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Abstract. We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the an-
gular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and
iteratively updates the total potential, solving Poisson’s equation by Legendre polynomial decomposition; the algorithm can
readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre
polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars
of mass 1, 2, 5, 10 M� with a range of angular velocities up to break up. The models have a composition X = 0.70, Z = 0.02
and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection
modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing
angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an
increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2R3

e/GM can
exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.
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1. Introduction

Rapid rotation is one of the major problems inhibiting the use
of stellar oscillations to diagnose the internal structure of stars
and thereby to test and develop our understanding of stellar
evolution. As a first step in seeking to address these problems
we here report results on the construction of self consistent
2-dimensional models of rapidly rotating zero age main se-
quence stars, where the angular velocity is taken as constant
throughout the star.

As is well known from the pioneering work of Von Zeipel
(1924), Eddington (1929) and Sweet (1950), rotation drives
circulation currents in the radiative zones of stars with veloc-
ities vcirc ∼ αR/tKH where tKH = R2L/GM2 is the Kelvin
Helmholtz thermal time scale and α = Ω2R3/GM is the ra-
tio of centrifugal force to gravity. These velocities are very
small except possibly in the surface layers and at the bound-
aries between radiative and convective zones (neglecting over-
shooting). Although the circulation currents make a negligible
contribution to hydrostatic balance they will transport angular
momentum which, unless compensated by some other transport
process, will change the initial angular velocity distribution.

In the absence of a magnetic field, the changing angular ve-
locity field may become unstable and the resulting microturbu-
lence transport angular momentum and provide some chemical
mixing (cf. Roxburgh 1970; Zahn 1992). The time dependent

evolution of Ω remains an unsolved problem; Mestel (1953)
showed that except in very rapidly rotating stars the build up
of chemical composition gradients can suppress the circula-
tion; Zahn (1992) argued that horizontal mixing can take place
along isentropic surfaces ensuring that Ω is constant on such
surfaces, however if constant entropy and constant composi-
tion surfaces do not coincide, small horizontal variations in
molecular weight may suppress such mixing. In very rapidly
rotating stars the circulation may be fast enough so that the
star approaches a steady state configuration where there are no
circulation currents (cf. Roxburgh 1964); this problem will be
addressed in a subsequent publication.

The situation is different if the star possesses a magnetic
field. Even a very weak field can maintain (almost) uniform ro-
tation and provide the torque needed to balance the advection
of angular momentum by the circulation (cf. Roxburgh 1963).
We here assume this to be the case and that the field is suffi-
ciently weak so that its contribution to the hydrostatic support
can be neglected. In what follows we shall assume that the star
is uniformly rotating and in a quasi steady state with uniform
composition. We defer to later work the consequences of relax-
ing these assumptions.

Since the circulation velocities are very much smaller than
the rotation velocities they can be neglected in the hydrostatic
balance, the steady state equations governing the structure in
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the radiative zones of a star rotating with constant angular ve-
locity Ω can then be expressed as (cf. Roxburgh et al. 1965)

∇P
ρ
= −∇Φ + Ω2w = −∇Ψ (1)

Fr = −16σT 3

3κρ
∇T (2)

ρu.∇U − P
ρ
u.∇ρ = ερ − ∇.Fr (3)

∇2Φ = 4πGρ (4)

where

Ψ = Φ − 1
2
Ω2w2, ∇2Ψ = 4πGρ − 2Ω2 (5)

P, ρ, T,Φ are the pressure, density temperature and gravita-
tional potential, Ψ is the total potential defined by Eq. (5),
Fr the radiative flux, U, κ, ε the internal energy, opacity and
energy generation per unit mass, u the velocity of meridional
circulation and w = r sin θ the distance from the rotation axis.
It follows from Eq. (1) that P, ρ are constant on equipotential
surfaces Ψ = const., or P = P(Ψ), ρ = ρ(Ψ). The equation of
state gives P = P(ρ, T, Xi) so if the composition Xi is constant
on equipotential surfaces then T = T (ψ). Since we are here
only considering homogeneous stars this condition is automat-
ically satisfied and hence κ = κ(Ψ), ε = ε(Ψ).

