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Abstract. A model for axisymmetric magnetized accretion flow is proposed. The dominant mechanism of energy dissipation is
assumed to be the magnetic diffusivity due to turbulence in the accretion flow. In analogy to the advection-dominated accretion
flow (ADAF) solutions, a constant fraction of the resistively dissipated energy is stored in the accreting gas and the rest is radi-
ated. We first introduce the general self-similar solutions which describe a resistive and nonrotating flow with purely poloidal
magnetic field. The radial dependence of physical quantities is identical to that in viscous ADAF solutions. Although the main
focus of this study is on nonrotating magnetized accretion flow, for rotating flow with both poloidal and toroidal components of
magnetic field we find a radial scaling of solutions similar to the nonrotating case. We show that the accretion and the rotation
velocities are both below the Keplerian rate, irrespective of the amount of cooling. We show that the set of equations is reduced
to one second order differential equation for a nonrotating flow. The geometrical shape of the disk changes depending on the
fraction of the resistively dissipated energy which is stored in the accreting gas. However, there is a hot low-density gas above
the disk in almost all cases. The net accretion rate is calculated for a set of illustrative parameters.
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1. Introduction

The importance of the accretion process has been recognized
in connection with the physics of many astrophysical systems
such as protosteller disks (e.g., Mineshige & Umemura 1997;
Tsuribe 1999; Calvet et al. 2000), disks around black holes or
compact objects, or disks at the center of active galactic nuclei
(e.g., Lynden-Bell & Rees 1971; Kato et al. 1998). According
to their geometrical shapes, accretion disks are generally di-
vided into thin and thick disks. A mechanism for the transport
of angular momentum is another key ingredient in the theory
of accretion processes and many theoretical uncertainties re-
main about its nature. However, the theory of thin disks is well
understood based on a pioneer work by Shakura & Sunyaev
(1973). In this theory it is assumed that there is efficient radia-
tion cooling in the flow.

During recent years another type of accretion disk has been
studied, in which the energy released through viscous processes
in the disk may be trapped within the accreting gas (see, e.g.,
Ichimaru 1977; Narayan & Yi 1995, hereafter NY). In this
kind of flow which is known as advection-dominated accretion
flow (ADAF), the accreting gas has a very low density and is
unable to cool efficiently. A full analysis of the dynamics of the
solution was presented in an important paper by NY. Since both
the angular momentum and the energy dissipation in the flow
is due to the turbulent viscosity as in the standard α model, we
can call such flows “viscous” ADAF models.

There is growing evidence that the accretion flows in many
astrophysical systems involve magnetized plasma. Accretion
disks containing magnetic fields have been studied by many
authors (e.g., Ogilvie 1997; Hawley 2001; Casse & Keppens
2002). However, the standard viscous ADAF model completely
ignores the presence of an ordered global magnetic field and
it is assumed that the turbulent magnetic field contributes a
constant fraction of the total pressure (NY). However, we can
expect accretion flows, in which angular momentum is trans-
ported by a global magnetic field and the energy is released by
Joule heating. This possibility has been addressed by Kaburaki
(2000). He presented a set of analytical solutions for a fully
advective accretion flow in a global magnetic field and the con-
ductivity is assumed to be constant for simplicity.

Schwartzman (1971) was the first to point out the impor-
tance of the magnetic field in an accretion process. He proposed
a hypothesis of equipartition between the magnetic and kinetic
energy densities and this picture as mentioned above is usu-
ally accepted in the modern picture of viscous ADAF models
(e.g., NY). A more accurate study was done by Bisnovatyi-
Kogan & Ruzmaikin (1974), where an exact nonstationary so-
lution for field amplification in the radial accretion flow was
also obtained. Also, Bisnovatyi-Kogan & Lovelace (2000) sug-
gested that recent papers discussing ADAF as a possible solu-
tion for astrophysical accretion should be treated with caution,
particularly because of ignorance of the magnetic field. While
they obtained a solution for a time-averaged magnetic field in a
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quasispherical accretion flow, an analysis of energy dissipation
and equipartition between magnetic and flow energies has been
presented (Bisnovatyi-Kogan & Lovelace 2000). In our study,
we follow similar ideas in order to study magnetized accretion
flow in which magnetic energy dissipation is stored in the flow.

The dynamics of radiatively inefficient accretion flows has
been the subject of many studies during recent years (e.g.,
Igumenshchev & Abramowicz 1999, 2000; Stone et al. 1999;
McKinney & Gammie 2002). In these viscous accretion mod-
els, the behaviour of the flow depends on the standard dimen-
sionless viscosity parameter α. On the other hand, as rotation
is allowed, such flows become subject to strong convection
with completely different flow pattern and radiative proper-
ties (Igumenshchev & Abramowicz 1999; Stone et al. 1999).
Numerical MHD simulations of radiatively inefficient flows
have been done recently by many authors (e.g., Hawley 2001;
Machida et al. 2001; Casse & Keppens 2002). However, in
most of these the resistive terms in the MHD equations have
been neglected, or the resistivity has been considered only in
the induction equation without accounting the corresponding
dissipation in the energy equation.

