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Abstract. Numerical escape criteria is presented for the Caledonian Symmetric Four-Body problem (CSFBP). The numerical
experiments show that escapes can be detected very early with the help of the method. Integrating a huge amount of orbits of
the symmetric four-body system we found that for the equal mass case the double binary escape, and in the planetary case the
single bodies escape are the most likely outcome of the disintegration of the system.
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1. Introduction

The determination of whether a body escapes a system or not is
a very difficult problem. There are no known analytical meth-
ods for the general n-body problem (n > 2) which detect es-
capes. However, it is possible to determine numerical criteria
for the detection of escapes. Numerically these criteria can be
verified, but as of yet the validity of such criteria has not been
proven analytically.

In the paper of Shebalin & Tippens (1996) a numerical
escape criterion is given for the general problem of three bod-
ies P1, P2, and P3. They divided the system into three bi-
nary subsystems, ie. three sets of “composite binaries”, or bi-
naries P1P2, P1P3, and P2P3. They defined three energy-like
parameters, corresponding to the energies of the three binary
subsystems. They found that these parameters correlate with
an escape of the system, or in other words these parameters
can predict escape. Plotting the three energy-like parameters as
functions of time shows that they fluctuate below and some-
times above zero. Shebalin & Tippens (1996) found that if all
the parameters become greater than zero at the same time, then
the system would break up in a finite time.

In our present work we use their idea in order to find es-
cape criteria for a symmetric four-body problem called the
Caledonian Symmetric Four Body Problem (CSFBP) first de-
fined by Steves & Roy (1998, 2000, 2001). In their pa-
pers they investigated the hierarchical stability and evolution
of the CSFBP using an analytical stability criterion which
they showed depends solely on a parameter they called the
Szebehely constant C0, where C0 is a function only of the total
energy and angular momentum of the system.

The hierarchical stability of the CSFBP was also investi-
gated numerically by Széll et al. (Széll 2003), in which they
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confirmed the analytical criteria and explored in detail the dom-
inant hierarchical configurations for different mass ratios µ be-
tween the bodies. The CSFBP has two dynamical symmetric
pairs of mass m and M with mass ratio µ = m

M . As part of
their study, they followed the evolution of about 70 000 dif-
ferent CSFBP orbits having 23 different pairs of (µ,C0) where
µ = 1, 0.1, 0.01 and 0.001.

During these orbits many escapes of the system bodies oc-
curred. It became a valuable saving of the computer time to be
able to recognize those systems which would result in escapes
long before they had been numerically integrated to break up
point.

The aim of this paper is to derive such an early detec-
tion method for escapes in the CSFBP and to study the dom-
inant characteristics of escapes in the symmetrical four body
problem.

At first we define the four-body configuration. Then we in-
troduce energy-like parameters that can be used to detect es-
capes. We apply these criteria to investigate the distribution of
the different types of escape configurations in the symmetric
four-body problem.

2. The symmetric four-body model

Let us consider four mass-points P1, P2, P3, P4 in the two di-
mensional Euclidean space with position vectors Ri(� 0), and
velocity vectors Ṙi, i = 1, 2, 3, 4. Let the origin be at the centre
of mass C of the whole system and let it be at rest. Let M1,
M2,M3,M4 be the masses of the mass-points. Let us introduce
the following symmetry conditions

R1 = −R4 = r1, R2 = −R3 = r2,

M1 = M4 = m, M2 = M3 = M (1)

for all t.
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Fig. 1. The symmetric four-body configuration at any time t.

It is straightforward from Eq. (1) that

Ṙ1 = −Ṙ4 = ṙ1, Ṙ2 = −Ṙ3 = ṙ2

for all time t.
We shall use the following notations:

– let µ = m/M;
– let c12, c34, c13 and c24 denote the baricenter of the bod-

ies P1 and P2, the baricenter of the bodies P3 and P4, the
baricenter of the bodies P1 and P3 and the baricenter of the
bodies P2 and P4, respectively.

The system has essentially four different kinds of escape con-
figurations. They are

– “12” escape: a double binary escape, where P1 and P2 form
a binary and escape, while symmetrically P3 and P4 also
form a binary and escape;

– “13” escape: a double binary escape, where P1 and P3 form
a binary and escape, while symmetrically P2 and P4 also
form a binary and escape;

– “14” escape: a two single bodies escape, where P2 and P3

form an inner binary and P1 escapes, while symmetrically
P4 also escapes;

– “23” escape: a two single bodies escape, where P1 and P4

form an inner binary and P2 escapes, while symmetri-
cally P3 also escapes.

3. The escape criteria

In this section we define four new, energy-like parameters: E1,
E2, E3, and E4, that can be used to detect escapes.

