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Abstract. We consider cosmological models in which the vacuum decay energy is channeled exclusively into radiation. We
investigate the thermal evolution of the Universe with a variable cosmological term which varies as a function of the scale fac-
tor a as ΩΛ = ΩΛ,1 +ΩΛ,2 a−m. Using constraints given by the temperature measurements of the cosmic microwave background,
at redshifts between z = 0 and z = 4, we find that ∀m � 0 ΩΛ = ΩΛ,0 a−m models are clearly ruled out. The influence on the
thermal decoupling between matter and radiation is also discussed.
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1. Introduction

Publications of the analysis of type Ia supernovae redshift data
by the High-Z Supernova Search team (Riess et al. 1998) and
the Supernova Cosmology Prospect (Perlmutter et al. 1999)
have provided a strong indication that the Universe is accelerat-
ing. However, the mechanism responsible for this acceleration
is still unknown.

A cosmic fluid called dark energy has been suggested by
numerous authors to explain this accelerating phase. A first
interpretation of this dark energy is a cosmological constant
arising from vacuum energy, see Weinberg (1989), Sahni &
Starobinsky (2000). Other possibilities describing the form of
dark energy were proposed such as a dynamical scalar field
called quintessence (Caldwell 1998), an exotic perfect fluid
called Chaplygin gas (Kamenshchik et al. 2001), a Cardassian
Universe where the Friedmann Robertson Walker equation is
modified (Freese & Lewis 2002), tachyon matter (Frolov et al.
2002), four-Fermion interaction (Inagaki et al. 2003), or the
Born-Infeld quantum condensate (Elizalde et al. 2003). A fur-
ther approach arises from our lack of understanding of grav-
itational physics to explain the observed cosmic acceleration,
leading to the “braneworld” theory (Dvali et al. 2000) or a mod-
ification of the Einstein-Hilbert action (Meng & Wang 2003).

The cosmological constant has been repeatedly studied
since Einstein (1917) first introduced it to obtain a static
cosmological solution, see Straumann (1999). The important
problem of the cosmological constant consists of explaining
the observed small value, which appears to be 120 orders of
magnitude smaller than one would expect based on contribu-
tions from zero-point quantum fields, see Weinberg (1989). A
method of resolving this dilemna is to define a variable cosmo-
logical term. However, energy conservation would require any
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decrease in the energy density of the vacuum to be balanced by
a corresponding increase elsewhere.

In this context, Ratra & Peebles (1998) and Peebles & Ratra
(2003) suggested that the Universe is permeated by a homoge-
neous scalar field, coupled weakly to matter, that rolls contin-
uously down a potential gradient toward some minimum. Its
potential energy would be converted to kinetic energy of the
scalar field.

Another possibility is a decaying vacuum that convert its
energy directly into radiation, see Özer & Taha (1986), Freese
et al. (1987) and Gasperini (1987). The possibility that a decay-
ing vacuum produces matter is ruled out because the annihila-
tion matter anti-matter (decay process does not violate baryon
number) would produce a γ-ray background in excess of ob-
served levels (see Freese et al. 1987).

The consequences of decaying Λ cosmologies have been
investigated in different contexts such as spontaneous sym-
metry breaking (Kazanas 1980), influence on the evolution of
matter density perturbations (Silveira & Waga 1994), on the
age of the Universe (Matyjasek 1995), the statistical properties
of gravitational lenses (Bloomfield-Torres & Waga 1996), or
more generally on the evolution of the scale factor with sev-
eral possibilities of the functional form of ΩΛ, see Overduin &
Cooperstock (1998).

Kimura et al. (2001) then Hashimoto et al. (2003) investi-
gated the thermal evolution of the Universe with a phenomeno-
logical decaying cosmological term. Kimura et al. (2001)
found that the radiation temperature predicted from the vari-
able ΩΛ models is lowered significantly compared with the
constant ΩΛ. Hashimoto et al. (2003) pointed out that molecu-
lar formation is shifted to earlier epochs by ∆a ∼ 10−3 com-
pared to the case in the standard big bang cosmology (i.e.
ΩΛ = constant). We consider the same appproach. However,
prospects for constraining the cosmology by the extragalac-
tic microwave background temperature become possible due
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to the feasibility of measuring this background temperature at
redshifts between z = 0 and z = 4. Here we use these measure-
ments to constrain the effects of a decaying cosmological term
on the evolution of cosmic microwave radiation (CMBR) tem-
perature.