In this paper, we want to explore how the structure of a
steady-state thick disk depends on its resistivity by solving the
two-dimensional MHD equations for disks which have the sim-
plifying feature that they are self-similar in radius. We will con-
sider the general problem of accretion flow where the field an-
nihilation is approximated by a finite “turbulent” conductivity
and the viscosity of the fluid is completely neglected in order
to construct a fully resistive model for accretion within a global
magnetic field. We restrict our attention to a nonrotating accre-
tion flow which contains a purely poloidal magnetic field. We
will discuss the general case in a future paper. However, we
will find the radial scaling of self-similar solutions for the gen-
eral case where the fluid is rotating and contains both poloidal
and toroidal components of the magnetic field.

This paper is organized as follows. In Sect. 2 the general
problem of constructing a model for resistively accretion flow
is defined. The self-similar solutions are presented in Sect. 3,
and the effects of the input parameters are examined. The im-
plications of this analysis are summarized in Sect. 4.

2. Formulation of the problem

As stated in the introduction, we are interested in constructing
a model for describing magnetized accretion disks. The macro-
scopic behavior of such flows can be studied by MHD approx-
imation. For simplicity, the self-gravity and general relativistic
effects have been neglected. The first assumption is true as long
as the total mass of the disk is small compared with the product
of the mass of central object and the angular thickness of the
disk. Thus, the basic equations of our problem are written as
follows:

∂ρ

∂t
+ ∇.(ρu) = 0, (1)

ρ

(
∂u

∂t
+ (u.∇)u

)
= −∇p − ρ∇Ψ + 1

4π
J × B, (2)

∂B
∂t
= ∇ × (u × B − ηJ), (3)

ρ

γ − 1
d
dt

(
p
ρ

)
+ p∇.u = Qdiss − Qcool (4)

∇.B = 0, (5)

where ρ, u, p, Ψ are the density, the velocity, the pressure and
the gravitational potential due to a central object, respectively.
We assume that the mass of the central object is M, and so
the gravitational potential becomes Ψ = −GM/r where r is
the spherical radial coordinate. Also, J = ∇ × B is the cur-
rent density and η represents the magnetic diffusivity. The term
on the right hand side of the energy equation, Qdiss, is the rate
of heating of the gas the dissipation, Qcool represents the en-
ergy loss through radiative cooling, and γ is the adiapatic in-
dex. We assume that the difference between energy dissipation
and radiative cooling is a fraction f of energy dissipation, i.e.
Qdiss−Qcool = f Qdiss (e.g., NY). The parameter f measures the
degree to which the flow is advection-dominated and in general
it depends on the details of the heating and cooling mechanisms
and will vary with both r and θ. However, we assume a con-
stant f for simplicity. Clearly, the case f = 1 corresponds to
the extreme limit of no radiative cooling, and in the limit of
efficient cooling we have f = 0.

We assume that the disk is stationary and axisymmet-
ric. There are numerous studies in which magnetized equilib-
rium structures have been investigated via analytical or nu-
merical methods (e.g., Igumenshchev & Abramowicz 1999,
2000; Stone et al. 1999; Shalybkov & Rüdiger 2000; Ogilvie &
Livio 2001; McKinney & Gammie 2002; Rüdiger & Shalybkov
2002). This paper will be restricted to nonrotating accretion
flow in a purely poloidal magnetic fields configuration. The
whole magnetic field is maintained by the electric current in-
duced in the accretion region, and the solutions are determined
only by the assumption of self-similarity. According to the anti-
dynamo theorem (e.g., Cowling 1981), such a configuration
cannot be maintained in a stationary state by an axisymmet-
ric flow in the presence of resistive dissipation. We can meet
this criticisms in two forms: for many problems the magnetic
dissipation time is very long, much longer than the age of the
system. For such problems, one assumes the field to have been
generated in the distant past, and restricts one’s attention to its
effect on current dynamics, equilibrium, stability, etc.

For other problems the dissipation time is not longer than
the age of the system. In such cases (as in this study), one
is making some implicit assumption about the regeneration
of the field by (dynamo) processes outside the computational
regime of the problem at hand (e.g., on a 3D time-dependent
microscale, or beyond the boundaries of the formal computa-
tion). Whether these assumptions are consistent with the com-
putational details depends, of course, on the quality of the the
author’s physical intuition, since such assumptions lie beyond
the physical and mathematical equations that are actually posed
and solved.

There many studies in which the time-averaged physical
quantities have been analyzed so that one can still talk about
a stationary state, and this approach has been widely used in
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the literature (e.g., Lovelace et al. 1987, 1994; Shalybkov &
Rüdiger 2000; Ogilvie & Livio 2001; Rüdiger & Shalybkov
2002). In this study the physical quantities such as velocity u,
magnetic field B etc. denote the time-averaged values and in
general, the instantaneous value of each physical variable con-
sists of a stationary part and a fluctuating component. The influ-
ence of the fluctuating parts is included crudely, by modifying
the transport coefficients which would apply in the absence of
fluctuations. Thus, we neglect the time average of the fluctuat-
ing parts of velocity and magnetic field, and the generation of a
magnetic field in the disk by dynamo activity is not included
(e.g., Pudritz 1981). Since we are interested in nonrotating
quasispherical accretion, one may ask about the instantaneous
magnetic field lines. Recently, Bisnovatyi-Kogan & Lovelace
(2000) proposed a model for magnetized quasispherical accre-
tion, in which a sketch of the instantaneous poloidal magnetic
field lines and the time-averaged flow velocity has been shown
in Fig. 1 of their work. As for the accretion flow within a global
poloidal magnetic field, we are assuming the same configura-
tion.

