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Abstract. We present benchmark problems and solutions for the continuum radiative transfer (RT) in a 2D disk configuration.
The reliability of three Monte-Carlo and two grid-based codes is tested by comparing their results for a set of well-defined cases
which differ for optical depth and viewing angle. For all the configurations, the overall shape of the resulting temperature and
spectral energy distribution is well reproduced. The solutions we provide can be used for the verification of other RT codes. We
also point out the advantages and disadvantages of the various numerical techniques applied to solve the RT problem.
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1. Introduction

Observations show that many astrophysical sources such as
young stellar objects (YSOs), post-AGB stars and active galac-
tic nuclei (AGN) are surrounded by dust. Dust grains scat-
ter, absorb and re-emit radiation originating from the primary
energy sources, thus modifying their spectral energy distribu-
tions (SEDs). Moreover many embedded objects cannot be di-
rectly studied in the visible, since dust may entirely obscure
them at optical wavelengths. Their structure can be only in-
ferred from the thermal dust emission. Therefore, modelling of
their intensity and polarization maps as well as their SEDs is
necessary. This can only be done by solving the radiative trans-
fer (RT) equation (e.g. Yorke 1985). Analytical solutions for
this equation do exist only for the simplest cases, far from rep-
resenting the complexity of dust-enshrouded objects. Hence,
the development of sophisticated numerical RT codes is
unavoidable.

Early attempts for spherically symmetric configurations
were performed by Hummer & Rybicki (1971), Scoville &
Kwan (1976) and Leung (1976) including rough assumptions
such as grey opacity and/or neglecting scattering. The first
formal solution for the dust continuum in spherical geome-
try was obtained by Rowan-Robinson (1980), directly inte-
grating the RT equation, an operation known as ray-tracing.
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Since then many other codes treating 1-D slab or spherical
configurations (e.g. Yorke & Shustov 1981; Lefèvre et al.
1982; Martin et al. 1984; Rogers & Martin 1984; Henning
1985; Groenewegen 1993; Winters et al. 1994) or the inverse
RT problem (Steinacker et al. 2002b) have been developed.
Nevertheless, it became soon clear that a 1-D geometry is of-
ten too restrictive. Distinct non-spherical features such as bipo-
lar outflows (e.g. Bachiller 1996), bipolar reflection nebulae
(e.g. Lenzen 1987) and disks (e.g. McCaughrean & O’Dell
1996) are typical of many astronomical objects. Nowadays,
multidimensional codes implementing different methods and
numerical schemes are being applied to treat the RT in such
configurations.

In contrast to hydrodynamical simulations, benchmark tests
for radiative transfer computations are rare. The only practical
approach to test the reliability of RT calculations is to com-
pare solutions of well-defined problems by several indepen-
dent codes. This has been done for the 1D case by Ivezic et al.
(1997). A benchmark project for 1-D plane-parallel RT and ver-
tical structure calculations for irradiated passive disks is avail-
able on the web1. As for 1-D RT in molecular lines, a com-
parison of results from different codes has been performed by
van Zadelhoff et al. (2002)2. Going from spherical symmetry
to 2D and 3D spatial configurations, we add two or three more

1 http://www.mpa-garching.mpg.de/PUBLICATIONS/DATA/

radtrans/benchmarks/
2 see also: http://www.strw.leidenuniv.nl/∼radtrans/
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variables to the RT problem. Numerically, this implies 104

or 106 more numbers to store when a decent resolution of
100 points in each variable is used. In addition, the geome-
try makes the solution of the integro-differential RT equation
more complex. This explains why benchmark tests for 2D and
3D configurations are lacking. It also implies that reaching an
agreement to the level of 1D RT computations using state-of-
the-art computer equipment is unrealistic. A previous attempt
to test 2D RT calculations has been made by Men’shchikov
& Henning (1997). They compare results from their approxi-
mate method with those of a fully-2D program (Efstathiou &
Rowan-Robinson 1990) applying the same geometry.

Here, we propose to test the behaviour of five different
RT codes in a well defined 2D configuration, point out ad-
vantages and disadvantages of the various techniques applied
to solve the RT problem and provide benchmark solutions for
the verification of continuum RT codes. As modelling sources
with high optical depth and strong scattering is the challenge of
multi-dimensional RT codes, we explicitly include a test case at
the limit of the current computational capabilities. In Sect. 2 we
briefly introduce the RT problem and we define our test case.
Sect. 3 is devoted to the description of the codes we used and
to explain their differences. Solutions for the dust temperature
and emerging SEDs are presented in Sect. 4. In the last section
we discuss our results.

2. Benchmark problem

2.1. The RT problem

Solving the RT problem means to determine the inten-
sity Iλ(x, n) of the radiation field at each point x and direc-
tion n of the model geometry and at each wavelength λ. This is
achieved by solving the stationary transfer equation

n∇xIλ(x, n) = −
[
κabs(λ, x) + κsca(λ, x)

]
Iλ(x, n)

+κabs(λ, x) Bλ[T (x)]

+
κsca(λ, x)

4π

∫

Ω

dΩ′p(λ, n, n′)Iλ(x, n′)

+Eλ(x, n) (1)

where κabs(λ, x) and κsca(λ, x) are the absorption and scat-
tering coefficients of the particles, respectively. The quan-
tity p(λ, n, n′) denotes the probability that radiation is scattered
from the direction n′ into n, Ω is the solid angle, Bλ is the
Planck function, and T is the temperature. The index λ denotes
that the quantity is defined per wavelength interval. Eλ(x, n)
represents all internal radiation sources such as viscous heating
or cosmic rays. For the sake of simplicity, we only consider one
dust component of specific size and chemical composition. In
addition, we do not discuss the polarization state of the radia-
tion field and consider the intensity only.