As is well known (cf. Roxburgh et al. 1965) in a steady
state the net advection of energy by the circulation across an
equipotential surface Ψ = const. is zero, so on integrating the
energy Eq. (4) over a volume Vψ within such a surface and
using Gauss’s theorem gives
∫

S ψ

Fr.dS = −16σT 3

3κρ
dT
dΨ

∫
S ψ

∇Ψ.dS =
∫

Vψ

ερdV = LΨ (6)

where LΨ is the total energy produced within the volume Vψ

and is therefore a function of Ψ. On using Eq. (5) and Gauss’s
theorem we have∫

S ψ

∇Ψ.dS =
∫

Vψ

∇2ΨdV = 4πGMψC(Ψ) (7)

where

C(Ψ) = 1 − Ω
2Vψ

2πGMψ
, and Mψ =

∫
Vψ

ρdV (8)

is the mass within an equipotential surface Ψ = const.
The effect of rotation on convection in astrophysical con-

ditions is poorly understood. In the case of the Sun surface
observations and helioseismic inversions show that the angu-
lar velocity in the convective envelope varies with both angle
and depth. One possible explanation could be that in a rotating
star the turbulent convection is anisotropic and inhomogeneous
resulting in a latitude variation in the convective flux, circula-
tion currents and differential rotation. The differential rotation
could well drive dynamo generation of magnetic fields in both
convective cores and convective envelopes. which again would
also effect the energy transport. Efforts to model this behaviour
have yet to be developed to a stage where we can be confident

that we understand the underlying physics, to proceed we shall
make some simplifying assumptions and defer to later work a
more sophisticated treatment of the interaction of rotation and
convection. We ignore differential rotation taking Ω = const.
so that P, ρ, T are constant on surfaces Ψ = const., ignore pos-
sible convective overshooting and assume that convection sets
in when

∇ = P
T

dT
dP
= ∇ad (9)

where ∇ = ∇(Ψ). The convective flux Fc is given by a local
mixing length model in which eddies rise and fall along the
direction of effective gravity (cf. Appendix A) which gives

Fc = Fc(P, T, ρ,∇,∇ad) n (10)

where n is the unit normal to a surface Ψ = const. The mag-
nitude Fc is therefore constant on equipotential surfaces, Fc =

Fc(Ψ). We incorporate the convective flux into Eq. (6) to give

−64πGσMT 3

3κρ
dT
dΨ

C(Ψ) + Fc(Ψ)S ψ = LΨ (11)

where S ψ is the surface area of an equipotential sur-
face Ψ = const.

We now introduce the radial variable s as the distance from
the centre of the star to an equipotentialΨ = Ψs along an (arbi-
trarily) prescribed angle θ f , and define factors W, A, B,C,D as
functions of Ms, or equivalently of s, such that

Vψ =
4πs3

3
W, S ψ = 4πs2A,

dVψ

ds
= 4πs2D (12)

dΨ
ds
=

GMs

s2
B, C = 1 − 2

3
Ω2s3

GMs
W (13)

and the structure equations can then be expressed as

dP
ds
= −GMs

s2
B (14)

dMs

ds
= 4πρs2D (15)

dLs

ds
= 4πεs2D (16)

−64πσT 3s2

3κρ
dT
ds

C
B
+ 4πs2FcA = Ls. (17)

If the factors A, B,C,D were known as functions of s, Ms, these
are ordinary differential equations for s, P, ρ, T, L as a function
of Ms and could be solved by simply incorporating these fac-
tors into a standard stellar structure/evolution code. The factors
are not known and have to be calculated self consistently from
the total potential Ψ given by the solution of the partial differ-
ential Poisson Eq. (5). This is done iteratively as described in
the following section.

In previous studies by Faulkner et al. (1968), Kippenhahn
& Thomas (1970) and Papaloizou & Whelan (1973), the fac-
tors A, B,C,D were not determined self consistently but from
some approximate estimate. In Faulkner et al. (1968), the ref-
erence angle θ f = cos−1(1/

√
3), and A, B,C,D were approxi-

mated by A = D = 1 and

B = 1 − α, B
C
= 1 + 50.8α5.27, α =

2
3
Ω2s3

GMs
(18)
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the approximation for B coming from 1st order perturbation
analysis and that for C from the Roche envelope models of
Roxburgh et al. (1965). In the analysis of Kippenhahn &
Thomas (1970) and Papaloizou & Whelan (1973) all the fac-
tors were computed from a simple Roche model; the latter au-
thors discussed a possible iterative scheme similar to the one
used here but did not implement it.

The method adopted here is closely related to the self con-
sistent field method of Jackson (1970) where the potential was
evaluated from the integral representation of the solution of
Poisson’s equation; here we use spectral decomposition.

2. Method of solution

The structure Eqs. (14)−(17) are solved on a fixed
mesh M(i), i = 0,Ni, and the shape of the equipotential sur-
faces specified by a set of scale factors xk(i) at a set of specified
angles θk, k = 0,Nk, such that the points (rk(i), θk) lie on the
equipotential through (s(i), θ f ) where rk(i) = s xk(i). The itera-
tion scheme is as follows:

1. With estimates of A(i), B(i),C(i),D(i) we solve the structure
equations to determine s(i), ρ(i).

2. Since ρ is constant on equipotential surfaces the estimate
of the xk(i) gives the density ρ(r, θ) on the 2-dimensional
array rk(i), θk.