The remainder of this paper is organized as follows: cos-
mological equations are presented in Sect. 2, in Sect. 3 we in-
troduce the present cosmological parameters and our choice of
parameters. In Sect. 4 we investigate the evolution of radia-
tion temperature in which the cosmological term ΩΛ varies.
In Sect. 5 we discuss the observational constraints, then in
Sect. 6 we analyse the consequences of decaying Λ cosmolo-
gies (constrained by observations) on the thermal decoupling
between matter and radiation. Our conclusions are summarized
in Sect. 7.

2. Basic dynamical properties

Assuming the cosmological principle, it follows directly from
the observed near-isotropy of the CMBR that the Universe is
approximately isotropic and homogeneous. Thus with these
usual assumptions, the Einstein field equations (in standard no-
tation):

Rµν − 1
2
gµνR − Λgµν = 8πG

c4
Tµν, (1)

associated with the Friedmann-Lemaı̂tre-Robertson-Walker
metric

ds2 = c2dt2 − a(t)2
[ dr
1 − kr2

+ r2d2θ + r2sin2θ d2ϕ2
]

(2)

lead to the Friedmann-Lemaı̂tre equations:

( ȧ
a

)2
= H2 =

8πG
3
ρ − kc2

a2
+
Λc2

3
(3)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+
Λc2

2
(4)

where G is the gravitational constant, c the speed of light and a
the scale factor. H is the Hubble parameter and k the curvature
constant. ρ = ρm + ρr is the energy density associated with the
pressure p, where ρm is the matter energy density and ρr

the radiation energy density. These equations, normalised to
the critical density ρcrit = 3H2

0/8πG, become:

( ȧ
a

)2
= H2 = H2

0

[
Ωr + Ωm +

ΩK,0

a2
+ ΩΛ

]
(5)

dΩm

da
+

dΩr

da
+

dΩΛ
da
= −3

a

( p/ρcrit

c2
+ Ωm + Ωr

)
. (6)

The curvature ΩK and cosmological ΩΛ density parameter is
defined by1:

ΩK = − kc2

H0 a2
=
ΩK,0

a2
(7)

ΩΛ =
ρΛ
ρcrit

=
Λc2

3H2
0

· (8)

1 The subscript 0 denotes the values at the present epoch.

The conservation of matter leads to the scale dependence:

Ωm =
ρm

ρcrit
=
Ωm,0

a3
· (9)

At the present epoch all density parameters,Ωi,0, are correlated
through the Friedmann-Lemaı̂tre condition:∑

i

Ωi,0 = Ωr,0 + Ωm,0 + ΩK,0 + ΩΛ,0 = 1. (10)

From the equation of state:

• pm = 0 for the non − relativistic matter and

•pr = Ωr
ρcrit c2

3
for radiation, (11)

and from Eq. (6) we get the evolution of radiation density pa-
rameter:

dΩr

da
+ 4
Ωr

a
= −dΩΛ

da
· (12)

In the case ΩΛ= constant, we deduce easily the standard evolu-
tion Ωr = Ωr,0 a−4.

3. Present cosmological parameters

Excellent progress has been made recently toward the measure-
ment of the Hubble constant with the Hubble Space Telescope.
Combined with current estimates, the results favor the follow-
ing value (see Freedman 2000):

H0 = 71+4
−3 km s−1 Mpc−1. (13)

The Far Infrared Absolute Spectrometer, (e.g. FIRAS), on
board the COBE satellite (see Mather et al. 1999) has precisely
measured the present radiation temperature in the frequency
range 2−20 cm−1:

Tr,0 = 2.725 ± 0.002 K. (14)

The anisotropies of the CMBR contain information about basic
cosmological parameters. De Bernardis et al. (2000) with the
balloon-borne observations of millimetric extragalactic radia-
tion and geophysics (e.g. BOOMERANG), and Bennett et al.
(2003) with the Wilkinson microwave anisotropy probe (e.g.
WMAP satellite) found evidence for a Euclidian geometry of
the Universe:

ΩK,0 = 0 ± 0.04. (15)

The high absolute luminosity of type Ia supernovae (used as
calibrated standard candles) suggests that these objects can be
seen out to large distances, making them ideal candidates for
measuring and constraining cosmological parameters. The re-
sults obtained by both Riess et al. (1998) and Perlmutter et al.
(1999) present direct evidence for a non-zero cosmological
constant. These two experiments converge to a value for the
present cosmological density parameter:

ΩΛ,0 = 0.73 ± 0.04. (16)

