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Abstract. A new method is proposed for the verification of the atmospheric turbulence model. It is based on the reconstruction
of the phase structure function from simultaneous measurements of the Angle-of-Arrival longitudinal covariance at different
baselines with the Generalized Seeing Monitor (GSM). In addition, with this new technique we obtain the first non-model
dependent estimates of the outer scale with the GSM. Preliminary results of the reconstructed phase structure function with this
technique are presented and compared to those obtained theoretically with the most known atmospheric turbulence models.
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1. Introduction

Atmospheric turbulence reduces severely the resolution of the
ground-based telescopes and degrades the performances of
high angular resolution (HAR) techniques (Interferometry and
Adaptive Optics (AO)). These observing methods require a bet-
ter understanding of the behavior of the perturbed wavefronts,
more exactly a better knowledge of the atmospheric turbulence
model and the associate parameters. This is very crucial for
the modelization in the domain of HAR techniques. Indeed, it
is well-known that the performance of an AO system depends
upon the seeing conditions, the outer scale L0, the isoplanatic
angle θ0 and the wavefront coherence time τ0. The definition
of most of these parameters is given using the Kolmogorov
model which is valid only in the inertial range (spatial range be-
tween inner and outer scales). Other models (a review is given
in Voitsekhovich 1995) have been proposed for a better under-
standing of the atmospheric turbulence effects beyond the limit
scales. These models are empirical and up to now nothing could
decide in favour of one of them. In addition, the small values
found for the outer scale (Coulman et al. 1988) reduce signif-
icantly the inertial range and therefore the Kolmogorov model
field to take into account the turbulence effects in the perfor-
mance of large telescopes and long baseline interferometers.

In this paper, we describe a new technique of reconstruction
of the phase structure function (PhSF) which is characteristic of
the atmospheric turbulence model. The principle of this tech-
nique is based on simultaneous measurements of the Angle-of-
Arrival (AA) longitudinal covariance at different baselines with
the GSM. The first attempts of this PhSF reconstruction have

Send offprint requests to: A. Ziad, e-mail: ziad@unice.fr

been performed by Mariotti et al. (1984) and later by Davis
et al. (1995) obtained respectively with the I2T and SUSI inter-
ferometers. With these instruments, the PhSF have been mea-
sured at only 3 different baselines which have been performed
sequentially. On the other hand, the technique suggested in this
paper allows a continuous reconstruction of this PhSF from
AA longitudinal covariances measured simultaneously at sev-
eral baselines with the GSM instrument. In addition, the GSM
is user-friendly and runs faster than an interferometer which
allows a monitoring of this PhSF (every 4 min, see Ziad et al.
2000) and, therefore, the atmospheric turbulence model veri-
fication. Indeed, the shape of the PhSF is characteristic of the
atmospheric turbulence model (Voitsekhovich 1995). In addi-
tion, with this new technique, the first non-model-dependent
estimates of the outer scale are provided with the GSM (cur-
rently the von Kármán model is used, see Ziad et al. 2000).

A theoretical description of this new technique is given in
Sect. 2 in the context of optical astronomy. In Sect. 3, we briefly
describe the GSM instrument and its particular configuration in
regards to this new suggested technique. The data analysis and
the associated results of the PhSF are presented in Sect. 4 and
compared to those obtained theoretically from the most known
models. The conclusions are given in Sect. 5.

2. Theoretical background

In the context of optical astronomy, the study of the at-
mospheric turbulence effects can be analyzed by means of
the air refractive index and therefore by means of wave-
front phase. The structure function of these parameters has
a specific behavior for each model (Voitsekhovich 1995).
The phase structure function Dφ is defined as the mean-squared
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difference in phase φ measured at 2 points separated by base-
line B,

Dφ(B) =
〈[
φ(r) − φ(r + B)

]2
〉

(1)

where 〈〉 represents an ensemble average.
The general expression of this quantity is deduced from the

phase spectrum Wφ( f ) as,

Dφ(B) = 4π
∫ +∞

0
d f f Wφ( f )

[
1 − J0 (2πB f )

] [2J1(πD f )
πD f

]2

(2)

where f is the modulus of the spatial frequency and D the aper-
ture diameter measuring the phase φ. J0 and J1 represent the
Bessel functions.