3. Solving Poisson’s equation with this distribution of ρ gives
the gravitational potential Φ(r, θ) and hence the total poten-
tial Ψ(r, θ).

4. With this value of Ψ(r, θ) we determine new values
of A(i), B(i),C(i),D(i), new values of the rk(i) for the points
on the equipotentials through s(i), θ f and hence new values
of the scale factors xk(i) = rk(i)/s(i).

This scheme is iterated to convergence when the values
of A(i), B(i),C(i),D(i) remain the same to 1:106.

The iteration can be started from the spherically symmetric
values A(i) = B(i) = C(i) = D(i) = xk(i) = 1, or from a known
solution with differentΩ, or from the approximation scheme of
Faulkner et al. (1968).

2.1. Solution of the Poisson equation for Φ(r , θ)

After stage 2 above we have ρ on the mesh rk(i), θk. We then in-
terpolate ρ on to the polar coordinate mesh (s(i), θk). This dis-
tribution of ρ and the corresponding gravitational potential Φ
are then expressed as finite sums of Legendre polynomials

ρ(s, θ) =
Nk∑
0

ck(s)P2k(cos θ) (19)

Φ(s, θ) =
Nk∑
0

fk(s)P2k(cos θ) (20)

where the fk satisfy the equations

1
s2

d
ds

(
s2 d fk

ds

)
− 2k(2k + 1)

s2
fk = 4πGck (21)

subject to the boundary conditions fk(0) = 0, k � 0 and

(2k + 1) fk + s
d fk
ds
= 0 at s = R0 (22)

where R0 is any spherical surface outside the star.
The decomposition of the density was done algebraically

by simply demanding that (at each radius s(i)) Eq. (19) be satis-
fied at the angles θk, and solving the resulting matrix equations
to give

ck = W−1
kn ρn, Wkn = P2k(cos θn), k, n = 0,Nk. (23)

This simple algorithm worked remarkably well, much better
than seeking to determine the ck by integrating ρ(s, θ)P2k(cos θ)
over sphere using a much finer mesh in angle.

Having determined the ck the coefficients fk were de-
termined from an integral representation of the solution of
Eqs. (21)−(22) namely

fk = s2k
∫ s

R0

4πG
3 s4k+2

[∫ s

0
ck(s) s2k+2ds

]
ds − λk s2k (24)

where

λk =
4πG

(4k + 1)R4k+1
0

∫ R0

0
ck(s)s2k+2ds. (25)

Provided one sets ck = 0 when it is sufficiently small (e.g.
|ck| < 10−10ρc) this simple algorithm works well. Detailed
tests of this and the density decomposition algorithm are re-
ported in Sect. 4 below, where we show that they successfully
reproduce the analytic results for models of inhomogeneous
spheroids where the density is constant over spheroidal sur-
faces but varies with polar radius.

2.2. Calculation of the factors A, B, C, D, xk

With the values of fk(s) determined, the value of Ψ(s, θ) can
be calculated on a fine mesh in angle (s, θ j), j = 0,Nj using
Eq. (20) for Φ and the definition of the potential Ψ

Ψ(s, θ j) = Φ(s, θ j) − Ω
2s2 sin2 θ j

2
· (26)

The values of r j(i) at angles θ j which have the same value of Ψ
as the values at the reference points (s(i), θ f ) are then obtained
by interpolation on the mesh (s, θ j). It is convenient to take the
mesh θ j to be such that the mesh θk is a subset of the mesh θ j.

With these (r j, θ j) the area S ψ and volume Vψ of equipo-
tential surfaces can be calculated by quadrature, and the val-
ues of dΨ/ds, dVψ/ds determined by numerical differentiation.
Values of the factors A(i), B(i),C(i),D(i) are then determined
from their definitions in Eqs. (12) and (13). The interpola-
tions were done using a cubic routine and the integrations by
Simpson’s rule. This process can be repeated until the values
of A, B,C,D converge within this step. In fact this is not neces-
sary but the whole iterative scheme converges faster by taking
about 3 iterations in this step.