If spherical symmetry in the particle distribution and the
sources of radiation is assumed, the integro–differential Eq. (1)
becomes a function of 3 variables, already difficult to solve
even for a given dust temperature T (x). In the case of spatial
2D configurations (axial-symmetric disks, tori), we have to deal
with 5 variables. Moreover, the coupling between the radiation

Fig. 1. Optical data for spherical astronomical silicate grains having a
radius of 0.12 µm (Draine & Lee 1984). Note that scattering dominates
between 0.2 and 1 µm for this type of grains.

field and the dust temperature requires the simultaneous con-
sideration of the balance equation for the local energy density
at point x

∞∫

0

dλ Qabs
λ Bλ[Trad(x)] =

∞∫

0

dλ Qabs
λ

1
4π

∫

Ω

dΩ′ Iλ(x, n′) (2)

to calculate intensity and temperature self–consistently. Here,
Qabs(λ) is the absorption efficiency factor, while Trad is the
temperature arising from radiative heating. Additional heating
sources can contribute to the temperature with

T (x) = Trad(x) + Theat(x). (3)

2.2. Model definition

We consider the general astrophysical case of a star embedded
in a circumstellar disk with an inner cavity free of dust. We
assume that the star is point-like, located at the center of the
configuration and radiating as a black body at the same tem-
perature as the Sun. The disk is made of spherical astronomi-
cal silicate grains, having a radius of 0.12 µm and a density of
3.6 g cm−3 (optical data are taken from Draine & Lee 19843,
see also Fig. 1). The disk radially extends to a maximum dis-
tance of 1000 AU from the central star. Since the correct deter-
mination of the sublimation radius is quite a difficult problem,
we fix the inner radius to 1 AU. This guarantees a maximum
dust temperature less than 1000 K, even in the case of high opti-
cal depth. The density structure is that of a massless (in relation
to the central star) Keplerian disk having no cutoff at a certain

3 downloadable from:
http://www.mpia.de/PSF/PSFpages/RT/benchmark.html
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opening angle. This implies that the radiative transfer has to be
simulated both in the optically thick disk and in the optically
thin envelope. The disk geometry and density structure are sim-
ilar to those described by Chiang & Goldreich (1997, 1999) and
successfully applied to study passive disks around T Tauri stars
(Natta et al. 2000). The density distribution provides a steep-
density gradient in the inner part of the disk which could give
rise to numerical problems when solving the RT equation. This
turns out to be an advantage for RT comparison since it allows
to test the codes’ behaviour under extreme conditions. The den-
sity distribution we adopt has the following form

ρ(r, z) = ρ0 × f1(r) × f2(z/h(r))

f1(r) = (r/rd)−1.0

f2(r) = exp
(
−π/4 × (z/h(r))2

)
h(r) = zd × (r/rd)1.125 (4)

with r being the distance from the central star in the disk mid-
plane (

√
x2 + y2) and z the distance from the midplane. Here rd

is half of the disk outer radius (Rout/2) and zd one fourth of
rd (Rout/8). Note that the disk is slightly flared, i.e., the disk
opening angle h(r)/r is exponentially increasing with the dis-
tance from the star. The term f1 provides the radial dependence
of the density distribution. In protoplanetary disks, the vol-
ume density is usually proportional to r−α with α in the range
(1.8 ÷ 2.8) (e.g. Wood et al. 2002; Cotera et al. 2001). For this
benchmark we use α = 1 in order to save CPU time. Both f1
and f2 remain unchanged while ρ0 is chosen so to define dif-
ferent optical depths. We perform calculations for four values
of visual (λ = 550 nm) optical depth, namely τv = 0.1, 1, 10,
100. The optical depth, as seen from the centre, is calculated
along the disk midplane. Since most of the dust is confined in
the midplane, the optical depths we refer to are the highest in
each model. The test case τv = 100 is at the limit of our current
computational capabilities. The resulting total dust mass for the
model with τv = 1(100) is 1.1× 10−6 M� (1.1× 10−4 M�). The
density structure perpendicular to the disk midplane is shown
for the same model in Fig. 2. The RT is calculated for 61 wave-
lengths being distributed nearly equidistantly on a logarith-
mic scale from 0.12–2000 µm. These 61 wavelengths define
the frequency resolution of our computations. In Sect. 4.4 we
also compare two Monte Carlo (MC) codes on a grid with
two times more wavelengths and we discuss the effect of the
frequency resolution on the 2D benchmark. Since anisotropic
scattering is not included in all codes, we consider the scatter-
ing as isotropic. Symbols and values of the model parameters
are summarized in Table 1 for more clarity.

3. RT simulations

3.1. Methods

Similar to hydrodynamical simulations, we can distinguish
particle (Monte Carlo) and grid-based methods to solve the
RT equation numerically (Henning 2001).

In MC simulations the radiation field is partitioned in
equal-energy, monochromatic “photon packets” that are emit-
ted stochastically both by the source and by the surrounding

Table 1. Model parameters.

Symbol Meaning Value

M∗ Stellar mass 1 M�
R∗ Stellar radius 1 R�
T∗ Stellar effective temperature 5800 K
Rout Outer disk radius 1000 AU
Rin Inner disk radius 1 AU
zd Disk height 125 AU
a Grain radius 0.12 µm
ρg Grain density 3.6 g cm−3

τv Optical depth at 550 nm 0.1, 1, 10, 100

Fig. 2. Density structure perpendicular to the disk midplane and cen-
tered on the star for the model with τv = 1. Values are normalized
to the maximum density. The contours provide 0.10, 0.19, 0.28, 0.38,
0.48% of the maximum.

envelope. The optical depth determines the location at which
the packets interact while their albedo defines the probabil-
ity of either scattering or absorption. In the original scheme
(scheme 1) the source and the envelope photon packets are
emitted separately. At first the grains re-emit according to the
absorbed source radiation. Then dust reemission takes also
into account the envelope emission radiation field. Reemission
by the dust is repeated as long as the difference between the
input and the output energy is larger than a chosen thresh-
old. However, the dust reemission, i.e. the repetition of the
Monte Carlo experiment, is time consuming. An alternative
possibility (scheme 2) is to store all radiation exchanges within
the envelope. In this case the Monte Carlo experiment can
be carried out once for all4, but a large amount of computer
memory is needed. A drawback of these two schemes is that
the input luminosity is not automatically conserved during the
simulation. This becomes a serious problem for configurations
with very high optical depths which therefore usually need

4 This is only valid for opacities explicitely independent on the
temperature.
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Table 2. Main features of the codes.