In our context we choose the central value at z = 0 such as:
H0 = 71 km s−1 Mpc−1, Tr,0 = 2.725 K, ΩK,0 = 0 and
ΩΛ,0 = 0.73.
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4. Evolution of the radiation temperature
in a decaying Λ cosmology

Numerous cosmological models with the common property of
having aΩΛ parameter decreasing with time were proposed. Of
special interest for us is the dependence of ΩΛ on the scale fac-
tor, suggested by Gasparini (1987), Chen & Wu (1990), Ozer
(1999) and Waga (1993). Here we consider the variable-Λ term

ΩΛ = ΩΛ,1 + ΩΛ,2 a−m, (17)

whereΩΛ,1,ΩΛ,2 and m are constants. Thus the present cosmo-
logical density parameter is given by:

ΩΛ,0 = ΩΛ,1 + ΩΛ,2. (18)

In this context we get the evolution of the radiation density
parameter (see Eq. (12)):

dΩr

da
+ 4
Ωr

a
= mΩΛ,2 a−(m+1). (19)

With the initial condition Ωr = Ωr,0 at a = a0 = 1, the super-
position principle of solutions for ordinary linear differential
equations easily leads to the following solution:

Ωr =

[
Ωr,0 + Ωr,Λ

]
(1 + z)4. (20)

Ωr,Λ is the Λ-decay contribution to the photon background:

• m � 4 ⇒ Ωr,Λ =
m

4 − m
ΩΛ,2

[
(1 + z)m−4 − 1

]
(21)

• m = 4 ⇒ Ωr,Λ = −4ΩΛ,2 ln(1 + z), (22)

where we introduce the redshift z

a ≡ 1
1 + z

· (23)

Freese et al. (1987), Overduin et al. (1993) and Matyjasek
(1995) pointed out that the extra photons produced by a vac-
uum decay are distributed with a Planckian spectrum due to
thermalization by double Compton and bremsstrahlung pro-
cesses at very early times2, then keep the Planckian spectrum.
Thus the radiation density parameter can be expressed by

Ωr =
arT 4

r

ρcrit c2
(1 + fν) = Ωr,0

( Tr

Tr,0

)4
, (24)

where Tr is the temperature of radiation, Tr,0 the present
CMBR temperature and ar the radiation density constant.

fν =
7
8

Nν ×
( 4
11

)4/3
(25)

is the neutrino contribution for Nν massless, non-degenerate
neutrino types3. Finally we get the following evolution equa-
tion:

Tr = Tr,0(1 + z)
[
1 +
Ωr,Λ

Ωr,0

]1/4
· (26)

2 More precisely at redshift z = 6.3×104 (Ωbh2)−6/5, whereΩb is the
baryonic fraction and h = H0/100 (see Danese & Zotti 1977; Freese
et al. 1987).

3 Mangano et al. (2002) performed a new analysis that takes into ac-
count the quantum electrodynamics correction at finite temperature to
the photon and e± plasma equation of state. They found Nν = 3.0395,
which is in agreement with the recent estimates from the primordial
nucleosynthesis and WMAP results, see Barger et al. (2003).

Table 1. Model parameters of runs, H0 is in km s−1 Mpc−1.

Run ΩΛ,1 ΩΛ,2 m H0

Standard 0.73 0 0 71

K 0.7 1.8 × 10−4 3/2 60

K1 0.7299 10−4 3/2 71

K2 0.729999 10−6 4 71

D1 0.7299 10−4 –3/2 71

D2 0.729999 10−6 –3/2 71

Notice that in the standard case where m = 0 (i.e. ΩΛ =
constant) we have Ωr,Λ = 0, and find the standard evolution
Tr,stan = (1 + z) Tr,0.

The analysis of the sign of ΩΛ,2 leads to the following evo-
lution:

• mΩΛ,2 < 0 ⇒ Ωr,Λ > 0 ⇒ Tr > Tr,stan (27)

• mΩΛ,2 > 0 ⇒ Ωr,Λ < 0 ⇒ Tr < Tr,stan. (28)

Kimura et al. (2001) analysed the thermal evolution of the
Universe and showed that the radiation temperature predicted
by models with a decaying cosmological term can be lowered
significantly compared to the standard model (i.e. m = 0).
Here, we calculate the evolution of the radiation temperature
with different decaying cosmological terms. In Table 1 we
provide our group of parameters (the K-runs are relative to
Kimura’s runs).