The values of shape factors xk(i) = rk(i)/s(i) at the angles θk

are then calculated and stored to give to give the first approxi-
mation to the rk(i) in the next iteration.
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2.3. Solution of the structure equations

The structure Eqs. (14)−(17) were solved using a scaled down
version of my stellar evolution code, setting time derivatives
to zero, using a fixed composition (X = 0.70, Z = 0.02)
and equilibrium pp and CN cycle nuclear reactions, and in-
corporating the factors A, B,C,D. The equation of state was
OPAL EOS2001 (Rogers & Nayfonov 2001) and the opacities
a smooth blend of OPAL GN93 (Iglesias & Rogers 1996) and
Alexander & Ferguson (1994) tables; interpolation in the tables
was by local splines which ensures continuity of first deriva-
tives. Convection was described by the local mixing length
model (see Appendix A) with α = 1.8, and convective mixing
is treated as a diffusion process with the diffusion coefficient
determined by the convective model. The structure equations
are discretised to 2nd order on the mesh in M(i) and solved
by relaxation, the solution is taken as having converged when
the relative changes in all variables, δVi/Vi, are less than some
specified value, normally set as 1/N2

i where Ni is the number
of mesh points.

2.4. Surface boundary conditions

The structure of the surface layers of rotating stars is another
area where our understanding is poor and effort needs to be put
in to understand the physics of these layers. This is the case
even for a slowly rotating star like the Sun where a better un-
derstanding of the structure of outer layers is needed before we
can determine the expected shape of the solar surface. This is a
problem with a long history going back to the interpretations of
the solar oblateness measured by Dicke & Goldenberg (1967).
Osaki (1966) proposed that the distribution of angular veloc-
ity is such that there is no meridional circulation and that this
distribution differs little from that of uniform rotation. We shall
here retain the assumption of uniform rotation in the surface
layers, deferring to subsequent work a more detailed study of
the atmosphere.

Since P, T are then constant on equipotential surfaces the
surface boundary condition must also be constant on equipo-
tentials. My evolution code has a simple grey Eddington at-
mosphere which is incorporated into the model by the simple
expedient of imposing the surface boundary condition T 4 =

0.75 T 4
eff(τ + 2/3), P = gτ/κ, high up in the radiative atmo-

sphere an optical depth τ ≈ 0.01−0.001 Since in a rotating
star the flux F, and hence the local Teff, and the local value of
effective gravity |∇Ψ|, vary over an equipotential surface, we
replace them by Ts, gs, their values averaged over the surface
equipotential

T 4
s =

L
σS ψ

=
L

4πσs2A
, gs =

∫ ∇Ψ.dS

S ψ
=

GM
s2

C
A

(27)

where S ψ is the area of the equipotential, and take the boundary
condition as T 4 = 0.75T 4

s (τ + 2/3), P = gsτ/κ at some τ. This
condition is then independent of the angle θ f along which we
calculate the model.

Fig. 1. Equipotential surfaces in a model of 2 M� with an angular ve-
locity Ω = 2.2 × 10−4 rad/s. The points on these equipotentials are the
fitting points (rk, θk).

2.5. Mesh resolution and accuracy

Most models were computed taking the reference angle θ f =

π/2, ie along the equator; with Ni = 1000 for the mesh in Mi,
Nk = 8 for the solution of Poisson’s equation, and Nj = 360 for
the computation of the factors A, B,C,D. All of θ f ,Ni,Nj,Nk

were varied to check that the accuracy of the calculations was
of the order of 1:105. Details are given in Sect. 4 below. The
advantage of taking θ f = π/2 is that it was not necessary to
extend the radial mesh beyond the surface when calculating the
gravitational potential.

3. Results

Figure 1 shows the equipotential surfaces in a zams star of 2 M�
rotating with angular velocity Ω = 2.2 × 10−4 rad/s and equa-
torial velocity of 299 km s−1. The model was computed with
the angular variation of ρ,Φ modelled by Legendre polynomi-
als P2k, k = 0, 8, fitted at angles θk = kπ/2, k = 0, 8. The refer-
ence angle along which the model was computed was θ f = π/2,
the radial mesh was Ni = 1000 and the angular mesh Nj = 360.
Figure 2 shows the variation of the factors A, B,C,D with ra-
dius for this model

Tables 1–4 list the properties of a family of models with
masses 1, 2, 5, 10 M� for a range of angular velocities. In all
cases the luminosity and polar radius decreases with increasing
angular velocity. as was found to be the case in earlier work
using a two zone perturbation model (Faulkner et al. 1968).

Note that for very rapid rotation the ratio of equatorial
to polar radius Re/Rp can exceed 1.5 and the parameter α =
Ω2R3

e/GM can exceed unity. This is primarily due to the con-
tribution of the gravitational quadrupole moment, Φ1(r)P2k

which enhances the gravitational attraction in the equatorial
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Fig. 2. Variation with radius of the geometrical factors A, B,C,D with
equatorial radius for the model in Fig. 1.

Table 1. Models of a uniformly rotating star of 1 M�.