We work in spherical polar coordinates (r, θ, ϕ) with the ori-
gin on the central object. We assume that the net mass accre-
tion rate Ṁ = − ∫

2πr2 sin θρvrdθ is independent of radius r.
Since r2ρvr is independent of r and the disk is stationary and
axisymmetric, the continuity Eq. (1) shows vθ = 0 and takes
the form

1
r2

∂

∂r

(
ρvrr

2
)
= 0. (6)

The condition of constant Ṁ is similar to what has been used
by NY; however, it has been relaxed by some authors and they
find solutions with outflows (e.g., Henriksen & Valls-Gabaud
1994). In this paper, we consider the simple case of constant net
mass accretion rate at all radii. We can write the components of
the equation of motion (Eq. (2)) in spherical coordinates:

ρ

vr ∂vr∂r −
v2ϕ

r

 = −∂p
∂r
− ρGM

r2
+

1
4π

(JθBϕ − JϕBθ), (7)

−ρv2ϕ cot θ = −∂p
∂θ
+

r
4π

(JϕBr − JrBϕ), (8)

ρvr
∂vϕ

∂r
+ ρ
vrvϕ

r
=

1
4π

(JrBθ − JθBr). (9)

Also, the three components of induction Eq. (3) are:

∂

∂θ
[r sin θ(vrBθ − ηJϕ)] = 0, (10)

∂

∂r
[r sin θ(vrBθ − ηJϕ)] = 0, (11)

∂

∂r
(rvϕBr − rvrBϕ) +

∂

∂θ
(vϕBθ) − ∂

∂r
(ηrJθ) +

∂

∂θ
(ηJr) = 0. (12)

In Eqs. (10)–(12), the terms without η represent the advection
of the magnetic field by the flow motion, while the terms con-
taining η account for the diffusion of the field.

From Eqs. (10) and (11) one can simply deduce that
r sin θ(vrBθ − ηJϕ) = 0, or

vrBθ − ηJϕ = 0. (13)

This important equation can be understood easily in this way:
In a stationary, axisymmetric configuration, the electric field
can be written as the gradient of a scalar potential, and
its φ component (i.e., Eϕ) which is in proportion to vrBθ−ηJϕ in
our notation, should vanish identically. This expression appears
in the parentheses in Eqs. (10) and (11). So, these equations re-
duce into one equation, i.e. Eq. (13), as we showed above. We
will find self-similar solutions that satisfy Eq. (13).

The energy Eq. (4) and the magnetic flux conservation give

ρ

(
vr
γ − 1

∂

∂r

(
p
ρ

)
− p
ρ2
vr
∂ρ

∂r

)
= f Qdiss, (14)

1
r2

∂

∂r

(
r2Br

)
+

1
r sin θ

∂

∂θ
(Bθ sin θ) = 0, (15)

where in the above equations the components of the current
density J are

Jr =
1

r sin θ
∂

∂θ
(Bϕ sin θ), Jθ = −1

r
∂

∂r
(rBϕ),

Jϕ =
1
r

[
∂

∂r
(rBθ) − ∂Br

∂θ

]
·

To close the system of equations, we should specify the func-
tional forms of the magnetic diffusivity η and the energy dissi-
pation Qdiss. In this study, we have completely neglected the ef-
fects of viscous processes, and our attention has been restricted
to resistive dissipation. In other words, the accretion flow of
our model is not infinitely conducting. For simplicity, we could
assume the resistivity to be constant (see, e.g., Kaburaki 2000).
However, we assume that the magnetic diffusivity is due to tur-
bulence in the accretion flow and it is reasonable to express
this parameter in analogy to the α-prescription of Shakura &
Sunyaev (1973) for the turbulent viscosity,

η = η0
c2

s

ΩK
= η0

p
ρΩK
, (16)

where ΩK =
√

GM/r3 is the Keplerian angular velocity, and
cs is the isothermal sound speed. NY applied a similar func-
tional form for kinematic coefficient of viscosity, i.e. ν =
α(p/ρΩK). Exactly in analogy to NY’s prescription, we are
using the above equation for the magnetic diffusivity η. Note
that η is not constant and depends on the physical variables
of the flow, and in our self-similar solutions, as we will show,
η scales with radius as r1/2. The magnetic diffusivity has the
same units as kinematic viscosity and we assume that the mag-
nitude of η is comparable to that of the turbulent viscosity
(Bisnovatyi-Kogan & Ruzmaikin 1976; Parker 1979), although
we have neglected kinematic viscosity. This form of scaling
for diffusivity has been widely used by many authors (e.g.,
Lovelace et al. 1987; Lovelace et al. 1994; Ogilvie & Livio
2001; Rüdiger & Shalybkov 2002). Due to the arbitrary η0

it is not so important which velocity is used for the scaling.
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For example, in some studies Alfvén velocity is used for the
velocity in the above scaling (e.g., Fendt & Cemeljic 2002),
while in others the sound speed is still applied even in the mag-
netized case (e.g., Lovelace et al. 1994; Rüdiger & Shalybkov
2002). Nevertheless, the sound speed, it seems, has an advan-
tage; because it is the largest intrinsic velocity parameter in the
turbulent plasma, and may be used universally, with or without
magnetic field. In this study, following many previous studies,
we use the above parameterized form for the diffusivity.