Figure 1 compares the CMBR temperature evolution with
the standard evolution. Despite thatΩΛ,2 is very low, the differ-
ence to the standard case is clear. A larger difference is found
for the D1-model where ΩΛ = 0.7299 + 10−4 (1 + z)−3/2.

5. Observational constraints

It is remarquable that several current observations ruled out
all cosmological models in which the cosmic microwave back-
ground spectrum is non-Planckian at z = 0. However those data
are not able to constrain models with a purely blackbody spec-
trum but with a different Tr(z) dependence than in the standard
model.

The CMBR populates excited levels of atomic and molec-
ular species when the energy separations involved are not too
different from the CMBR peak frequency. Thus the first mea-
surement of the local CMBR temperature was made with fine
structure lines in the cyanogen molecule.

Bahcall & Wolf (1968) first suggested that this method
could be extended to high redshift, where the background radi-
ation temperature is larger, using atomic fine-structure transi-
tions in absorbing clouds toward high-redshift quasars.

Transitions of neutral carbon and C+ are particularly
well suited for this. Thus it is (in theory) possible to esti-
mate the CMBR temperature from this method. However the
fine-structure fine levels can be populated by several pro-
cesses, mainly collisions with hydrogen atoms and electrons,
and pumping due to the local ultraviolet radiation and to
the CMBR. The different contributions can be estimated once
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Fig. 1. Evolution of the radiation temperature for different decaying Λ-cosmologies.

the temperature and the particle density are known (see discus-
sions in Levshakov et al. 1999 on the measurability of kinetic
temperature from absorption-line spectra). Generally an upper
limit on TCMBR is obtained by assuming that the CMBR is the
only excitation process at work. The measurements have been
attempted several times, but have been generally limited by the
resolution and signal-to-noise available in reasonable exposure
times.

Songaila et al. (1994) reported the detection of absorption
from the first fine-structure level of neutral carbon atoms in
a cloud towards the quasar Q1331+170. The population ratio
yields a temperature of

TSongaila = 7.4 ± 0.8 K at z = 1.776, (29)

assuming that no other significant sources of excitation are
present. We take this range for the CMBR temperature, even
though these values could be considered to be an upper limit.

Ge et al. (1997) presented detections of absorption from the
ground state and excited states of C in the damped Lyα system
of the quasar QSO 0013-004. From the population ratio of the
excited state to the ground state, they derive an estimate for the
CMBR temperature:

TGe = 7.9 ± 1.0 K at z = 1.9731. (30)

Srianand et al. (2000) detected the absorption lines from the
first and second fine-structure levels of neutral carbon atoms in
an isolated cloud of gas towards the quasar PKS1232+0815;
they found

6 K < TSrianand < 14 K at z = 2.3371. (31)

From the analysis of the C+ fine-structure population ratio
in the damped Lyα system towards the quasar Q0337-3819,

Molaro et al. (2002) derive an upper bound on the CMBR tem-
perature

TMolaro = 12.1+1.7
−3.2 K at z = 3.025. (32)

The possibility of determining the CMBR temperature from
measurements of the Sunyaev-Zel’dovich (SZ) effect in the
galaxy cluster has been suggested by the group of Melchiorri,
see Fabbri et al. (1978). The steep frequency dependence of
the change, due to the SZ effect, and the weak dependence
of the ratios of intensity changes measured at two frequen-
cies allow the estimation of the CMBR temperature at the red-
shift of the cluster. Recently Battistelli et al. (2003) deduced
the CMBR temperature using data of the Coma cluster and
Abell 2163 over four bands at radio and microwave frequen-
cies with the millimeter and infrared Testa Grigia observatory
(e.g. MITO). They found the following radiation temperature:

TMelchiorri2 = 3.377+0.101
−0.102 K at z = 0.203 (33)

TMelchiorri1 = 2.789+0.080
−0.065 K at z = 0.0231. (34)

Thus we have six observables of the radiation temperature at
different redshifts. Figure 2 compares the evolution of radiation
temperature of our preceeding models with the observational
value of the CMBR temperature.

