xq2 + q3xq4

(1 + q5x)3
f0(q6(q7 − log ρ))

+
x

8 × 10−6 + 2.1 x0.585
f0(q6(logρ − q7)), (16)

where x = ρ/m0 and ρ is in g cm−3. Coefficients pi and qi of
the fits (15) and (16) are given in Table 2. The fractional fit
residual in ρ and n varies from <∼10−9 at ρ <∼ 10 g cm−3 to a
fraction of percent near the maximum ρ ∼ 1016 g cm−3, while
the difference (ρ − nm0) is approximated with the typical ac-
curacy of a few percent. In Fig. 3 (upper panel) we plot the
ratio ρ/(nm0) against n for the two EOSs. We see that in the
crust, at n <∼ 0.1 fm−3, ρ is to a good accuracy proportional
to n. The lower panel, which shows the relative difference be-
tween fitted and tabulated values of ρ(n), confirms the accuracy
of Eq. (15).

It should be stressed that thermodynamics requires Eq. (1)
to be satisfied exactly. To achieve this, one should not totally
rely on the fits (15) and (16); otherwise thermodynamic consis-
tency will be violated on the scale of these fits’ errors (a frac-
tion of percent). So, if ρ is used as an input, then n(ρ) should
be calculated from Eq. (3). Alternatively, if the input is n, then,
having calculated ρfit(n) from Eq. (15) and P(n) = P(ρfit(n))
from Eq. (14), one should refine ρ(n) using relation (2).
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Fig. 3. Dependence of ρ on n. Upper panel: rarefied data (symbols)
and the fit (15) (lines); lower panel: relative difference between the
data and fit. Filled dots and solid line: SLy; open circles and dot-
dashed line: FPS.

3.2. Rotating stars

As explained in Sect. 2.2, for rotating stars it is most useful to
parametrize density and pressure as functions of the pseudo-
enthalpy H, which can be written in terms of the enthalpy per
baryon h. Let us define η ≡ h/m0c2 − 1. In view of relation (8),
the function which we intend to parametrize, ξ(η), is not inde-
pendent of the function ζ(ξ) parametrized by Eq. (14). In order
to fulfill Eq. (8) as closely as possible, we first calculate η(ξ)
using Eqs. (14) and (8), and then find the inverse fit ξ(η). The
best fit reads:

ξ =

[
b1 + b2 log η +

b3η
b4

1 + b5η

]
f0(b6(log η − b7))

+
b8 + b9 log η + (b10 + b11 log η)(b12η)7

1 + b13η + (b12η)7

× f0(b6(b7 − log η)) + b14 f0(b15(b16 − log η)). (17)

Where the parameters bi are given in Table 3. The comparison
of the fit and the data is presented in Fig. 4. The typical fit error
of ρ, according to Eq. (17), is about 1% at η >∼ 10−7 (corre-
sponding to ξ >∼ 3), and the maximum error <4% occurs near
the neutron drip and crust-core phase transitions.

When used in combination, the fits (14) and (17), together
with Eq. (3) or Eq. (16) give the parametrizations of ρ(H),
P(H), and n(H) needed for calculations of the stationary rotat-
ing configurations. In this case, the function P(H) = P(ρ(H))
obtained using Eqs. (17) and (14), reproduces the tabular val-
ues with a typical discrepancy of 1−2%, with a maximum
within 10% near the crust-core boundary.

Table 3. Parameters of the fit (17).

i bi(FPS) bi(SLy) i bi(FPS) bi(SLy)

1 5.926 5.926 9 11.97 34.96

2 0.4704 0.4704 10 15.432 15.328

3 19.92 20.13 11 0.6731 0.621

4 0.2333 0.2347 12 49.4 63.1

5 2.63 3.07 13 11.47 68.5

6 54.7 97.8 14 1.425 2.518

7 −1.926 −2.012 15 3.0 2.6

8 36.89 89.85 16 0.913 1.363

15

16

17

FPS

SLy

-4 -3 -2 -1 0

-0.04

-0.02

0

0.02

0.04

Fig. 4. SLy and FPS EOS for rotational configurations. Upper panel:
rarefied data to be fitted, calculated according to Eq. (14) (symbols)
and the fit (17) (lines); lower panel: relative difference between the
data and fit. Filled dots and solid line: SLy; open circles and dot-
dashed line: FPS.

The remark on the thermodynamic consistency, made at the
end of Sect. 3.1, applies also here: one should refine either n
or ρ fitted values, using the exact relations (3) or (2).

4. Adiabatic index

An important dimensionless parameter characterizing the stiff-
ness of the EOS at given density is the adiabatic index, de-
fined by

Γ =
n
P

dP
dn
=

[
1 +

P
ρc2

]
ρ

P
dP
dρ
· (18)
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Fig. 5. Adiabatic index Γ for SLy and FPS EOSs. Solid line: analyti-
cal approximation (SLy); dotted line: precise values (SLy); dot-dashed
line: analytical approximation (FPS).