3.1. Detection of a “12” escape using E1

We recall, that in the Newtonian two-body problem the energy
of the system can be written as

E = T + U =
1
2

m1|u1|2 + 1
2

m2|u2|2 −G
m1m2

r2
12

, (2)

where T is the kinetic energy, U is the potential energy, m1

and m2 are the masses, u1 and u2 are the velocities of the bodies,
and r12 is the distance between the bodies. G is the gravitational
constant which with appropriate choice of time units can be set

to 1. If we substitute m1 = m2 = 1 + µ, |u1| = |u2| = vc12 , and
r12 = rc12c34 , then Eq. (2) gives Eq. (3):

E1 = (1 + µ)v2c12
− (1 + µ)2

rc12c34

, (3)

where vc12 is the absolute value of the velocity of the centre
of mass c12 of the bodies P1 and P2. Due to the symmetry,
vc34 = vc12 , where vc34 is the absolute value of the velocity of the
centre of mass c34 of the bodies P3 and P4. rc12c34 is the distance
between c12 and c34.

Thus E1 can be interpreted as the formal energy expression
of a two-body system that is formed by a point mass located
at c12 with mass 1 + µ, and another point mass at c34 with the
same mass. But in the present case E1 is not a constant with
respect to time t. E1 = E1(t), since Eq. (3) is not an integral of
motion of the CSFBP (the variations of vc12 and rc12c34 can be
determined from the equations of motion).

Still, (3) can be used to predict the disruption of the system.
If the energy E1 at a given time was positive, then the two-
body system corresponding to Eq. (3) at that time would break
up. For increasing positive energies E1, the points c12 and c34

would diverge from each other. According to our numerical ex-
periments in the case of a “12” type of escape, i.e when the sys-
tem breaks into two binaries, with the P1P2 and the P3P4 bi-
naries diverging from each other, the function E1(t) behaves
typically as shown in Fig. 2a. It can be seen that E1(t) oscil-
lates with positive minimum values that continue to increase.

3.2. Detection of a “13” escape using E2

Let E2 be

E2 = (1 + µ)v2c13
− (1 + µ)2

rc13c24

, (4)

where vc13 is the absolute value of the velocity of the centre
of mass c13 of the bodies P1 and P3. Due to the symmetry,
vc24 = vc13 , where vc24 is the absolute value of the velocity of the
centre of mass c24 of the bodies P2 and P4. rc13c24 is the distance
between c13 and c24.

Note, that E2 is very similar to E1 in nature, only the bi-
naries studied are now P1P3 and P2P4, instead of the previ-
ous P1P2 and P3P4 cases. The arguments given in Sect. 3.1 can
also be applied here. The E2(t) curve can therefore be used to
detect “13” type of escapes.

In Fig. 2b the E2(t) function can be seen for a “13” type
of escape. It can be seen that the minimum values of E2 are
positive and continue to increase. When this behaviour is found
the eventually system breaks up exhibiting a “13” escape.

3.3. Detection of a “14” escape using E3

Let E3 be

E3 =

√
8µ + µ2v2a −

8µ + µ2

2r1
= µv21 −

4µ
r1
− µ

2

2r1
, (5)

where v1 is the absolute value of the velocity of the body P1,
and due to the symmetry, v4 = v1 is the absolute value of the
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Fig. 2. Typical time evolution of the E1, E2, E3, and E4 parameters in the case of a) “12” type of escape (two binaries escaping) and b) “13” type
of escape (two binaries escaping).
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Fig. 3. Typical time evolution of the E1, E2, E3 and E4 parameters in the case of a) “14” type of escape (two singles escaping, leaving a binary)
and b) “23” type of escape (two singles escaping, leaving a binary).

velocity of the body P4, and r1 is the distance of the body P1

from the centre of mass of the four-body system. In order to
gain the formal energy formula of the two-body problem we

introduce va = 4

√
µ

8+µ v1. If we substitute m1 = m2 =
√

8µ + µ2,

|u1| = |u2| = va and r12 = 2r1 into Eq. (2), then it gives Eq. (5).
Thus E3 can be interpreted as the formal energy of a two-

body system that is formed by a point mass located at P1 with
mass

√
8µ + µ2, and another point mass at P4 with the same

mass. But again in this case E3 is not a constant with respect to
time t. E3 = E3(t), since va and r1 can be determined from the
equations of motion to which Eq. (5) is not an integral.

If the bodies P1 and P4 were placed very far from each
other, then E3 would tend to be a constant, since the system
could be approximated by a two-body system formed by P1

and P4 with masses
√

8µ + µ2. This is the reason why E3 is
defined as the energy-like variable belonging to the “14” type
of escape.

Now we can repeat the train of thought we used for the
“12” type hierarchy case. If the energy E3(t) at a given time was
positive, then the two-body system corresponding to Eq. (5) at
that time would break up. For increasing positive energy P1

and P4 would diverge from each other.