Feature MC3D MCTRANSF RADICAL RADMC STEINRAY

3D + +

Anisotropic scattering + + + +

Arbitrary grid geometry + +

Grain size distribution + + + + +

Multiple dust species + + + +

Images + + + + +

Polarization maps +

Global error control + +

Multiple/extended heating sources + + +

Dust evaporation included + +

Acceleration for high τ (ALI/Ng/other) + + + +

Parallel version + +

a larger number of iterations. A solution has been found by
Bjorkman & Wood (2001) in the so-called immediate reemis-
sion (scheme 3). In this case only source photon packets are
emitted and followed in their interaction locations. When a
packet is absorbed, its energy is added to the envelope and a
new packet is emitted immediately at a frequency which takes
into account the modified envelope temperature. This method
does not require any iteration and implicitly conserves the total
energy. Another improvement of the standard MC procedure
has been proposed by Lucy (1999) to treat extremely optically
thin configurations. This approach considers the absorption not
only at the end points of the photon path but also in between.

Grid-based codes solve the RT equation on a discrete
spatial grid. The grid can be either determined during the
simulation or generated before starting the computation. The
2 RT grid-based codes we compare, namely RADICAL
and STEINRAY, use the second approach (see Sects. 3.2.3
and 3.2.5). Among the schemes applied to solve the RT prob-
lem two are the most used: the so-called “Lambda Iteration”
(see e.g. Collison & Fix 1991; Efstathiou & Rowan-Robinson
1991) and the “Variable Eddington Tensor” (Mihalas &
Mihalas 1984; Malbet & Bertout 1991; Stone et al. 1992;
Kikuchi et al. 2002; Dullemond et al. 2002; Dullemond 2003).
The “Lambda Iteration” mode suffers from the same con-
vergence problems as the standard MC which is based on
scheme 1. Thus, the improved “Accelerated Lambda Iteration”
(e.g. Rybicki & Hummer 1991) method is more widely applied.
The “Variable Eddington Tensor” mode is more robust than
the “Lambda Iteration” and usually converges faster. Moreover,
it has been proven that it works properly even at extremely
high optical depths. Integration of the formal RT equation
can be done in a straightforward way by applying the “Long
Characteristics” algorithm. This method is accurate but turns
out to be costly in CPU time. A more efficient way is based
on the “Short Characteristics” algorithm (Mihalas et al. 1978;
Kunasz & Auer 1988).

Each of the solution algorithms has its advantages and
drawbacks. In MC methods, a photon is propagated through
the calculation domain and its scattering, absorption, and
re-emission are tracked in detail. This allows to treat very

complicated spatial distributions, arbitrary scattering functions
and polarization. Drawback is the presence of a random noise
in the results. This noise can be reduced by increasing the num-
ber of used photon packages and by including deterministic
elements in the MC experiment (Niccolini et al. 2003). Grid-
based solvers are less flexible than MC codes but have the ad-
vantage not to involve random noise.

3.2. Code description

In the following sections we briefly describe the RT codes
participating in the 2D benchmark. A summary of their main
features is provided in Table 2.

3.2.1. MC3D

MC3D is a 3D continuum RT code. It is based on the
MC method and solves the RT problem self-consistently.
MC3D is designed for the simulation of dust temperatures in
arbitrary dust/electron configurations and the resulting observ-
ables: spectral energy distributions, wavelength-dependent im-
ages and polarization maps.

For the estimation of temperatures either the standard
scheme 1 (see Wolf et al. 1999b; Wolf & Henning 2000) or the
immediate reemission concept (scheme 3) can be applied. For
this benchmark project, the scheme 3 is used to treat properly
the more optically thick models. Optically very thin configura-
tions, such as the atmosphere/envelope described in Sect. 2.2,
are easily computed by the method proposed by Lucy (1999).
Furthermore, the efficiency of MC3D is increased by (a) the
fast photon transfer and (b) wavelength range selection concept
(see Wolf & Henning 2000 for details), and (c) the enforced
scattering mechanism as described by Cashwell & Everett
(1959).

Previous applications of MC3D cover feasibility studies of
extrasolar planet detections (Wolf et al. 2002), the RT in the
clumpy circumstellar environment of YSOs (Wolf et al. 1998),
polarization studies of T Tauri stars (Wolf et al. 2001a), AGN
polarization models (Wolf & Henning 1999a), a solution for
the multiple scattering of polarized radiation by non-spherical
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grains (Wolf et al. 2002), and the inverse RT based on the
MC method (Wolf 2001b). Executables of MC3D (V2) can be
downloaded for several model geometries and platforms from:
http://www.mpia-hd.mpg.de/FRINGE/SOFTWARE/mc3d/.

3.2.2. MCTRANSF

MCTRANSF solves multi-dimensional continuum RT prob-
lems in dusty media by means of a MC method. It has been
originally developed by Lopez et al. (1995). So far, the code has
been used for the empirical modelling of several circumstellar
envelopes of post AGB-stars of different types (e.g. Lopez &
Perrin 2000), including multi-scattering effects.

Currently, only spherical symmetric (1D) and axisymmet-
ric (2D) problems can be considered, but an extension to 3D
is possible and straightforward. Several improvements of the
standard MC procedure have been recently included (Niccolini
et al. 2003) in order to avoid the usual increase of the noise
level which typically occurs in extremely optically thin or opti-
cally thick situations. The concept suggested by Lucy (1999) is
implemented to treat very optically thin cases. Optically thick
configurations are tackled by the inclusion of several determin-
istic elements for the treatment of the absorption during the
photon propagation phase, forcing the absorption to take place
all along the rays. The temperature structure of the medium in
radiative equilibrium is found by applying scheme 2. The con-
vergence is found to be rapid, even in optically thick situations,
but needs a large amount of computer memory, because the pri-
mary MC information must be stored source-dependently.