Figure 2a gives the measurements of CMBR temperature at
redshifts between z = 0 and z = 4, the lower panel gives the
measurements, with the SZ effect, between the redshifts z = 0
and z = 0.25. We see that in some models, for example the
D1-model and D2-model, radiation temperature is not included
in the domain of observational estimates. Thus it is necessary to
adjust the parameters to reconcile the decaying-Λ model with
the observations.
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Fig. 2. Evolution of the radiation temperature for different decaying Λ-cosmologies; a) shows the evolution between 1 + z = 1 and 1 + z = 5,
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The six preceeding observational measurements impose a
range of validity, at the observation redshift zobs, on the radia-
tion temperature:

T−obs < Tr < T+obs. (35)

We introduce the Ω−obs and Ω+obs quantities:

Ω−obs = Ωr,0

[( T−obs

Tr,0(1 + zobs)

)4
−1
]

(36)

Ω+obs = Ωr,0

[( T+obs

Tr,0(1 + zobs)

)4
−1

]
. (37)

Thus, for each observable we have Ω−obs < 0 and Ω+obs > 0.
From Eqs. (26) and (35) we get the following condition be-
tween ΩΛ,2 and m:

Ω−Λ,2 < ΩΛ,2 < Ω
+
Λ,2, (38)

where the bounds Ω+
Λ,2 andΩ−

Λ,2 are such as

•m < 0:

Ω−Λ,2 =
4 − m

m
[
(1 + zobs)m−4 − 1

] Ω−obs < 0

Ω+Λ,2 =
4 − m

m
[
(1 + zobs)m−4 − 1

] Ω+obs > 0; (39)

•m > 0 and m � 4:

Ω−Λ,2 =
4 − m

m
[
(1 + zobs)m−4 − 1

] Ω+obs < 0

Ω+Λ,2 =
4 − m

m
[
(1 + zobs)m−4 − 1

] Ω−obs > 0; (40)

•m = 4:

Ω−Λ,2 = −
Ω+obs

4 ln(1 + zobs)
< 0

Ω+Λ,2 = −
Ω−obs

4 ln(1 + zobs)
> 0. (41)

Figures 3 and 4 show the bounds on ΩΛ,2 deduced from the six
observational constraints. The left panels give Ω−

Λ,2, the right
panels indicateΩ+

Λ,2. The shaded region marks the non-allowed
parameters (m,ΩΛ,2).

The Melchiorri measurements with the Coma cluster at
z = 0.0231 (see Figs. 4c and 4d) are the most restrictive. In
Fig. 5 we summarize the allowed parameters regions. We get
the following constraint:

∀|m| ≥ 1, |ΩΛ,2| ≥ 10−4 is not allowed. (42)

Moreover cosmological parameters such as ΩΛ = ΩΛ,0 a−m

with m � 0 are clearly ruled out.

6. Thermal decoupling

The thermal history of the early Universe depends on the tight
coupling between radiation and matter resulting from Thomson
scattering. The evolution of the gas temperature Tm is governed
by the equation (see Kompaneets 1957; Peebles 1968):

dTm

dt
= −2H Tm +

8
3
σTar

mec
T 4

r

(
Tr − Tm

) ne

nb
, (43)

where σT is the Thomson cross section and me the mass of the
electron. ne and nb are the numerical density, i.e. number of par-
ticles per cm−3, for electrons and for baryons. We neglect the
energy transfer via the molecular transitions and the enthalpies
of reaction (see Puy et al. 1993; Pfenniger & Puy 2003).
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The matter temperature depends on the fraction of elec-
trons4. We use the reaction network developped by Galli &
Palla (1998) and couple this primordial kinetic with the hydro-
dynamic equations (see Puy & Signore 2002) .

The evolution of the numerical density of baryons is
given by

dnb

dt
= −3Hnb+

(dnb

dt

)
rea
, (44)

where
(

dnb
dt

)
rea

describes the contribution of the reactions (see

Pfenniger & Puy 2003). All of these equations depend on the
Hubble parameter defined by:

H2 = H2
0

[(
Ωr,0 + Ωr,Λ

)
(1 + z)4 + Ωm,0(1 + z)3

+ΩΛ,1 + ΩΛ,2(1 + z)m
]
, (45)

where the redshift is expressed by

dz
dt
= −H (1 + z). (46)

The numerical integration is a typical initial value problem for
stiff differential equations (see Hindmarsh & Petzold 1995). We
start our integration at redshift zi = 104 which corresponds to
the age of the Universe ti:

ti =
∫ ∞

zi

dz
H(z) (1 + z)

· (47)

4 Which depends on the reactions of recombination and photoion-
ization coupled with the reactions of charge exchange. All of these
reaction rates depend on the temperature and density (see Pfenniger &
Puy 2003).

Table 2. Model parameters of runs and initials temperature and time;
Tr is in K and ti is in years.