104 Ω 0 1.0 3.0 4.0 4.6 4.6254

α 0.000 0.020 0.205 0.451 0.903 1.0018

Re/Rp 1.000 1.010 1.108 1.237 1.470 1.5198

Ve k/s 0 64 201 288 381 395

L/L� 0.712 0.705 0.650 0.599 0.561 0.5595

Re/R� 0.914 0.919 0.964 1.035 1.189 1.2261

Rp/R� 0.914 0.909 0.871 0.837 0.809 0.8067

Table 2. Models of a uniformly rotating star of 2 M�.

1.0 2.0 2.2 2.4 2.4168

α 0.000 0.056 0.318 0.456 0.815 1.0003

Re/Rp 1.000 1.028 1.160 1.230 1.409 1.5020

Ve k/s 0 114 257 299 373 400

L/L� 16.59 16.46 16.06 15.94 15.81 15.800

Re/R� 1.603 1.644 1.843 1.951 2.233 2.3800

Rp/R� 1.603 1.599 1.589 1.587 1.585 1.5846

regions. This behaviour was found in investigations on
the structure of rotating polytropes by perturbation analysis
(Monaghan & Roxburgh 1965) and in two dimensional spectral
models of rapidly rotating polytropes (Roxburgh unpublished).
This effect is enhanced if the rotation increases inwards or in-
creases towards the rotation axis for rotation that is constant on
cylinders.

4. Testing the accuracy of the solutions

Several factors limit the numerical accuracy of the solutions:
the accuracy of the stellar structure code which depends on
the radial mesh Ni; the order Nk of the Legendre representa-
tion of the angular variation; the angular mesh Nj on which
the functions A, B,C,D are evaluated; and the accuracy of the
algorithms for solving Poisson’s equation.

The dependence on the radial mesh can be simply tested by
varying Ni when solving a non rotating model; the results of

Table 3. Models of a uniformly rotating star of 5 M�.

104 Ω 0 0.05 1.0 1.7 1.84 1.8485

α 0.000 0.024 0.105 0.482 0.848 1.0007

Re/Rp 1.000 1.012 1.053 1.243 1.427 1.5036

Ve k/s 0 92 191 379 469 497

L/L� 541 538 531 513 508 507

Re/R� 2.623 2.650 2.744 3.202 3.667 3.8629

Rp/R� 2.623 2.618 2.505 2.575 2.569 2.5691

Table 4. Models of a uniformly rotating star of 10 M�.

104 Ω 0 0.05 1.0 1.3 1.45 1.4601

α 0.000 0.039 0.188 0.421 0.817 1.0011

Re/Rp 1.000 1.028 1.160 1.229 1.407 1.5053

Ve k/s 0 137 292 417 540 579

L/L� 5711 5664 5523 5392 5313 5307

Re/R� 3.880 3.943 4.195 4.610 5.347 5.6965

Rp/R� 3.880 3.866 3.829 3.799 3.785 3.7844

Table 5. Accuracy of solutions of the structure equations.

Ni δR/R δL/L δρc/ρc δTc/Tc

4000 1.8 × 10−6 7.8 × 10−7 8.0 × 10−7 4.7 × 10−7

2000 8.1 × 10−6 3.7 × 10−6 3.8 × 10−6 1.4 × 10−6

1000 3.3 × 10−5 1.6 × 10−5 1.7 × 10−5 6.5 × 10−6

such a test for a 2 M� star are given in Table 5 where we give
the fractional change of key variables with mesh size relative
to values with a mesh of Ni = 8000. In the results for rotating
star presented here we use a radial mesh with Ni = 1000 so
there is no point in solving the angular structure to any greater
accuracy than 3 × 10−5.

The error in the representation of the density ρ by finite
series of Legendre Polynomials is indicated in Fig. 3 which
shows the maximum variation in ρ/ρc over equipotential sur-
faces calculated on the fine mesh r j(i), θ j, j = 0, 360, i =
0, 1000 and using a Legendre series with Nk = 8, for the refer-
ence 2 M� star given in Fig. 1. The error in ρ/ρc < 5×10−9 and
the corresponding error in Φ is even less due to the long range
nature of gravity and the cancellation due to errors of opposite
signs. The major inaccuracies are due to the inaccuracy of the
finite Legendre representation of the density on spheres which
cross the boundary of the convective core, and those which
cross the surface.

To test the accuracy as a function of Nk we compare solu-
tions with Ni = 1000,Nj = 360 and different values of Nk, with
the solution with the highest resolution Nj = 720,Nk = 24 for
the particular case M = 2 M�. The reference angle θ f = π/2,
that is along the equator, to ensure comparability in the ra-
dial mesh. In Table 6 we give the error in the equatorial ra-
dius δRe/Re for values ofΩ = 0.5, 1, 1.5, 2, 2.2, 2.4×10−4 s−1

and for Nk = 1, 2, 4, 8, 12. The solutions with Nk ≥ 4 give ac-
curacies better than 10−5 over the whole range of Ω and even
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Fig. 3. Maximum errors in fitting the density over equipotential sur-
faces using a Legendre series with Nk = 8 for the model in Fig. 1.