For the heating term, Qdiss, we may have two sources of
dissipation. Magnetic reconnection may lead to energy release.
Also, we can consider the viscous and resistive dissipations due
to a turbulence cascade. In this study, only resistive dissipation
has been considered as the dominant process: Qdiss =

η
4π J2.

Now we have constructed our model and the main equa-
tions of the model are Eqs. (6)–(9) and (12)–(15). In the
next section, we will present self-similar solutions of these
equations.

3. Analysis

3.1. Self-similar solutions

To better understand the physics of our accretion flow in a
global magnetic field we seek self-similar solutions of the
above equations. Of course, this method is familiar from its
wide applications to the full set of equations of MHD in many
research fields of astrophysics. As long as we are not interested
in the boundaries of the problem, such solutions that describe
the behavior of the flow in an intermediate region far from the
radial boundaries.

Before presenting the self-similar solutions, we introduce
a convenient functional form for the magnetic field. Generally,
the later may have both poloidal and toroidal components. We
can define a positive-definite magnetic flux function Φ(r, θ)
from which we may obtain the poloidal components of the
magnetic field:

B =
1

2π
∇ ×

(
Φ

r sin θ
eϕ

)
+ Bϕeϕ. (17)

We can easily show that by integrating the above equation over
the circular area πr2 in the plane of θ = π/2, the result, i.e.
Φ(r, π/2), is the defined magnetic flux. This equation automat-
ically satisfies Eq. (15).

Writing the equations in a non-dimensional form, that is,
scaling all the physical variables by their typical values, brings
out the non-dimensional variables. It is simple to show that a
solution of the following form satisfies the equations of our
model:

ρ(r, θ) = ρ0
R(θ)

(r/r0)3/2
, (18)

p(r, θ) = p0
P(θ)

(r/r0)5/2
, (19)

vr(r, θ) = rΩK(r)V(θ), (20)

vϕ(r, θ) = rΩK(r)Ω(θ), (21)

Br(r, θ) =
B0

2π sin θ
dφ(θ)

dθ
1

(r/r0)5/4
, (22)

Bθ(r, θ) = −B0
3φ(θ)

8π sin θ
1

(r/r0)5/4
, (23)

Bϕ(r, θ) = B0
b(θ)

(r/r0)5/4
, (24)

where ρ0, p0, B0 and r0 provide convenient units with which
the equations can be written in non-dimensional form and ΩK

denotes the Keplerian angular velocity, viz. ΩK(r) =
√

GM/r3.
Also, we obtain the following equations of the components of
current density:

Jr(r, θ) =
B0

r0

1
sin θ

d
dθ

(b(θ) sin θ)
1

(r/r0)9/4
, (25)

Jθ(r, θ) =
B0

4r0

b(θ)
(r/r0)9/4

, (26)

Jϕ(r, θ) =
B0

2πr0

[
3φ(θ)

16 sin θ
− d

dθ

(
1

sin θ
dφ(θ)

dθ

)]
1

(r/r0)9/4
, (27)

and considering Eq. (16), the magnetic diffusivity η becomes

η = η0
p0

ρ0

√
GM/r3

0

P(θ)
R(θ)

(
r
r0

)1/2

· (28)

Substituting the above solution in the momentum, induction
and energy equations, we obtain a set of coupled ordinary dif-
ferential equations. Note that the above solutions automatically
satisfy continuity Eq. (6). Equations of motion (7), (8) and (9)
become

R

(
−V2

2
− Ω2

)
=

5
2

A1P − R +
A2

16π

×
{

b2 +
3φ

4π2 sin θ

[
3φ

16 sin θ
− d

dθ

(
1

sin θ
dφ
dθ

)]}
, (29)

−RΩ2 cot θ = −A1
dP
dθ
+

A2

4π

{
1

4π2 sin θ
dφ
dθ

×
[

3φ
16 sin θ

− d
dθ

(
1

sin θ
dφ
dθ

)]
− b

sin θ
d
dθ

(b sin θ)

}
, (30)

RVΩ = − A2

4π2 sin θ

[
b

dφ
dθ
+

3φ
4 sin θ

d
dθ

(b sin θ)

]
. (31)

Equation (12) gives

2πVb − d
dθ

(Ωφ) − Ω

sin θ
dφ
dθ

+
η0

2
Pb
R
+

8πη0

3
d
dθ

[
P

R sin θ
d
dθ

(b sin θ)

]
= 0, (32)

and Eq. (13) is cast into this form

d
dθ

(
1

sin θ
dφ
dθ

)
− 3φ

16 sin θ
− 3

4η0A1

RVφ
P sin θ

= 0, (33)
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and finally the energy Eq. (14) becomes

RV
3γ − 5

2(γ − 1)
=

fη0A2

4π


1

4π2

[
3φ

16 sin θ
− d

dθ

(
1

sin θ
dφ
dθ

)]2

+
b2

16
+

[
1

sin θ
d
dθ

(b sin θ)