Using our fit (14), we obtain the analytical expression

ρ

P
dP
dρ
=

dζ
dξ
=

[
a2 − a1a4 + 3a3ξ

2 + 2a3a4ξ
3

(1 + a4ξ)2

− a5
11 + a2ξ + a3ξ

3

1 + a4ξ
f0(a5(a6 − ξ))

]
f0(a5(ξ − a6))

+

4∑
i=2

f0(a4i+1(a4i+2 − ξ))
[
a4i

+ a4i+1(a4i−1 + a4iξ) f0(a4i+1(ξ − a4i+2))
]
. (19)

Different regions of neutron-star interior are characterized by
distinct behavior of Γ, displayed in Fig. 5. Precise values of Γ
calculated by Douchin & Haensel (2001) are shown by dotted
line, and the analytical approximations according to Eqs. (14),
(19) by solid line (for SLy) and dot-dashed line (for FPS).

In the outer crust, the value of Γ depends quite weakly on
density. At 108 g cm−3 <∼ ρ <∼ 3× 1011 g cm−3, this value would
be Γ ≈ 4/3 if A, Z values were fixed, because in this case P
is mainly determined by the pressure of ultrarelativistic elec-
tron gas which behaves as ∝(Zρ/A)4/3. For example, Γ ≈ 4/3
within each shell with constant A and Z of the EOS derived
by Haensel & Pichon (1994). However, the compressible liq-
uid drop model used by Douchin & Haensel (2001) effectively
smoothes the discontinuities caused by transitions from one to
another (A, Z)-species with increasing density, which leads to
an effective continuous increase of the A/Z ratio and corre-
sponding decrease of Γ, seen in Fig. 5.

A dramatic drop in Γ occurs at neutron drip threshold,
which corresponds to strong softening of the EOS. The ana-
lytical expression (19) somewhat smoothes this drop. The be-
havior of Γ in the inner crust results from an interplay of sev-
eral factors, with stiffening due to interaction between dripped

neutrons, a softening effect of neutron-gas – nuclear-matter co-
existence, and the softening Coulomb contribution.

At the crust-core interface, matter strongly stiffens, and Γ
jumps from ≈1.7 to ≈2.2, which results from disappearance
of nuclei. The analytical approximation smoothes this jump
also, though reflects the stiffening. This approximation is also
smooth across a small discontinuous drop of Γ at ρ ≈ 2 ×
1014 g cm−3, where muons start to replace a part of ultrarela-
tivistic electrons. However, the electrons and muons give only
minor contribution to the pressure (and therefore behavior of Γ)
in the core, because the main contribution comes from interac-
tions between nucleons.

5. Summary, discussion, and conclusion

Analytical representations of the EOSs used in the modern 2-D
and 3-D simulations of neutron star dynamics have many im-
portant advantages over the tabulated EOSs. Analytical EOSs
do not require any interpolations, are thermodynamically con-
sistent, and allow for a very high precision of calculations. In
the present paper we constructed analytical representations, in
terms of the continuous and differentiable functions of a single
chosen variable, of the SLy and FPS EOSs. For these analytical
representations, the thermodynamic relations are exactly satis-
fied at any point. Two choices of the independent variable were
considered. The first one is ρ; function P(ρ) given by Eq. (14)
fits the original tables in the density interval 105 g cm−3 <
ρ < 1016 g cm−3 within typical error of 1–2%. Function n(ρ)
can be calculated either from Eq. (3) to satisfy exactly the first
law of thermodynamics, or from the fit (16) with a typical er-
ror ∼0.1%. A variant which ensures the same accuracy is to
choose n as an independent variable and calculate ρ(n) from the
fit (15) and P(ρ) from Eq. (14). The other choice of the inde-
pendent variable is to use the pseudo-enthalpy H. This choice is
particularly advantageous for applications to 2-D and 3-D nu-
merical simulations of neutron star dynamics, such as rotation
and inspiraling stage of the evolution of relativistic neutron-
star – neutron-star binary. We represented both EOSs by the
continuous and differentiable functions P(H), ρ(H), and n(H),
where ρ(H) is given by Eq. (17) with typical accuracy within
a few percent, while P(H) and n(H) are calculated from the
functions P(ρ) and n(ρ), respectively. Differentiation of P(ρ)
then yields analytical representations of the adiabatic index for
the SLy and FPS EOSs; this quantity is important, for exam-
ple, for numerical simulations of dynamics of the neutron-star
– neutron-star system at the inspiral phase.

The quality of our analytical representations of the EOSs
was tested by evaluation of the virial identities GRV2
(Bonazzola 1973; Bonazzola & Gourgoulhon 1994) and GRV3
(Gourgoulhon & Bonazzola 1994) in the numerical simula-
tions of the 2-D stationary rotation of neutron stars. GRV2
and GRV3 are integral identities which must be satisfied by a
stationary solution of the Einstein equations and which are not
imposed in the numerical procedure (see Nozawa et al. 1998
for the details of computation of GRV2 and GRV3). For rotat-
ing configurations we get GRV2, GRV3 ∼ 10−6−10−5, which
is excellent.
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The subroutines for the numerical applications of analytical
EOSs (Fortran and C++ versions) can be downloaded from the
public domain http://www.ioffe.ru/astro/NSG/NSEOS/
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