Table 6. Accuracy of solutions as a function of Nk Ω in units
of 10−4 s−1.

Ω 0.5 1.0 1.5 2.0 2.2 2.4

Nk

12 10−9 10−9 10−9 10−9 10−9 4 × 10−8

8 10−9 10−9 10−9 10−9 10−9 4 × 10−8

4 10−9 10−9 10−9 10−9 8 × 10−9 2 × 10−7

2 10−9 1 × 10−8 2 × 10−7 1 × 10−6 2 × 10−6 1 × 10−5

1 6 × 10−8 2 × 10−6 2 × 10−5 1 × 10−4 3 × 10−4 2 × 10−3

for large values of Ω the solutions are adequately represented
by Nk = 2. The solutions with Nk = 1 correspond to the first or-
der perturbation analysis as presented by Faulkner et al. (1968)
and adequately represent the solutions for moderate Ω.

To test the simple algorithms for the spectral de-
composition and solution of Poisson’s equation, described
by Eqs. (23)−(25), we derived analytic solutions for the
gravitational potential inside an inhomogeneous spheroid with
variable density (see Appendix B), and compared this with the
solution obtained using the numerical algorithms. By an in-
homogeneous spheroid we mean a body whose surface is de-
fined by

w2

R2
e
+

z2

R2
p
= 1 (28)

where w = r sin θ, z = r cos θ, R2
p = R2

e(1− e2) with e the eccen-
tricity, and where the density is constant on similar spheroidal
surfaces of eccentricity e but which varies from spheroid to
spheroid, the variation being prescribed by ρ(z), the density
along the minor axis.

The gravitational potential at a point (wi, zi) inside such a
body can be determined analytically as (see Appendix B)

V =
4πG

e
√

1 − e2

[
tan−1

(
e√

1 − e2

) ∫ Rp

z1

ρ(z)zdz

+

∫ z1

0
tan−1

 e z√
(z2 + λ) (1 − e2)

 ρ(z)zdz

]
(29)

Fig. 4. Error in using the Poisson solver algorithm with Nk = 8 for
the potential of an inhomogeneous spheroid with Re/Rp = 1.4 for
both 2nd and 4th order integrators.

where λ(z) is the largest root of

w2
i (1 − e2)

z2
i + λ(1 − e2)

+
z2

i

z2 + λ
= 1 (30)

and z1, the value of z on the polar axis of the spheroid
through (wi, zi), is given by

z2
1 = w

2
i (1 − e2) + z2

i . (31)

The potential outside the body (z1 > Rp) is given solely by the
second term in Eq. (29).

To test the solution algorithms we took a model
with Re/Rp = 1.4 with the density distribution given by

ρ(z) = ρc

1 − z2

R2
p


4

(32)

and evaluated the potential on a mesh of Ni = 1000 in z
and Nj = 64 in θ using the analytical results above, and then
solved the same model using the numerical spectral solution
algorithms (Eqs. (19)−(25)) with Nk = 8.

Figure 4 shows the difference between the two solutions
for two cases: one where the integration in the Poisson solver
(Eq. (25)) was a simple 2nd order trapezoidal rule, the second
using a 4th order Simpson’s rule. Even for the trapezoidal inte-
grator the error, though systematic, is well within the accuracy
limit of 10−5. The 4th order integrator gives much better accu-
racy and the figure shows that the main source of error is in
modelling the outer layers where a spherical surface intersects
the surface of the “star”.

Since the density is constant on spheroidal surfaces with the
same eccentricity, the spheroidal model is considerably more
distorted in the inner regions than is a uniformly rotating star,
where the eccentricity of equipotential surfaces is given ap-
proximately by e2 = Ω2r3/GMr which is small in the central
regions.

We conclude that the solutions presented are accurate to
order of 3 × 10−5, and could readily be improved by using a
finer mesh in Ni,Nj.
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Fig. 5. Variation of effective gravity ge and von Zeipel effective tem-
perature Teff over the surface of the model in Fig. 1.

5. Observational consequences

In several studies of the effect of rotation on stellar struc-
ture efforts have been made to calculate the effect of rotation
and orientation on the observational parameters e.g. Mv, B − V
and line profiles (cf. Sweet & Roy 1953; Collins 1963, 2004).
These calculations determine the variation over the stellar sur-
face of effective temperature using the von Zeipel result T 4

eff ∝
ge where ge = |∇Ψ| is the effective gravity, and then build
plane parallel atmospheres at each point on the surface with
these ge, Teff, integrating over the visible surface to obtain the
values of Mv, B − V and spectral line profiles. For illustrative
purposes we show in Fig. 5 the variation of ge and Teff com-
puted in this way for the reference 2 M� model in Fig. 1.