]2
 , (34)

where

A1 =
p0

ρ0(GM/r0)
=

(
c0s

v0K

)2

, (35)

A2 =
B2

0

ρ0(GM/r0)
= 4π

(
v0A

v0K

)2

, (36)

where v0K = (GM/r0)1/2 is the Keplerian velocity, and v0A =

B0/
√

4πρ0 is the Alfvén velocity.
We can define the ratio of the thermal to the magnetic pres-

sures β as

β(θ) = β0
4π2P sin2 θ

9φ2/16 + (dφ/dθ)2 + 4π2b2 sin2 θ
, (37)

where β0 =
p0

B2
0/8π

= 8π A1
A2

. Equations (29)–(34) constitute

a system of ordinary non-linear differential equations for the
six similarity variables φ(θ), b(θ), R(θ), P(θ), V(θ) and Ω(θ).
Indeed, the behaviour of the solution depends on the bound-
ary conditions for which assumptions are made based on some
physical assumptions such as symmetry with respect to the
equatorial plane. Ogilvie (1997) studied the equilibrium of
magnetized non-accreting disks by assuming self-similarity in
the spherical radial coordinate. If we neglect resistivity, our so-
lution reduces to Ogilvie’s solution, i.e. the model describes
a non-accreting disk containing poloidal and toroidal compo-
nents of the magnetic field. However, in the case of resistive
accretion flow, the scalings of the quantities with spherical ra-
dius are still similar to those presented by Ogilvie (1997) and
other authors (e.g., Blandford & Payne 1982), i.e. ρ ∝ r−3/2,
p ∝ r−5/2 and B ∝ r−5/4.

The main topic of this study is nonrotating accretion flow.
But an interesting feature of the solutions is worth emphasiz-
ing. Using Eq. (33), we can rewrite Eq. (29) as

R

(
1 − V2

2
−Ω2

)
=

5
2

A1P +
A2

16π

(
b2 − 9RVφ2

16π2η0P sin2 θ

)
· (38)

Since all the similarity variables are positive except for V , we
see that the right hand side of Eq. (38) is positive for all θ ex-
cept θ = 0 which is not evident from the equation. If we sub-
stitute Eqs. (33) and (34) into the last term of the right hand
side of the above equation, a non-rotating flow within a purely
poloidal field (i.e., Ω = 0 and b = 0) which is our concern in
this paper, is positively well-defined for all θ, even in the limit
of vanishing θ. However, if we consider both the toroidal and
the poloidal components of the magnetic field, we can still say
that when θ tends to zero, the last term of the right hand side of
Eq. (38) even if it tends to a very large value, would be nega-
tive (because V is negative, the rest of the variables are positive)
and so the right hand side of the equation is positive (there is

a minus sign before the last term of the right hand side). Thus
we should have

V2

2
+ Ω2 ≤ 1. (39)

This inequality implies rotation velocities below the Keplerian
rate for the solutions of the model, irrespective of the amount of
cooling or value of resistivity η0. Also, we can say that, as the
value of the angular velocity increases, the accretion velocity
decreases. In other words, in this model the high accretion rate
corresponds to a low rotation rate. In this study, we shall restrict
our attention to a non-rotating accretion flow, i.e. Ω = 0.

3.2. Nonrotating accretion solutions

What we have is a set of complicated differential equations
which must be solved under appropriate boundary conditions.
Although a full numerical solution of Eqs. (29)–(34) would
now be possible, it is more instructive to proceed by analyzing
the model in some restrictive conditions such as non-rotation.
To derive this solution we set Ω = 0 and b = 0; the latter con-
dition means that we consider purely poloidal magnetic fields.
However, to further simplify the problem, we cannot impose
spherical symmetry, i.e. d/dθ ≡ 0. Because if we impose spher-
ical symmetry, we can not identify the actual magnetic field
lines, nor can we account for nonradial forces. But we know
that in resistive accretion flow the topology of the magnetic
field plays a vital role.

Like NY we define the parameters ε = 5/3−γ
γ−1 and εf = ε

f .
As we will see the parameter εf plays an important role in the
behaviour of the solutions. Obviously, when we set Ω = 0 and
b = 0, Eqs. (31) and (32) immediately drop out, and Eqs. (29),
(30) and (34) can be written as

R

(
1 − V2

2

)
=

5
2

A1P − 3A2

64π3

× φ
sin θ

[
d
dθ

(
1

sin θ
dφ
dθ

)
− 3φ

16 sin θ

]
, (40)

A1
dP
dθ
+

A2

16π3 sin θ

[
d
dθ

(
1

sin θ
dφ
dθ

)
− 3φ

16 sin θ

]
dφ
dθ
= 0, (41)

[
d
dθ

(
1

sin θ
dφ
dθ

)
− 3φ

16 sin θ

]2

+
24π3εf
η0A2

RV = 0, (42)

and Eq. (33) remains unchanged. Now, the set of equations re-
duces to four Eqs. (33), (40), (41) and (42) which we want to
solve.