According to our numerical experiments in the case of a
“14” type of escape, the E3(t) function behaves typically as
shown in Fig. 3a. It can be seen that the E3(t) function is posi-
tive, first increasing and then almost constant indicating escape
has occurred.

3.4. Detection of a “23” escape using E4

Let E4 be

E4 =
√

8µ + 1v2b −
8µ + 1

2r2
= v22 −

4µ
r2
− 1

2r2
, (6)



774 A. Széll et al.: Numerical escape criteria for a symmetric four-body model

where v2 is the absolute value of the velocity of the body P2,
and due to the symmetry, v3 = v2 is the absolute value of the
velocity of the body P3, and r2 is the distance of the body P2

from the centre of mass of the four-body system. In order to
gain the formal energy formula of the two-body problem we

introduce vb = 4

√
1

8µ+1 v2.

Note, that E4 is very similar to E3 in nature, only the central
binary pair is now P1 and P4, instead of the previous pair P2

and P3. The arguments given in Sect. 3.3 can also be applied
here. The E4(t) curve can therefore be used to detect “23” type
of escapes.

In Fig. 3b the E4(t) function can be seen for a “23” type
of escape. It can be seen that the E4(t) function is positive and
almost constant in time after a certain limit.

4. Numerical integrations

We examined in the aggregate about 15 000 orbits which ended
in escapes, for four different values of µ, for µ = 1, 0.1, 0.01,
and 0.001, in order to investigate the distribution of the different
kinds of escape configurations. For greater µ values the system
can be a model for quadruple stellar systems, while for smaller
µ values the system can be a model for planetary systems.

During the numerical studies we chose the initial conditions
to satisfy the symmetry conditions of the CSFBP and initially
the bodies were collinear.

We detected the escapes with the help of our escape crite-
ria. However, the integration was not stopped when an escape
was detected. It was always executed for 4 000 000 time steps.
Since the step-size was set to 0.001, the result was a numeri-
cal integration time of 4000 time units. Since the gravitational
constant G and the mass of the more massive bodies were set
to one, one time unit was about 368 years (Széll 2003). Thus
the total integration time was about 1 500 000 years. We found
that in each case, when the escape criteria observed an escape,
at the end of the integration time two pairs or two of the bodies
were always located considerably far from the baricentre of the
system.

The results of the integrations can be seen in Table 1.
Physically there is no difference between the “12” and
“13” type of escapes. They are both double binary escapers.
In the case of “14” and “23” type of escapes there are two sin-
gle bodies escapers. In the µ = 1 equal masses case they are
similar. For µ < 1 there are two possibilities: the two smaller
(“14” type) or the two greater (“23” type) bodies can escape.
The numerical integrations showed that always the two smaller
bodies escape from the system. Thus in Table 1 we tabulate
only the two different kind of outcomes: double binary escapes
when the system falls apart into two escaping binaries, and
two single escapers when the two smaller single bodies escape
(“14” type of escapes).

The table shows that as the parameter µ decreases, the sin-
gle body escapes become dominant. For µ = 1 the most likely
escape is the double binary escape. Thus four-star systems
break up most likely into two binary systems. In the µ = 0.1
case the escape of 2 single bodies escape is dominant, but the
double binary escapes are still considerable. For small values

Table 1. Percentage of the total number of escape configuration.

µ Double binary Binary + two single escapers
1 64% 36%

0.1 32% 68%
0.01 0.6% 99.4%

0.001 0.0% 100%

of µ only the single escapers are considerable. Thus for plan-
etary systems, the escape of the planets is the most likely out-
come.

5. Conclusions

In this paper we presented numerical escape criteria for the
Caledonian Symmetric Four-Body Problem. By approximating
the symmetrical four body problem on the verge of break up
as a two body problem, we were able to derive four energy
like parameters E1, E2, E3 and E4 which were related to each
of the four types of possible escapes. A study of the energy like
parameters for 15 000 orbits integrated to escapes showed that
the energy like parameters exhibit distinctive behaviour when
the system is about to break up. this behaviour can be used as
an escape criteria to predict escapes of the CSFBP. For exam-
ple when either E3 or E4 becomes a positive value increasing
to a constant, this indicates that a “14” or “23” type of escape
respectively will occur. When either E1 or E2 has a consec-
utive minimum values which are positive and increasing and
the energy parameters have some negative value, then this indi-
cate that a “12” or “13” type of escape respectively will occur.
The CSFBP symmetry conditions were employed in the deriva-
tion of energy parameters, but it is likely that the same train of
thought can be applied for arbitrary systems. This will be a
subject of future research.

Numerous orbits were investigated with the help of the nu-
merical escape criteria. We found that for stellar systems the
most likely escape configuration is the double binary escape,
i.e. the system falls apart into two binary-star configurations.
For small values of µ, the system can be a model for two stars
two planets systems. The integrations show that the most likely
escape is the escape of the two planets.
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