Such calculations should be treated with caution since, as
pointed out in Sect. 2.4 above, our knowledge of the detailed
structure and dynamics of the surface layers of rapidly rotating
stars is poor, and urgently needs to be developed in some depth.
There may well be latitudinal motions and differential rotation
which invalidate the simple application of the von Zeipel result.

6. Conclusion

We have constructed 2-dimensional models of homogeneous
rotating stars where the rotation has been taken to be con-
stant throughout the whole of the star. The method used is to
solve the equations averaged over equipotential surfaces to-
gether with a spectral solution of Poisson’s equation for the
gravitational potential. The method gives accurate models, as
accurate in the angular variation as in the radial variation of the
spherical models which are limited by both the number of mesh
points and the accuracy of interpolation in the equation of state
and opacity tables. Results for models of 1, 2, 5, 10 M� and a
range of angular velocities are given in Tables 1 to 4.

The method is readily adapted to differential rotation of the
form Ω = Ω(w), where w = r sin θ, by replacing the rotational
potential Ω2w2/2 by

∫
Ω2(w)w dw

The results presented here suffer from many simplifica-
tions.

We have takenΩ = const. throughout the star, in both radia-
tive layers and in convective cores and envelopes. The example
of the Sun suggests this is a poor approximation at least for
convective envelopes.

The possible effect of rotation on the onset of convective
instability has been ignored and the onset taken as the point
where ∇ = ∇ad. Convective energy transport has been calcu-
lated using the local mixing length model with variable gravity
averaged over an equipotential surface. This is a very crude
model and detailed investigations are required to develop a
more realistic model of convection which captures the true na-
ture of the interaction of rotation and convection (and probably
differential rotation).

The surface layers have been assumed to rotate uniformly
and a simple grey atmosphere boundary condition derived on
this basis. Much more effort needs to be put into understanding
the structure and dynamics of the atmospheres of rotating stars,
this is especially important when one seeks to determine the
observable properties of rotating stars where one needs to have
realistic 2-dimensional models of their atmospheres.

Appendix A: Treatment of convection

As stated in Sect. 1 since our understanding of the interaction
of rotation and convection is poor we here make the simplifying
assumption that the angular velocity is constant in convective
regions. We make a simple modification of the mixing length
model in which the bubbles are assumed to rise (fall) along
the direction of effective gravity ge = ∇Ψ, due to their density
deficiency (excess) and to be in pressure equilibrium with their
surroundings so

v
dv
dn
=

1
2
g
δT
T
χ, where χ = −

(
∂ logρ
∂ log T

)
P

· (A.1)

The factor 1/2 is assumed to allow for viscous drag.
The temperature excess is taken as due to the rise (fall) of

the bubble along the superadiabatic temperature gradient sub-
ject to radiative losses and is given by

v
d δT
dn
= v

[(
dT
dn

)
ad

− dT
dn

]
−

(
48σT 3

cpκρ2�2

)
δT (A.2)

where � = αHp is the mixing length, Hp = P/geρ is the pressure
scale height, α an adjustable parameter and the factor 48 de-
pends on the assumed shape of the bubbles and is here taken to
agree with the model of Bohm-Vitense (1958).

Defining u = − log P, these equations reduce to

v
dv
du
= A δT,

d δT
du
= C − B δT

v
(A.3)

where

A = 1
2
χ

P
ρT

, B = 48σT 3ge

cpκα2Pρ
, C = T∆∇ (A.4)

∆∇ = ∇ − ∇ad, ∇ = d log T
d log P

, ∇ad =

(
d log T
d log P

)
ad

· (A.5)
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Variations of A,B,C over � are neglected in this model so
Eq. (A.3) have the solution v = v0 u, δT = δT0 u. Since bub-
bles are assumed to have travelled on average a distance �/2,
the change in u, [u] = α/2 and

v = v0
α

2
, δT = v2

0
α

2A with v2
0 + B v0 − AC = 0. (A.6)

The convective flux is in the direction of gravity and is esti-
mated as

Fc = 〈cp ρ v δT 〉n = f
cpρα

2v3
0

4A n (A.7)

where f accounts for the averaging over upward and downward
moving bubbles. Away from the centre v and δT are assumed
to be perfectly correlated so f = 1.

In the central regions Hp = P/gρ→ ∞ so we replace Hp by
H = (r Hp)1/2 and set f = H/Hp which gives Fc ∝ r as r → 0.