As a result of the combination of all these measures,
MCTRANSF is capable to simultaneously model optically thin
and optically thick parts of the model volume with about the
same accuracy. Thus, both clumpy media and discontinuous
opacity structures can be handled. MCTRANSF is able to ar-
rive at numerical solutions for RT problems even in case of very
large optical depths (e.g. for disk configurations). Parallelised
versions of the code have been developed for a Cray T3E 1200
and for systems supporting the OpenMP application program
interface. All these versions use shared memory systems.

3.2.3. RADICAL

The core of the code RADICAL is a lambda operator subrou-
tine based on the method of “Short Characteristics”, imple-
mented on a polar grid by Dullemond & Turolla (2000). Using
this subroutine as the main driver, RADICAL offers two modes
of operation: a simple Lambda Iteration mode and a Variable
Eddington Tensor mode. In this paper we use the latter because
of its faster convergence and capability of treating high optical
depths. The Variable Eddington Tensor method is implemented
in RADICAL as follows (Dullemond 2003). First, the primary
stellar radiation field is propagated from the star outwards into
the disk. Dust scattering is included in a MC fashion. The en-
ergy absorbed by the disk in each grid-cell is then re-emitted
as infrared (IR) radiation, which is treated as a separate

radiation field. The 2D transfer solution for this secondary ra-
diation field is found by solving the frequency-integrated mo-
ment equations. The closure for these equations is based on the
variable Eddington tensors and mean opacities computed with
the Short Characteristics method of Dullemond & Turolla. At
the end of the calculation a global check on flux conservation
is made. For all the models discussed in this paper the error
remained within 2%.

3.2.4. RADMC

RADMC is an MC code based on scheme 3. However, the orig-
inal method of Bjorkman & Wood produces very noisy tem-
perature profiles in regions of low optical depth, and requires a
large number of photons (N ∼ 107) for a smooth SED. These
disadvantages have been solved in RADMC by treating ab-
sorption partly as a continuous process (Lucy 1999), and us-
ing the resulting smooth temperature profiles with a ray-tracing
code to produce images and SEDs. These images and SEDs
have a low noise level even for relatively few photon packages
(N ∼ 105). In addition, the frequency grid used for RADMC is
not bound by the constraints set in the original method. This
improved Bjorkman & Wood method works well at all op-
tical depths, but may become slow in cases where the opti-
cal depth is very large (τv about 1000). For the test cases in
this paper the optical depths are low enough that this prob-
lem does not play a role. For more information on the code,
see http://www.mpa-garching.mpg.de/PUBLICATIONS/
DATA/radtrans/radmc/

3.2.5. STEINRAY

STEINRAY is a grid-based code which solves the full 3D con-
tinuum RT problem. A combination of ray-tracing and finite
differencing of 2nd order on adaptive multi-frequency pho-
ton transport grids is applied. Steinacker et al. (2002a) have
shown that the use of 3rd order finite differencing is too time-
consuming for 3D RT, while 1st order schemes introduce an
unacceptable degree of numerical diffusion to the solution.

The spatial grids are generated using an algorithm de-
scribed in Steinacker et al. (2002c). They are adaptive and opti-
mized to minimize the 1st order discretization error hence guar-
anteeing global error control for solutions of radiative transfer
problems on the grid. Since the use of one single grid for all fre-
quencies leads to large discretization errors, STEINRAY calcu-
lates individual grids for each frequency to use the global error
control of the grid generation method. Minimization of the grid
point number is possible in regions where the optical depth be-
comes large allowing for treatment of applications with opti-
cal depth of any value. Contrary to former treatments, the full
frequency-dependent problem is solved without any flux ap-
proximation and for arbitrary scattering properties of the dust.
For the direction discretization, equally spaced nodes on the
unit sphere are used along with corresponding weights for the
integration derived by evaluating special Gegenbauer polyno-
mials in Steinacker et al. (1996). The temperature distribution
is calculated by an Accelerated Lambda Iteration between the
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Table 3. Resolution and number of photons for the different test cases.

Code # r ∆r # θ ∆θ # Phot Test case
name [AU] [ ◦ ] [×106] τ550 nm

MC3D 55 0.03–141 121 1.5 244 0.1, 1, 10
MC3D 103 0.07–4.1 121 1.5 244 100
MCTRANSF 48 0.17–125 40 4.5 1000 0.1
MCTRANSF 48 0.17–125 40 4.5 800 1
MCTRANSF 46 0.18–130 46 2.8–5.3 1000 10
MCTRANSF 46 0.18–130 46 2.8–5.3 500 100
RADICAL 60 0.03–116 62 1.6–8.3 0.1–100
RADMC 60 0.03–116 62 1.6–8.3 10 0.1–100
STEINRAY 61 0.12–109 61 1.3 0.1–100

Fig. 3. Grid adopted by MCTRANSF to store the temperature result-
ing from the RT simulations. Similar spherical grids are also used by
the other codes.

radiative transfer equation and the local balance equation. The
program is designed to provide spatially resolved images and
spectra of complex 3D dust distributions and allows for multi-
ple internal and external sources (Steinacker et al. 2003).

Recently, a 2D version of the program has been developed
and was used for this benchmark. The grids are similar to the
spherical grids shown in Fig. 3. The 2D version uses ray-tracing
to solve for the intensity in all directions.

3.3. Reliability of the codes in 1D

All the RT codes participating in the benchmark have been
already tested in 1D spherically symmetric configurations.
Results from MC3D have been compared with those calculated
with the RT code of Chini et al. (1986) and with the code of
Menshchikov & Henning (1997). In both cases differences be-
low 1% even in the case of high optical depth have been found
(Wolf et al. 1999b). MCTRANSF has been tested (Niccolini
et al. 2003) against the 1D code written by Thibaut Le Bertre

and based on the work of Leung (1976). For the case of optical
depth equal to 10 at 1 µm (with κ ∝ 1

λ , and isotropic scat-
tering) the agreement between MCTRANSF and le Bertre’s
code is better than 1%. In the case of RADICAL, tests have
been performed by comparing the results with those from
TRANSPHERE5, a 1-D variable eddington factor code tested
against the similar “code 1” of Ivezic et al. (1997). Steinacker
et al. (2003) used the 1D benchmark provided by Ivezic et al.
(1997) to test the 3D version of STEINRAY. Agreement be-
low 1% has been found both for the emerging temperature
and SEDs.