Clearly the expressions inside the brackets in Eqs. (40),
(41) and (42) are similar, and by substituting from Eq. (33),
these three equations become

R

(
1 − V2

2

)
=

5
2

A1P − 9A2

256π3η0A1

RVφ2

P sin2 θ
, (43)

A1
dP
dθ
+

3A2

64π3η0A1

RVφ

P sin2 θ

dφ
dθ
= 0, (44)
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RVφ2

P2 sin2 θ
+

128π3η0εf A2
1

3A2
= 0. (45)

From Eq. (45), we obtain

RV = −128π3η0εfA2
1

3A2

P2 sin2 θ

φ2
, (46)

and by substituting RV from the above equation into Eqs. (43)
and (44), we have

R

(
1 − V2

2

)
=

(
5 + 3εf

2

)
A1P, (47)

1
P

dP
dθ
+

2εf
φ

dφ
dθ
= 0. (48)

Fortunately, Eq. (48) is integrable and gives

P = φn, (49)

where n = 2εf . Now, considering the above result, we can
rewrite Eqs. (46) and (47) as

RV = −128π3η0εfA2
1

3A2
φ2n−2 sin2 θ, (50)

R

(
1 − V2

2

)
=

(
5 + 3εf

2

)
A1φ

n. (51)

From these two equations, one can easily calculate V and R as
functions of φ as follows

V(θ) =
1 −

√
1 + 2a2φ2(n−2) sin4 θ

aφn−2 sin2 θ
, (52)

where

a =
32π2β0η0εf
3(5 + 3εf)

, (53)

and by substituting V as a function of φ into Eqs. (50) or (51),
we can find R as a function of φ. Thus, if we can find φ, all
physical variables are known. Equation (33) is the last equa-
tion which gives us φ as a function of θ. Considering Eqs. (49)
and (50), we can rewrite Eq. (33) as

d
dθ

(
1

sin θ
dφ
dθ

)
− 3φ

16 sin θ
+ 4π2β0εfφ

n−1 sin θ = 0 (54)

or,

d2φ

dξ2
− 3φ

16
(
1 − ξ2) + 4π2β0εfφ

n−1 = 0, (55)

where ξ = cos θ. Now we have a second order ordinary differ-
ential equation for φ(θ) which can be solved using a numeri-
cal method (in the Appendix we give an analytical solution for
n = 1). One boundary condition can be specified in the equa-
torial plane, by assuming that the field lines thread the equator
perpendicularly:(

dφ
dθ

)
θ=π/2

= 0. (56)
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Fig. 1. Self-similar solutions corresponding to γ = 4/3, η0 = 0.1 and
β0 = 0.1. Top: magnetic flux function φ(θ) as a function of polar an-
gle θ. Middle: Radial velocity V(θ). Bottom: density R(θ).

The second boundary condition can be specified by demanding
that the magnetic flux enclosed by a very small cone around the
polar axis vanishes:

φ(0) = 0. (57)

Thus, the complicated set of differential equations is reduced to
a boundary value problem of a second order differential equa-
tion. We have obtained numerical solutions of the above equa-
tion for different values of f and η0. For our illustrative parame-
ters, we assume r0 = 1 pc , B0 = 10−5G, M = 106 M�, β0 = 0.1
and Ṁ0 = 2πρ0r2

0

√
GM/r0 = 1.2 × 10−4 M�/year which gives

ρ0 = 2×10−20 g/cm3. Figure 1 shows some particular solutions
corresponding to η0 = 0.1, γ = 4/3 and different values of the
advected energy f . For a fixed value of γ, the solutions imply
increasing cooling. This general behavior is the same as in NY
for viscous ADAF.

As the six panels in Fig. 1 show, the behaviour of the so-
lutions, is very sensitive to the value of f or εf . The top panels
show the variations of the magnetic flux function φ(θ) as a func-
tion of θ. While this similarity function of the magnetic flux is
zero on the polar axis (this is a boundary condition), it has a
maximum value on the equator which increases with decreas-
ing f . This growing flux contrast between the equatorial region
and the polar region implies that at a fixed radius on the equator,
the magnetic flux increases with decreasing γ (or, equivalently,
increasing cooling).



M. Shadmehri: A model for quasi-spherical magnetized accretion flow 385

The middle panels show the similarity function of the ra-
dial velocity V(θ) (see Eq. (52)). We see that the maximum
accretion velocity is in the equatorial region, and on the polar
axis there is no mass inflow. As we expected, the accretion ve-
locity is sub-Keplerian. Although for our representative set of
parameters the variation of V(θ) as a function of θ decreases
from equatorial to polar region, we can recognize two distinct
regions in the general profile of V(θ) depending on the value
of the velocity. The bulk of the accretion occurs between the
equatorial plane at θ = π/2 and a surface at θ = θf , inside of
which the velocity V(θ) is zero. Note that all of our solutions
have well-behaved non-sigular V(θ) at all θ, and the radial ve-
locity does not diverge at θ = θf . Also, for the flows which
extend from the equatorial plane to a surface at θ = θs where
θf < θs < π/2, the accretion velocity is decreasing. With de-
creasing f , the region with maximum accretion velocity be-
comes narrow, i.e. θs decreases.