The energy equation integrated over an equipotential sur-
face is∫
Ψ

(Fc + Fr) .dS = Lψ (A.8)

which in terms of v0 becomes

cpρα
2

4A
∫
ψ

v3
0dS +

(
16σT 4

3κP
∇
) ∫

ψ

∇Ψ.dS = LΨ. (A.9)

With v0 given by Eq. (A.6) in principle this gives ∇ in terms
of P, ρ, T, L.

When radiative losses are unimportant v0 and hence Fc

are constant on equipotential surfaces, to retain this behaviour
when radiative losses are important we replace ge in B by its
average over an equipotential surface gs. gs and ∇rad are de-
fined by

gs =
1

S ψ

∫
ψ

∇Ψ.dS, Lψ =
16σT 4gs

3κP
∇rad S ψ (A.10)

and on substituting into Eq. (A.9) we obtain
(

3κPcpρα
2

64σAT 4gs

)
v3

0 +

v
2
0 + B0v0

AT

 = (∇rad − ∇ad) (A.11)

which is identical in form to the non rotating case except that gs

replaces g.
The solution for v0 is obtained by setting v0 = xB so that x

satisfies the cubic

x3 +
4
9

(
x2 + x

)
= U =

2
9
χ

(
P
ρB2

)
(∇rad − ∇ad) . (A.12)

Since U > 0 there is only one real solution for x which can most
conveniently be found by the very rapidly convergent iterative
scheme

x0 =
9U

(8 + 27U)2/3
, x j+1 =

U + 2x3
j + 4x2

j/9

3x2
j + 8x j/9 + 4/9

· (A.13)

With x = v0/B determined Eq. (A.6) give

∆∇ = B2

(
x2 + x
AT

)
, ∇ = ∇ad + ∆∇. (A.14)

In terms of the geometrical factors in the solution scheme in-
troduced in Sect. 2 we have

∇rad =
3κPLs

64πσGMsT 4

1
C(s)

, gs =
GMs

s2

C(s)
A(s)
· (A.15)

Such factors are readily incorporated into the mixing length
subroutine in the stellar structure code.

Appendix B: The gravitational potential
of inhomogeneous spheroids

The gravitational potential of uniform density spheroids and
ellipsoids was studied in depth in the 18th and 19th cen-
turies and much of this work is described in MacMillan (1930)
and Ramsey (1940). These results can be used to determine
the gravitational potential of spheroidal distributions of matter
where the density is constant on similar spheroidal surfaces,
but varies from surface to surface.

Consider a shell of uniform density ρ bounded by two sim-
ilar concentric spheroids, that is the spheroids with the same
eccentricity,

x2

a2
+
y2

a2
+

z2

c2
= 1 (B.1)

x2

a2
+
y2

a2
+

z2

c2
= (1 − dk)2. (B.2)

The mass of the shell is dM = 4πρa2 c dk; the gravitational
potential of the shell at a point P = (xi, yi, zi) is

V = −1
2

G dM
∫ ∞

λ

du

(a2 + u)
√

c2 + u
(B.3)

where λ = 0 for a point interior to the shell, whereas for a point
exterior to the shell λ is the largest root of the cubic

x2
i

a2 + λ
+

y2
i

a2 + λ
+

z2
i

c2 + λ
= 1 (B.4)

(cf. Ramsey 1940). The integral Iλ in Eq. (B.3) can be evaluated
in closed form as

Iλ = 2

√
1 − e2

e c
tan−1

 e c√
(c2 + λ) (1 − e2)

 (B.5)

where e =
√

a2 − c2/a is the eccentricity of the spheroid.
Now consider a distribution of matter such that the den-

sity ρ is constant on similar spheroidal surfaces but varies from
surface to surface. Let the outer surface of the spheroid be

x2

a2
+
y2

a2
+

z2

c2
= 1 (B.6)

and define the density distribution by its value ρ(z) up the mi-
nor axis of the spheroid. An elemental spheroidal shell be-
tween (z, z + dz) has mass of dM = 4πρz2dz/(1 − e2). At
a point P = (xi, yi, zi) the contribution to the potential from
spheroidal shells exterior to P is

Vext =
4πG

e
√

1 − e2
tan−1

(
e√

1 − e2

) ∫ c

zi

ρ(z)zdz (B.7)
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and the contribution from shells interior to zi is

Vin=
4πG

e
√

1 − e2

∫ zi

0
tan−1

 e z√
(z2 + λ) (1 − e2)

 ρ(z)zdz (B.8)

where λ(z) is the largest root of

x2
i + y

2
i

a2
z + λ

+
z2

i

z2 + λ
= 1, a2

z =
z2

1 − e2
· (B.9)

Given ρ(z) the potential at any point, interior or exterior to the
spheroid, is now readily evaluated by quadrature.
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