In the case of Kolmogorov model and if one neglects the
telescope spatial filtering, integrating Eq. (2) gives the well-
known expression,

Dφ(B) = 6.88(B/r0)5/3 (3)

where r0 represents the Fried parameter.
This expression diverges for large baselines and therefore

doesn’t show the saturation observed by the interferometers
(Davis et al. 1995; Mariotti et al. 1984). This saturation leads to
an attenuation of the phase spectrum at low frequencies limited
by a finite outer scale which is explicitly indicated in different
models,

von Kármán model:

Wφ( f ) = 0.0229r−5/3
0

 f 2 +
1

L2
0


−11/6

· (4)

Greenwood-Tarazano model:

Wφ( f ) = 0.0229r−5/3
0

(
f 2 +

f
L0

)−11/6

· (5)

One can remark that when the outer scale L0 tends to infinity
these expressions converge toward the Kolmogorov one.

In the case of these models, the integral in Eq. (2) has no an-
alytical expression but approximate solutions exist under some
assumptions (Voitsekhovich 1995; Conan et al. 2000).

Figures 3 and 4 of Voitsekhovich (1995) show the PhSF be-
havior for these models without spatial filtering of the telescope
aperture. This spatial filtering is taken into account in whole of
this paper. One can remark the significant difference between
the different models for the same turbulence conditions (r0,L0)
pointing the fact that the PhSF is an interesting criterion to
check the model validity.

In this paper, we suggest a new method for monitoring
the PhSF from AA longitudinal covariances measured with
the GSM. Indeed, the AA covariance Cα is related to the PhSF
(Roddier 1981) by,

Cα(x, y) =
λ2

8π2

∂2Dφ(x, y)

∂x2
· (6)

By integrating 2 times this expression, one can reconstruct
the PhSF. Indeed, the integral of Eq. (6) over x-direction
leads to

Dφ(x, y) =
8π2

λ2

∫
dx

[∫
dxCα(x, y)

]
+ Ex + F (7)

Fig. 1. The GSM configuration at Calern Observatory near the
GI2T interferometer. Only four of the six GSM modules are presented
here.

where E and F are integration constants. F is determined by
the fact that Dφ(x, y) is equal to zero at the origin.

A direct determination of the second integration constant E
requires the knowledge of the PhSF at one baseline B prefer-
ably large (saturation range). This is possible with an in-
terferometer; the standard deviation of the optical path dif-
ference (OPD) between the 2 arms separated by a baseline
B =

√
x2 + y2 is given by,

σOPD(B) =
λ

2π

√
Dφ(B). (8)

Another way to obtain this second integration constant E is
to use the Kolmogorov phase structure function in Eq. (3)
for small baselines (B � L0). This is justifiable because the
Kolmogorov model is only valid in the inertial range which
is limited by the outer scale L0. Indeed, by fitting our recon-
structed PhSF model with Eq. (3) for small baselines (B < 1 m)
should lead to the constant E determination.

3. The GSM instrument

The GSM consists of evaluating the optical parameters of the
perturbed wavefront by measuring AA fluctuations. Indeed,
the GSM uses the same principle than a Shack-Hartmann, i.e.,
measuring AA at different points of the wavefront. Computing
spatio-temporal correlations of these measured AA leads to es-
timates of the seeing ε0, outer scaleL0, isoplanatic angle θ0 and
coherence time τ0.

The instrument consists of different identical units
equipped with 10 cm telescopes installed on equatorial mounts
and pointing at the same star (Fig. 1). Each telescope measures
the AA fluctuations by mean of flux modulation which is pro-
duced by the displacement of the observed star image over a
Ronchi grating.