3.4. Details on the 2D RT computation

The three MC codes involved in the 2D benchmark,
namely MC3D (Sect. 3.2.1) and MCTRANSF (Sect. 3.2.2)
and RADMC (Sect. 3.2.4), choose a spherical grid to store
the temperature resulting from the RT simulations. Radially the
steps are logarithmic in order to properly resolve the innermost
dense region of the disk. The number of radial points is kept
below 100 for all the codes but MC3D, for which we tried a
two weeks long computation for the most optically thick case
(see Table 3). Differences in the SED between this computa-
tion and the one with 55 radial points and lower number of
photons are discussed in Sect. 4.4. MC3D adopts an equally
spaced grid in vertical direction (1.5◦ resolution, see Table 3),
while MCTRANSF and RADMC choose a resolution decreas-
ing with the distance from the disk midplane (see Fig. 3).
Similar grid geometries are also used by the two grid-based
codes RADICAL and STEINRAY. RADICAL (Sect. 3.2.3)
makes use of the same grid as RADMC while STEINRAY
(Sect. 3.2.5) has comparable resolution in vertical direction but
larger cells in the inner disk (0.12 AU, see Table 3).

We note that the resolution given in Table 3, together with
the number of photons for the MC codes, are at the limit of
the computing capabilities for most of the codes. MC3D needs
about 1 Gby memory. The temperature resulting from these
test cases is obtained in 1–2 days. Computing the SED requires
about a week for all the models, but for the most optically thick
one for which we try a longer computation. MCTRANSF needs

5 http://www.mpa-garching.mpg.de/PUBLICATIONS/

DATA/radtrans/
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a large amount of computer memory to store all radiation ex-
changes. The necessary memory goes as the square of the num-
ber of cells: 46×46 cells is actually the technical limit (∼4 Gby)
on our 4-processors (ev67 at 1 GHz) HP-compaq ES45 server.
The runtime for the most optically thick case is about 2 weeks.
Results from RADICAL and RADMC are obtained in less than
a day for all the test cases. However, the actual spatial resolu-
tion of RADICAL cannot be doubled due to not sufficient com-
puter memory. To produce the final spectrum RADMC uses the
ray-tracing module from RADICAL, and for that reason is also
limited to the maximum spatial resolution that can be achieved
by RADICAL. This is a mere technical problem. In the 2D ver-
sion of STEINRAY, the code uses about 1 Gby memory. To ob-
tain convergence in the temperature iteration of 1% for the case
τv = 100, the code runtime is about a week.

4. Results

4.1. Approximate solution for optically
thin configurations

In the case of configurations being optically thin for all relevant
wavelengths, heating of the dust particles is dominated by the
stellar radiation. When re-emission of the dust particles can be
neglected and scattering is only included as extinction term, the
dust temperature can be easily determined from Eq. (2) with-
out any coupling to Eq. (1). We use this approximate semi-
analytical solution to test independently our RT computations
for the most optically thin case and to check the correctness of
the density setup in the other more optically thick models (see
Sects. 4.2 and 4.3).

The assumptions we discussed above simplify Eq. (2) in the
following way

∫ λmax

λmin

dλ Bλ[Td(R, θ)]Qabs
λ =

( R∗
2R

)2

×
∫ λmax

λmin

dλ Be
λ(T∗,R, θ)Q

abs
λ (5)

with Td(R, θ) being the disk temperature at the location (R, θ)6

and Qabs(λ) the absorption efficiency factor. We perform the
integration at the same wavelengths as those adopted by the RT
codes (see Sect. 2.2). The term Be

λ(T∗,R, θ) represents the black
body emission from the star corrected for the extinction

Be
λ(T∗,R, θ) = Bλ(T∗) e−πa

2(Qabs
λ +Qsca

λ )
∫ R

0 dR′ρ(R′,θ) (6)

where a is the dust radius, Qsca(λ) is the scattering efficiency
factor and ρ(R′, θ) is the density distribution given in Eq. (4) but
here expressed in spherical coordinates. The argument of the
exponent represents the optical depth τλ(R, θ) at the distance R,
θ from the central star. Once the optical depth is determined,
the extincted black body emission can be substituted in Eq. (5)
and the dust temperature can be easily computed. To obtain the
flux density Fλ at a distance equal to the stellar radius we need

6 R is the distance from the central star in spherical coordinates
and θ is the polar angle as measured from the disk midplane.

Fig. 4. Differences of the most optically thin model from the semi-
analytical solution (see Sect. 4.1). Upper panel: differences in radial
temperature for an angle θ near to the disk midplane. Lower panel: dif-
ferences in the SED for an almost face-on disk (disk inclination equal
to 12.5◦). For both panels, solid lines give the difference of MC3D,
dot-dashed lines of MCTRANSF, dashed-dot-dot-dot of RADICAL,
dotted lines of RADMC, and dashed lines of STEINRAY from the
semi-analytical solution.

to integrate the power emitted by each grain over the entire
volume. If we express the power emitted by one grain as

Pg
λ(R, θ) = 4πa2 Qabs

λ Bλ[Td(R, θ)] (7)

the flux density can be obtained by solving the following
integrals

Fλ =
2π

4πR2∗

∫ Rout

Rin

∫ π
θ=0

dθ′dR′Pg
λ

(
R′, θ′

)
ρ
(
R′, θ′

)
R′2 cos

(
θ′
)

(8)

here the factor 2π comes from the integration in φ which is the
azimuthal angle in the x − y plane.