Run ΩΛ,2 m Tr at zi = 104 ti

RUN-1 10−6 3/2 27203 6913

RUN-2 −10−5 3/2 27736 6691

RUN-3 10−4 –1 28775 6278

RUN-4 10−5 –2 27524 6754

RUN-5 5 × 10−5 –4 29120 6152

RUN-6 10−5 2 26385 7261

RUN-7 −5 × 10−5 2 30684 5613

RUN-A 10−4 3/2 19674 10940

We have developed seven runs (see Table 2) plus one run
(RUN-A) illustrating (m,ΩΛ,2) parameters of non-allowed re-
gions (see Fig. 5 and condition 42). For each run, through a
careful spline approach, we have compared the temperatures
with the ones of the standard case (i.e. ΩΛ = constant).

Figure 6 shows the ratio of temperatures between a Λ-run
and the standard case (i.e. m = 0). The difference is negligi-
ble for RUN-1, RUN-2 and RUN-3 and a few 10% for the rest
(except the large difference for RUN-A).

These differences can affect the recombination mechanisms
and the thermal decoupling between matter and radiation. We
define the redshift of recombination zrec,Xn+ , the epoch where
the abundances nXn+ = nX(n+1)+ . We introduce the decoupling
redshift zdec below which the ratio Tm/Tr is lower than 0.99.
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Fig. 4. Bounds onΩΛ,2 given by the observations. a) and b) correspond to Molaro observations, c) and d) to Melchiorri1 observations, e) and f) to
Melchiorri2 observations. The left panels give the limit on Ω−

Λ,2, the right panels are relative to Ω+
Λ,2. Cross-hatching indicates non-allowed

regions. The vertical axis corresponds to ΩΛ,2 and the horizontal axis to m.
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Table 3 summarizes the different redshifts of recombina-
tion and decoupling. He2+ recombination is in the range of
redshift z = 5365 and z = 6320 with the extreme case
z = 8695 (RUN-A), He+ recombination is between z = 2291
and z = 2696 (z = 3701 for the RUN-A), D+ and H+ recom-
bination is between z = 1255 and z = 1477 (z = 2024 for the

RUN-A). We find that the redshift of decoupling is in the range
of redshift z = 633 and z = 811 (z = 1258 for the RUN-A).

Changes in recombination and decoupling could affect
the formation of the primordial molecules in the post-
recombination Universe. Recently Hashimoto et al. (2003) in-
vestigated the primordial chemistry and formation of the first
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Table 3. Redshifts of recombination and thermal decoupling for the
different runs.

Run zrec,He2+ zrec,He+ zrec,D+ zrec,H+ zdec

RUN-1 6114 2608 1429 1426 773

RUN-2 5984 2554 1399 1399 749

RUN-3 5752 2456 1345 1344 704

RUN-4 6036 2576 1410 1410 755

RUN-5 5678 2424 1328 1327 690

RUN-6 6320 2696 1477 1476 811

RUN-7 5365 2291 1255 1255 633

RUN-A 8695 3701 2024 2024 1258

objects in a model with a decaying cosmological term. They
found that molecular formation is significantly shifted to an
earlier epoch by ∆z ∼ 1000 compared to the standard case.
Nevertheless, in our analysis, the decaying cosmological term
ΩΛ = 0.7 + 1.5 × 10−4 a−1.5, considered by Hashimoto et al.
(2003), is ruled out, see Fig. 5.

7. Conclusion

In this work, we have quantitatively shown that the allowed
values of ΩΛ,2 and m are very low. Thus to give a thermal in-
terpretation of the cosmological constant through a decaying
vacuum scenario seems to have stringent limits as determined
by the recent analysis of the CMBR temperature at different
redshifts.

Measurements from the analysis of the carbon fine-
structure population ratio are particularly difficult because of
numerous sources of excitation. For example, fluorescence and
dust emission are possible in the population of the excited lev-
els. As Songaila et al. (1994) mentioned, it would be gratifying

to find an appropriate C absorber at higher redshift to improve
existing, much less sensitive, limits from C+.

The multi-frequency measurements through the SZ effect
are the most promising. Precise values of TCMBR, with a signifi-
cantly larger number of targets (i.e. clusters), could be obtained
by this method. In this context several projects are planned,
such as the upgraded MITO (see Lamagna et al. 2002) or the
next balloon-borne telescope to measure the cosmic microwave
radiation (or OLIMPO experiment, see Masi et al. 2003), and
could lead to interesting constraints on ΩΛ,2.
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