The AA fluctuations are measured with 5 ms resolution
time during 2 min acquisition time. Data are processed imme-
diately after each acquisition, allowing a quasi real-time moni-
toring of ε0, L0, θ0, τ0 and of the covariances. The data acqui-
sition is repeated typically every 4 min. A detailed description
of the GSM instrument is given by Ziad et al. (2000).

In the framework of this paper, a special set-up of the
GSM has been performed. Two modules were installed on a
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Table 1. The GSM configurations used during the night of June 06,
2001 at Calern Observatory. The units 1, 2 and 3, 4, 5, 6 were synchro-
nized in a manual way.

Units combination Baseline (m) Baseline (m)
1–2 0.25 0.25
3–4 0.80 0.80
3–5 2.4 3.0
3–6 6.0 10.0
4–5 1.6 2.2
4–6 5.2 9.2
5–6 3.6 7.0

common mount on a central pier working as a differential im-
age motion monitor (DIMM) with a 25 cm baseline (for r0 es-
timation). These 2 modules were managed by a first computer
PC1. Four other modules having different mounts were inter-
faced to a second computer PC2. The modules were located at
1.5 m above the ground on different platforms installed on rails
allowing a fast baseline change. Two configurations have been
chosen with the 6 modules (see Table 1) for a better sampling
of the AA longitudinal covariance function. The starting time
of the acquisitions of the two PCs was made in a manual way.

4. Results

During the night of July 06, 2001 measurements of the AA co-
variances have been performed with the GSM at the Calern
Observatory near the GI2T interferometer (Mourard et al.
2001). Two GSM configurations have been used successively
during these observations (see Table 1). At 0h22 UT the GSM
switched from the first configuration to the second one (see
Table 1). In order to increase the sampling of the AA co-
variance we combined the results of the 2 nearest acquisi-
tions in the 2 configurations. These acquisitions have been per-
formed at 0h16 and 0h22 UT on the same source δ Cyg. The
value at the origin is an average of the different variances ob-
tained with the different modules. As 0.25 m and 0.8 m base-
lines are present in both configurations (see Table 1), an av-
erage of the 2 acquisitions has been adopted. These results
are shown in Fig. 2. One can remark that the AA fluctuations
present negative covariances which is specific to the longitu-
dinal case. A theoretical fit has been done combining a poly-
nomial function for the oscillations and a decreasing expo-
nential to attenuate these oscillations for long baselines and
also to avoid the divergence of the polynomial fit. The best
fit is shown in Fig. 2 obtained with a polynomial of degree 9.
The coefficients of the polynomial and the exponential are ob-
tained using the Mathematica fit function “NonLinearFit” (see
Mathematica Web Site at http://www.wolfram.com/). This
function which uses the Levenberg-Marquardtmethod searches
for a least-squares fit to a list of data according to a model con-
taining unknown parameters (Bates et al. 1988). The only lim-
itation of this method is when the data set is smaller than the
number of parameters which is not the case of the fit presented
in Fig. 2. The degree of the polynomial has been chosen ac-
cording to this limitation and also to reduce the residual error.
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Fig. 2. AA longitudinal covariances measured with the GSM for dif-
ferent baselines. These data are well-fitted by a model (full line) de-
scribed in Sect. 4.

The model obtained with this fit is easily integrable and
therefore make easier the reconstruction of the PhSF. Indeed,
including this fitting model in the first term of Eq. (7), leads
to a similar form with different coefficients. The value of the
integration constant F in Eq. (7) is given by the integral value
at the origin.

As explained in Sect. 1 the second integration con-
stant E could be obtained either by interferometric measure-
ments or by fitting the reconstructed model of the PhSF with
the Kolmogorov expression in Eq. (3) for small baselines
(B� L0). Only this last method has been used because the
poor seeing conditions during the simultaneous observations
between the GSM (Fig. 2) and the GI2T interferometer on
July 06, 2001, didn’t allow the GI2T running and therefore the
fringe acquisitions. Indeed, during the period of the GSM data
presented in Fig. 2 the seeing was of 1.63′′ at 0.5 µm.