A first rough estimate of the correctness of this approach
can be done by evaluating how much the disk temperature Td

would increase because of secondary emission re-absorption
events. The grain emissivity is proportional to T 4

d and, in case
of optically thin emission, to the optical depth. Our most op-
tically thin model has a maximum IR optical depth of 0.01 at
10 µm in the disk midplane, where most of the dust is confined.
If an emitted IR photon were re-absorbed by the disk, its tem-
perature would increase by the quantity (1 + τIR)0.25. Thus, the
temperature obtained by the semi-analytical approach can be
considered correct within 0.26% in a first approximation. The
corresponding emergent flux has an uncertainty which is about
four times larger (about 1%). However looking at the SED dif-
ferences (see Fig. 4), it is clear that deviations due to scattering
(treated correctly in the numerical codes) are important too.
A more realistic estimate of the error on the semi-analytical
approach should indeed consider the effect of scattering apart
from damping the stellar flux.
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Fig. 5. Radial temperature (upper panel) and percentage of difference
(lower panel) among the codes for the most optically thick model.
RADICAL is taken as reference code. The radial cut is made for an
angle θ near to the disk midplane. Diamonds give the radial depen-
dence in case of long wavelengths and optically thin emission. In
the upper panel, solid lines are the results from MC3D, dot-dashed
lines from MCTRANSF, dashed-dot-dot-dot from RADICAL, dot-
ted lines from RADMC and dashed lines from STEINRAY. In the
lower panel, solid lines give the difference of MC3D, dot-dashed
lines of MCTRANSF, dotted lines of RADMC and dashed lines of
STEINRAY from RADICAL.

4.2. Temperature

All the codes correctly reproduce the shape of the temperature
distribution, both its radial and vertical dependence.

In oder to test independently the most optically thin case
(highest optical depth in the disk midplane of τv = 0.1), we
use the semi-analytical solution derived in Sect. 4.1. The upper
panel of Fig. 4 shows the percentage of difference7 between
the semi-analytical solution and any other code. Radial cuts
are plotted for an angle θ near to the disk midplane where the
influence of scattering is the largest. The differences between
the semi-analytical solution and the RT codes is always smaller
than 1%.

Temperature distributions for the models with τv =1 and
10 agree better than 10% for all the cases we examine. The
disk model with the highest optical depth is the most difficult to
treat for the RT codes. In Figs. 5 and 6, we show radial and ver-
tical cuts at the disk locations where deviations from the codes
are expected to be higher, i.e. near to the disk midplane and
close to the central star. The radial temperature is plotted for an
angle θ equal to 2.5◦ from the disk midplane while the verti-
cal temperature is given for a distance equal to 2 AU from the
central star. In the upper panel of Fig. 5, we also superimpose

7 With difference we mean: (a−b)
b . Here b stands for the reference

solution/code while a for any other code.

Fig. 6. Vertical temperature and percentage of difference among the
codes for the most optically thick model and for a distance r in the
midplane equal to 2 AU from the central star. RADICAL is taken
as reference code. The nomenclature is the same as for Fig. 5 ex-
cept for the diamonds which give the temperature behaviour following
the semi-analytical approach described in Sect. 4.1. Note that all the
RT codes have the same turnover in the temperature distribution at the
location predicted by the semi-analytical solution.

the temperature dependence for the optically thin regime at
long wavelengths. In this regime the temperature distribution
depends only on the dust properties and can be approximated
by T (r) ∝ r−2/(4+β) (Evans 1994). Here β corresponds to the
index of the dust absorption coefficient at low frequencies
(κabs
ν ∝ νβ). For Draine & Lee silicates β is equal to 2, lead-

ing to an exponent of −0.33 in the temperature relation.
The upper panel of Fig. 6 provides (in diamonds) the ver-

tical temperature profile from the semi-analytical approach
described in Sect. 4.1. The semi-analytical solution has the
turnover point from optically thick to optically thin (the place
where the temperature suddenly starts to drop) around 19◦ from
the midplane. Since the solution provided by the RT codes
should have the same behaviour, we used the semi-analytical
approximation to check the correctness of the density setup.
The disk midplane calculated with the semi-analytical ap-
proach is naturally cooler than the real disk because the ap-
proximation neglects heating of the disk from dust re-emission.
The outer regions of the real disks are also warmer because of
those photons scattered far from the midplane. At a distance r
of 2 AU from the star and exactly in the midplane the real tem-
perature is a factor of about 1.3 higher than that given by the
semi-analytical solution.

The lower panels of Figs. 5 and 6 provide the percentage
of difference among the codes taking RADICAL as reference
code. The radial temperatures agree better than 5% in most
of the disk, going from 1.2 AU to 200 AU. Around 1.1 AU
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Fig. 7. SED for two disk inclinations i as given on top of each panel. Each curve provides the mean value of the five RT simulations for the four
computed models with different optical depth. The midplane optical depth is given in parenthesis labeling each curve. In both panels solid lines
show results for the most optically thin disk, dotted lines for a disk having τv = 1, dot-dashed lines for a disk with τv = 10 and dashed lines
for the most optically thick model. Diamonds provide the black-body emission from the naked star. The slope of the SED at long wavelengths
depends only on the dust properties and is plotted in each panel with a solid line.

MCTRANSF deviates slightly more than 10%. STEINRAY
shows 10% deviations at the inner boundary and slightly higher
deviations (but always less than 15%) far from the star, at about
900 AU. The vertical cut at 2 AU shows an agreement better
than 2.5% till 10◦ from the disk midplane. Closer to the disk
midplane, deviations are larger for MC3D and STEINRAY but
always smaller than 4%.

4.3. Spectral energy distribution

The emerging spectra for the four models having different opti-
cal depths are shown in Fig. 7 at two disk inclinations. The left
panel provides the results for an almost face-on disk (disk incli-
nation i equal to 12.5◦) while the right panel gives the result for
an almost edge-on disk (i = 77.5◦). Each curve represents the
mean value of the five RT simulations for the specific model,
whose optical depth is given in parenthesis above the curve. On
the y axis, we plot λ Fλ in [W m−2] where Fλ is the flux den-
sity at a distance equal to the star radius. We also superimpose
in diamonds the black body radiation arising from the star in
order to visualize how efficiently the circumstellar disk repro-
cesses the stellar energy. We note that all the codes have the
correct slope at long wavelengths. This slope depends only on
the dust properties and is plotted as solid line in both panels
(λFλ ∝ λ−5). At 0.55 µm the drop in luminosity amounts to
about a factor of 20 going from the most optically thin to the
most optically thick model and for a disk inclination of 77.5◦.