In the bottom panels of Fig. 1, we plot the density similar-
ity function R(θ). The density contrast between equatorial and
polar regions increases with decreasing f . Like for the mag-
netic flux function φ(θ), as f decreases the density grows and
becomes concentrated toward the equatorial plane. As already
mentioned, the small f solutions correspond to efficient cool-
ing for a fixed γ. Thus the R(θ) profile clearly shows what we
expect with increasing cooling, or equivalently εf . More in-
terestingly, although the solutions for large εf imply that the
bulk of the accretion occurs in the equatorial region (i.e., like
a thin disk configuration), in all cases there is a low density
with higher temperature above the disk as the bottom panels
of Fig. 1 show. While the bulk of the accreting gas along the
equatorial plane has approximately constant temperature, this
tenuous region also has a constant higher temperature. As the
cooling increases, the temperatures of both regions decrease.
Note that in the tenuous region there is no accretion.

From these figures we see for fixed values of γ and η0

that, as the advected energy decreases and more energy radiates
out of the system, the magnetic flux function φ(θ) increases. It
means that magnetic field lines can penetrate the disk more eas-
ily when we have cooling. Thus, while the thermal pressure de-
creases due to the cooling, the magnetic pressure increases and
the ratio of these two becomes lower which is important in ana-
lyzing the dynamics of the flow. All solutions correspond to the
poloidal magnetic field configuration, in which the field lines
bend only once when passing through the equatorial plane.

Figure 2 shows this ratio of the thermal to the magnetic
pressure. We see that this ratio decreases as the amount of
the advected energy f decreases. Figure 3 shows the mag-
netic field lines for a typical self-similar solution with η0 =

0.1 and f = 0.84. For other input parameters we can obtain
the same configuration. Ogilvie (1997) studied a nonaccreting
magnetized disk by considering a polytropic equation of state.
However, the magnetic field configuration in his study is sim-
ilar to what has been obtained in this study for resistive ac-
cretion flow. If we neglect turbulent diffusivity and the energy
equation, our solutions reduce to Ogilvie’s solutions. However,
in our scenario two main factors in the dynamics of the flow
are the diffusion mechanism of the magnetic field lines, and the
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Fig. 2. Ratio of the thermal to the magnetic pressures for the solutions
shown in Fig. 1.

Fig. 3. Representation of magnetic field lines in the meridional plane
for a typical self-similar solution with η0 = 0.1, γ = 4/3 and f = 0.84.

advected energy. For example, the net rate of accretion depends
on the enclosed flux function φ(θ). We can write

Ṁ = −2Ṁ0

∫ π
2

0
sin θR(θ)V(θ)dθ. (58)

Considering Eqs. (42) and (49), we can rewrite the above equa-
tion as

Ṁ =
16
3
π2β0nη0A1Ṁ0

∫ π
2

0
φ2n−2 sin3 θdθ. (59)

Although this kind of magnetized accretion flow is different
from Bondi (1952) accretion in various aspects, we can de-
fine the Bondi accretion rate for the illustrative parameters
as ṀBondi � 4πG2M2ρ0/c3

s . Thus, ṀBondi = 2(v0K/c0s)3Ṁ0.
Assuming A1 = 1, we can write the net accretion rate as follows

Ṁ =
8
3
π2β0nη0ṀBondi

∫ π
2

0
φ2n−2 sin3 θdθ. (60)

For the flows which we have at hand, the mass accretion rate
is at below the Bondi accretion rate for a wide range of input
parameters (e.g., εf and η0). Figure 4 shows the net mass accre-
tion rate Ṁ/ṀBondi as a function of the advected energy f for
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Fig. 4. The net accretion rate Ṁ/ṀBondi as a function of the advected
energy f for the self-similar solutions shown in Fig. 1.

γ = 4/3 and η0 = 0.1. As the above equation shows, the mass
accretion rate changes in proportion to η0. For these parame-
ters, we have fitted an approximate function, viz. Ṁ/ṀBondi ≈
0.19−0.38 f+0.19 f 2. The radial structure of the resistive radia-
tively inefficient accretion flow is dramatically modified from
the Bondi profile, and the mass accretion rate decreases signif-
icantly if the advected energy f is increased. We see that, for
a fixed value of η0, the enclosed flux function φ(θ) increases
as εf increases (i.e., cooling increases) and the net mass accre-
tion rate increases as well. Thus, in our model the accretion
rate is always suppressed compared to the Bondi rate, although
the precise amount depends on the cooling and the resistivity.
There are many numerical simulations which show an infall of
non-rotating or slowly-rotating magnetized gas with reduced Ṁ
(e.g., Igumenshchev et al. 2000; Hawley et al. 2001). However,
our simple model for magnetized accretion flow shows this be-
havior clearly.