Thus, the best fit of this reconstructed PhSF model to the
Kolmogorov definition in Eq. (3) for baselines less than 1 m
gives a value of the integration constant E of 5.6 rad2 m−1.
This constant value leads to a standard deviation of the OPD
of 9.5λ for a baseline B = 15.2 m. This σOPD value is rather
close to those measured directly with the GI2T interferometer
during the night of June 22, 2001. Indeed, for the same baseline
B = 15.2 m, the GI2T interferometer obtained between 23h18
and 23h25 values of σOPD between 11.63λ and 17.28λ for a
measured seeing less than 1′′ at 0.5 µm.

Introducing the E value in Eq. (7) leads to the PhSF in
Fig. 3 (full line). This result is in excellent agreement with
the empirical von Kármán model for an outer scale L0 of
25 m and Fried parameter r0 of 6.2 cm corresponding to the
value measured with the GSM at this time. For comparison,
the Kolmogorov and Greenwood-Tarazano models are given
for the same conditions (r0, L0). The exponential model has
been ignored because of its similar behavior to the von Kármán
model (Voitsekhovich et al. 1995). As it is predictable, if
the σOPD (or integration constant E) estimation had given
a stronger value, the most suitable model would be that of
Kolmogorov. This is possible in the case of strong values of
the outer scale L0 which have been observed sometimes with
the GSM in the most sites (Ziad et al. 2000).
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Fig. 3. Phase structure function reconstructed (full line) from
GSM data in Fig. 2. An excellent agreement is found with the
von Kármán model (dotted line) for L0 = 25 m and r0 = 6.2 cm.
The Kolmogorov (dashed-dotted) and Greenwood-Tarazano (dashed)
models are given for the same conditions.

In addition, Fig. 4 shows another result obtained 10 mn
later than the one presented in Fig. 3. The corresponding in-
tegration constant E value of this new result is of 2.62 rad2 m−1

leading to a σOPD value of 7.01λ for a baseline B = 15.2 m.
The von Kármán model is once again the most convenient for
this result with L0 = 17 m and r0 = 6.23 cm. One can remark
that this technique is very sensitive to the outer scale variation
even if the seeing remains the same (the r0 is almost similar for
results in Figs. 3 and 4). Indeed, the saturation level and begin-
ning of the reconstructed PhSF in Fig. 4 are lower than those
in Fig. 3 leading to different values of the outer scale in the
case of the von Kármán model. In addition, if we increase arti-
ficially of 0.5λ the σOPD value of the last result (corresponding
to a relative difference of 6.6%), this leads to a new E value
of 21.48 rad2 m−1 instead of 2.62 rad2 m−1. The result cor-
responding to this case is shown in Fig. 4 as asterisk plot. One
can remark that this reconstructed phase function deviates from
the von Kármán model and tends to Greenwood-Tarazano one.
This means that in the case of simultaneous measurement with
an interferometer an excellent precision of the OPD measure-
ment is desirable.

5. conclusion

A new method has been proposed for the reconstruction of the
phase structure function which is characteristic of the model
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Fig. 4. Same than Fig. 3. The diamond plot correspond to an artificial
increase of 0.5λ of the σOPD for a baseline of 15.2 m (see text). The
von Kármán and Greenwood-Tarazano models have been obtained
with L0 = 17 m and r0 = 6.23 cm.

describing the atmospheric turbulence. This technique allows,
therefore, the first non-model dependent estimates of the outer
scale L0 from the GSM with a good sensitivity to L0 varia-
tion. The preliminary results show that the von Kármán model
is more convenient for large scales. But the Kolmogorov model
could be also suitable in the case of large L0 values. We plan
long observations campaigns in the future to bring a confirma-
tion of these GSM’s σOPD with direct and simultaneous mea-
surements of the GI2T interferometer and to bring a better sta-
tistical knowledge on the atmospheric turbulence model.
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