Since the differences among the codes are too small to be
visible in a logarithmic plot, we provide separately the per-
centage of difference for the four models and for three disk

inclinations (see Fig. 8). RADICAL has been chosen as refer-
ence code. For the most optically thin case, we also compare
our results with the semi-analytical approach (see Fig. 4). We
find that the agreement of the codes with the semi-analytical
solution is always better than 8%, with the largest deviations
around 0.3 and 40 µm. In the range 0.2–0.7 µm all the codes
predict higher flux in comparison to the semi-analytical so-
lution, while between 10–200 µm a lower flux is obtained.
These deviations arise because the semi-analytical approach in-
cludes scattering only as an extinction term. From the numer-
ical RT calculations it is clear that some photons are scattered
thus enhancing the flux between 0.2 and 0.7 µm. We note that
this wavelength range is exactly where small astronomical sil-
icate grains have the largest scattering efficiency (see Fig. 1).
Therefore, deviations peaking at 0.3 µm are simply explained
by the particular optical data chosen for this benchmark. Those
photons which are scattered cannot contribute to heat the disk.
This explains why RT codes predict a lack of emission at longer
wavelengths. To understand why the largest deficit of photons
is around 40–50 µm, we first compute the temperature at which
most of the disk mass emits (mass average temperature) and
then the corresponding wavelength. For the wavelength calcu-
lation we need to take into account the grain emissivity (Evans
1994). We find a mass average temperature of 40 K which
translates into a wavelength of 50 µm at the maximum emis-
sion. This wavelength is well in agreement with the deviations
shown in Fig. 4. For comparison, the RT codes agree better
than 1.5% at wavelengths shorter than 10 µm for this particular
test case (θ = 12.5◦). At longer wavelengths the results show
a bit more scatter but the agreement is always better than 3%.
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Fig. 8. Percentage of difference in the SED between the codes. RADICAL is taken as reference code. Solid lines give the difference between
MC3D and RADICAL, dot-dashed lines between MCTRANSF and RADICAL, dotted lines between RADMC and RADICAL and dashed
lines between STEINRAY and RADICAL.

In Fig. 8 first panel, we also show the percentage of difference
for two other disk inclinations, namely 42.5◦ and 77.5◦. In both
cases the agreement is better than 2% at all wavelengths for all
the codes but MCTRANSF, for which slightly higher devia-
tions (about 2.5%) are present at longer wavelengths.

As the optical depth in the midplane increases, the RT prob-
lem becomes more difficult to solve. Because of the chosen
disk geometry, most of the disk mass is located near to the
midplane and close to the disk inner boundary. Our compar-
ison shows that agreement among the codes is always better
for an almost face-on case and 42.5◦ disk inclination (first two

panels of Fig. 8), than for an almost edge-on disk (lower pan-
els of Fig. 8). For the models with τv =1 deviations among
the codes are smaller than 9%. For the disk with midplane op-
tical depth of 10 and 100 and inclinations of 12.5 and 42.5◦,
differences do not exceed 10%. For the almost edge-on con-
figurations the most difficult regions to treat are those where
scattering dominates and at wavelengths around 10 µm. In
the IR, opacities change strongly and the modified Planck emis-
sion peaks in the inner disk regions (between 1 and 2 AU).
Therefore, the numerical simulations are particularly sensible
to the resolution of the inner parts. Deviations in the IR are
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partly due to the different resolution adopted by the codes (see
also Sect. 4.4). Scatter at visible and near-infrared wavelengths
for MC3D, MCTRANSF, and RADMC is simply statistical
noise, typical of MC simulations. This scatter becomes more
prominent at high optical depths. We also note that MC3D
and RADMC have the same trend for wavelengths larger than
10 µm and the model with τv = 100: they both estimate a larger
IR emission than RADICAL with peaks at ∼70 µm for MC3D
and at ∼100 µm for RADMC. A strong deviation from the other
codes is shown by STEINRAY just after the 9.8 µm silicate fea-
ture. However, one should note that apart from the discussed
features the overall agreement of the SEDs is better than 10%
for all the codes even for the almost edge-on disk and the most
optically thick test case.

4.4. Tests for various spatial and frequency resolutions

We used the MC code MC3D to test the dependence of our
results on the grid adopted to store the emerging temperature.
Since deviations due to different temperature sampling are ex-
pected to be larger for more optically thick configurations,
we investigate our most optically thick test case τv = 100.
Different grids, covering radial resolutions from 2.7 AU up to
0.03 AU in the inner disk and vertical resolutions from 1.5◦
to 5.8◦, have been inspected. In Fig. 9, we report results for
five relevant cases. The number of radial and vertical subdivi-
sions (#r and #θ), as well as the resolution (∆r and ∆θ) and
total number of photons (#Phot) for these cases are provided
in Table 4. The RT equation is solved for 61 wavelengths, the
same assumed in all the previous simulations. The number of
photons is set to 4 × 105 per wavelengths to limit the runtime
to 2 days on a PC with 4 Gby memory, 2.4 GHz clock. Only
in one case (mod4) we let the computation run for about two
weeks in order to reduce as much as possible the photon noise
at short wavelengths. The comparison shows that the vertical
spacing does not influence too much the results: we report devi-
ations smaller than 1.5% for the three disk inclinations between
the models with vertical resolution 1.5◦ and 5.8◦ (solid line in
Fig. 9). On the other side, changes in the radial grid strongly
affects the IR emission: when going from mod0 to mod2 re-
sults still do not differ more than 5% but the coarse inner grid
of mod3 causes deviations larger than 20%. Model mod4 is the
state-of-the-art for our computer capabilities. The grid has a
good resolution also in the outer region of the disk and we use
10 times more photons per wavelengths. The percentage of dif-
ference between this model and mod0 in the IR regime amounts
to less than 6%. Deviations of about 10% in the optical range
are due to differences in the number of photons.