4. Discussion and conclusions

In this paper we have obtained axisymmetric magnetized self-
similar advection-dominated flow solutions by considering an
ordered magnetic field and resistive dissipation of the energy
of the flow. The radial dependence of the solutions has the
same behaviour as that of ADAF solutions (NY), but the an-
gular parts are obtained by solving a set of ordinary differ-
ential equations. In the model, the viscosity of the flow is
completely neglected in order to make the contrast between
the standard viscous and resistive ADAF solutions clear. We
showed that the radial and the rotational velocities are well be-
low the Keplerian velocity, and this is independent of the re-
sistivity and the amount of cooling. However, the main aim of
this study was to study the nonrotating quasi-spherical mag-
netized flow directly just by solving the relevant MHD equa-
tions. The same problem has been addressed by many authors,
under the assumption that the field will achieve equipartition
of magnetic and kinetic energies (see, e.g., Shvartsman 1971;
NY; Bisnovatyi-Kogan & Lovelace 2000). Bisnovatyi-Kogan
& Lovelace (2000) discussed equipartition between magnetic

and kinetic energies using time-averaged magnetic field solu-
tion. They argued that with such an equipartition half of the dis-
sipated energy of the accretion flow results from the destruction
of the magnetic field. In this paper we showed that the equipar-
tition depends on the input parameters, more importantly the
amount of advected energy (εf ) and the resistivity η0. Also, the
non-magnetized problem is described by pure hydrodynamics;
it was solved by Bondi (1952) and has been widely applied.
Note that our solutions differ in various aspects from Bondi’s
(1952) spherical accretion. While the magnetic field diffusivity
is the main accretion factor in accretion in our model, the en-
ergy equation has been considered as well. In Bondi accretion,
there is no mechanism for energy transport. Note that in pure
Bondi spherical flow, self-similar accretion is allowed only for
a single value of γ. However, a magnetized, rediatively ineffi-
cient accretion flow is possible for a range of values of γ. The
other interesting feature is that the dynamics of such a flow de-
pends not only on the magnetic diffusivity η0, but also on the
fraction of advected energy f .

For a nonrotating resistive accretion flow, the system of
equations simplified to a second order differential equation.
For given εf and η0 this equation determines the magnetic
field, and the other physical variables can be found using the
set of algebraic equations we obtained. Although we have ne-
glected ingredients such as angular momentum and viscosity,
the general properties of our solutions are similar to ADAF so-
lutions. More importantly, the geometrical shape of the flow
is determined by the amount of the advected energy (i.e., εf )
for a given η0. While solutions with efficient cooling resemble
thin disks, the radiatively inefficient accretion describes nearly
quasi-spherical flow.

The bulk of accretion with nearly constant velocity occurs
in a region which extends from the equatorial plane to a surface
at θs, inside of which the accretion velocity gradually decreases
to zero. Thus, the accretion velocity is constant in the region
π/2 < θ < θs. As εf decreases, the size of this region increases
and the accretion tends to a quasi-spherical flow. The tempera-
ture of this region is also constant and is surrounded by a region
with low density and higher temperature. This hot gas corona is
similar to what has been discussed in viscous ADAF solutions
(NY). As the cooling increases and the flow tends to a disk-like
configuration, the size of this corona increases.

The ratio of the thermal to the magnetic pressure β(θ) de-
pends on the input parameters εf and η0. In the limit of large εf ,
β(θ) < 1 for all θ. This means that the thermal pressure is not in
equipartition with the magnetic pressure, and, more precisely,
the magnetic pressure is stronger than the thermal pressure in
this regime. On the other hand, for inefficient cooling flows we
found that the value of the ratio exceeds one for a range of θ.
Still, there is no equipartition between thermal and magnetic
pressure except for a surface at a specific angle which can be
determined.

As for the rate of heating Qdiss, resistive dissipation at small
scales as a result of a turbulence cascade has been assumed to
be the dominant mechanism. However, there are other sources,
such as energy release through magnetic reconnection, and,
more importantly, viscous dissipation. Phenomenological con-
siderations may lead us to define Qdiss as a fraction of the
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gravitational potential energy of the accreting gas. This simple
definition allows one to consider all the dissipation processes
without having detailed models for them. Preliminary results
for this form of Qdiss show that the scaling of quantities with
radius still remains similar to our model, but the other proper-
ties of the solutions should be studied.

Since we completely neglected viscous dissipation, the tur-
bulent magnetic Prandtel number of our model is zero. This un-
satisfactory aspect can be removed by considering the viscosity
and the resistivity simultaneously. Fortunately, the radial scal-
ing of the physical variables in the resistive case, as we showed,
is similar to the viscous case. By dimensional analysis, one can
show in a simple way that self-similarity is possible as long
as η (and viscosity ν) scales with radius as r1/2. Thus it is still
possible to find self-similar solutions in the general case. Given
the importance of the value of the turbulent magnetic Prandtel
number we can construct a model for viscous-resistive accre-
tion flow in which this number is a free parameter.

Appendix A:

Equation (55) can be solved analytically for n = 1. Assuming

φ(ξ) =
16
35

4π2β0εf
(
1 − ξ2

)
+ y(ξ), (A.1)

Eq. (55) reduces to

d2y

dξ2
− 3

16
y

1 − ξ2 = 0. (A.2)

By redefining the variables as

z =
1 + ξ

2
, y = zY (A.3)

this equation becomes

z(1 − z)
d2Y
dz2
+ (2 − 2z)

dY
dz
− 3

16
Y = 0. (A.4)

The general solution of this hypergeometric equation is

Y(z) = C1F

(
3
4
,

1
4
|2|z

)
+C2F

(
3
4
,

1
4
|2|z

) ∫
dz[

zF
(

3
4 ,

1
4 |2|z

)]2
,

(A.5)

where C1 and C2 are arbitrary constants and F is the hyperge-
ometric function.
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