To test the influence of the frequency resolution on our re-
sults we run the 2 MC codes MC3D and RADMC doubling
the number of walenghts where to solve the RT equation. The
other three codes could not take part to the comparison because
of not enough computer memory. To have reasonable runtime
for MC3D (a couple of days), we restrict ourselves to the case
τv = 10 and we lower the number of photons in comparison to
Table 3 (half in the case of RADMC and 4 times lower in the
case of MC3D). The lower number of photons introduces larger

Table 4. Relevant models for the spatial resolution tests.

Model #r ∆r # θ ∆θ #Phot
[AU] [ ◦ ] [×106]

mod0 55 0.03–141 101 1.8 24.4
mod1 55 0.03–141 31 5.8 24.4
mod2 40 0.3–141 121 1.5 24.4
mod3 35 0.7–141 121 1.5 24.4
mod4 103 0.07–4.1 121 1.5 244

Fig. 9. Spatial resolution tests using the MC code MC3D. On the
y-axis we plot the percentage of difference between the emerging SED
of mod0 and any other model in Table 4. Solid line: difference between
mod0 and mod1. Dot-dot dahsed line: difference between mod0 and
mod2. Dotted line: difference between mod0 and mod3. Dashed line:
difference between mod0 and mod4.

scatter at short wavelengths. Figure 10 shows the percentage of
difference between MC3D and RADMC for the model with 61
wavelenghts (dotted line) and the new model with 122 wave-
lenghts (dashed line). Apart from the expected larger deviations
at short wavelengths, the agreement between the two codes im-
proves not more than 2% around 10 µm. Thus, we conclude that
the nature of the IR deviations plotted in Fig. 8, is not due to
coarse frequency sampling but to the different grid resolutions
adopted by the codes (especially in radial direction) together
with cumulative numerical errors.

5. Discussion and conclusions

Before presenting our findings, we briefly discuss the general
features of the computed SEDs for different viewing angles (i)
and optical depths (τ). As mentioned in Sect. 2.2, optical depths
are measured in the disk midplane from the inner to the outer
boundary. Thus, the optical depths we refer to are the highest
in the disk.
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Fig. 10. Frequency resolution test using the MC codes MC3D and
RADMC. On the y-axis we plot the percentage of difference between
the emerging SED of the codes for two models, one sampling the fre-
quency space with 61 (dotted line) and the other with 122 (dashed line)
logarithmically distributed points.

Both panels of Fig. 7 show clearly that the far-infrared re-
gion (longward 100 µm) remains unaffected when varying the
viewing angle. On the other hand, the short-wavelength part of
the spectrum is strongly modified. When the disk is seen face-
on the spectrum is dominated by unattenuated stellar radiation.
As the disk inclination increases, more and more of the stellar
flux is extincted by the dust in the disk. For the τv = 100 case
at i = 77.5◦ this reduction amounts to a factor of e−100 in the
visual. However, due to the high albedo of the dust grains, a
large fraction of the stellar radiation is scattered above the disk
into the line of sight. Dust scattering is also responsible for the
excess of emission at stellar wavelengths seen at small disk in-
clinations (see left panel of Fig. 7 especially for high optical
depths). The optical depth also affects the strong 10 µm feature
produced by the SI – O stretching. While in most cases the fea-
ture appears strongly in emission, for the τv = 100 test case
at i = 77.5◦ the feature appears in absorption (see Fig. 7 right
panel). The 20 µm feature is much weaker than the 10 µm, but
it is already visible for the model with τv = 1. All these features
are in agreement with earlier radiative transfer computations of
disks (e.g. Efstathiou & Rowan-Robinson 1990; Menshchikov
& Henning 1997).

Our aim in this paper is to provide benchmark solutions for
the 2D continuum radiative transfer problem in circumstellar
disks. The problems we present have optical depths up to 100,
which is actually the limit of current computational capabilities
for most of the codes. The corresponding total mass in the disk
of about 0.01 solar masses covers most of the observed disks
around low mass stars. For more massive disks around inter-
mediate and high mass stars as well as tori obscuring active
galactic nuclei, the numerical strategies have to be modified,

using e.g. the diffusion approximation for high optical depths.
We used five independent radiative transfer codes that imple-
ment different numerical schemes. We compare both the result-
ing temperature structure and the emerging SEDs. For the low-
est optical depth case (τv = 0.1) we also compared the results
against a semi-analytic solution which treat scattering only as
extinction term. The other three cases (τv = 1, 10, 100) cannot
be solved in a semi-analytic way, since multiple scattering and
absorption-reemission events strongly affect the solution.

We find that the overall shape of the temperature distri-
bution and of the emerging SEDs is well reproduced by all
the codes. Differences in the temperature are smaller than 1%
for all the codes in the most optically thin case. Even for
the most optically thick model, differences in the temperature
remain below 15%. As for the SEDs, deviations among the
codes are smaller than 3% at all wavelengths and disk incli-
nations for the most optically thin model. For the models with
τv = 1 and 10 at all disk inclinations and for the most opti-
cally thick case for disk inclinations of 12.5 and 42.5◦, differ-
ences do not exceed 10%. Only for the most optically thick
case and an almost edge-on disk differences around 10 µm
exceed 20% in the case of STEINRAY. We stress that this is
the case for which the numerics is the most difficult: the codes
have to treat both a very optically thin atmosphere and a thick
disk midplane. Independent tests using two of the MC codes
show that the frequency resolution cannot account for the in-
frared deviations among the codes in the almost edge-on disk
and the most optically thick model. Grid resolution especially
in radial direction together with cumulative numerical errors
play a major rule. The presented results provide a robust way
to test other continuum RT codes and demonstrate the possi-
bilities of the current computational capabilities. Temperature
distributions and SEDs for all the test cases are available
at the web site: http://www.mpia.de/PSF/PSFpages/RT/
benchmark.html
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