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Abstract. Forced turbulence simulations are used to determine the turbulent kinematic viscosity,νt, from the decay rate of a
large scale velocity field. Likewise, the turbulent magnetic diffusivity, ηt, is determined from the decay of a large scale magnetic
field. In the kinematic regime, when the field is weak, the turbulent magnetic Prandtl number,νt/ηt, is about unity. When the
field is nonhelical,ηt is quenched when magnetic and kinetic energies become comparable. For helical fields the quenching is
stronger and can be described by a dynamical quenching formula.
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1. Introduction

The concept of turbulent diffusion is often invoked when mod-
eling large scale flows and magnetic fields in a turbulent
medium. Turbulent magnetic diffusion is similar to turbulent
thermal diffusion which characterizes the turbulent exchange
of patches of warm and cold gas. This concept is also applied to
turbulent magnetic diffusion which describes the turbulent ex-
change of patches of magnetic field with different strengths and
direction. Reconnection of magnetic field lines is not explicitly
required, but in the long run unavoidable if the magnetic power
spectrum is to decrease toward small scales. The idea of Prandtl
is that only the energy carrying eddies contribute to the mixing
of large scale distributions of velocity and magnetic field struc-
tures. This leads to a turbulent magnetic diffusion coefficient
ηt ≈ 1

3U`, whereU is the typical velocity and̀ the scale of the
energy carrying eddies. For the kinematic turbulent viscosity
one expects similar values. Analytic theory based on the quasi-
linear approximation also produces similar (but not identical)
values ofηt andνt (e.g. Kitchatinov et al. 1994).

It is usually assumed that the values ofηt and νt are
independent of the molecular (microscopic) viscosity and mag-
netic diffusivity,ν andη. However, in the context of the geody-
namo or in laboratory liquid metals the microscopic magnetic
Prandtl number,Pm = ν/η is very small (≈10−5). This has
dramatic consequences for the magnetorotational instability
(Balbus & Hawley 1991). This instability is generally accepted
as the main mechanism producing turbulence in accretion discs
(Balbus & Hawley 1998). For sufficiently small values ofPm,

however, this instability is suppressed (R¨udiger & Shalybkov
2002). On the other hand, the Reynolds number of the flow is
quite large (105 . . .106) and the flow therefore most certainly
turbulent. This led Noguchi et al. (2002) to invoke a turbulent
kinematic viscosity,νt, but to retain the microscopic value ofη.
The resultingeffectivemagnetic Prandtl number they used was
10−2 – big enough for the magnetorotational instability to de-
velop. On may wonder, of course, why one should not instead
use turbulent values for both coefficients, i.e.νt/ηt ≈ 1. This
would lead to even more favorable conditions for the magne-
torotational instability (R¨udiger et al. 2002).

Similar constraints have also been reported for the
convection-driven geodynamo: Christensen et al. (1999) found
that there is a minimum value ofPm of about 0.25 below which
dynamo action does not occur at all. Similar results have also
been reported by Cattaneo (2003). These results are disturb-
ing, because both for the sun and for the earth,Pm � 1.
For Pm of order unity, on the other hand, earth-like magnetic
configurations can more easily be reproduced (see Kutzner &
Christensen 2002).

Because of these restrictions, one wonders whether the ef-
fective magnetic Prandtl number to be used is notPm, but rather
the turbulent value,Pm,t = νt/ηt. This raises the important ques-
tions whetherPm,t is actually of order unity and whether it is
independent of the microscopic value,Pm. The aim of this pa-
per is to estimate the value ofPm,t using turbulence simulations.

The knowledge of the value ofPm,t is also important for
the solar dynamo. The qualitative properties of the dynamo de-
pend on the relative importance of the large scale flows and
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hence on the magnitude ofηt. If ηt is too large, the influence of
a meridional flow of say 10 m/s is small so that only little mod-
ification can be expected for the basicαΩ-dynamo (Roberts &
Stix 1972). In this case, however, we know that conventional
dynamo models of the solar activity cycle have difficulty to ex-
plain Spörer’s law of equatorward sunspot migration. The al-
ternative that the resulting poleward migration can be overcom-
pensated by an internal equatorward flow requires a sufficiently
small value ofηt, which implies thatPm,t > 1 (Choudhuri et al.
1995; Dikpati & Charbonneau 1999; Bonanno et al. 2002).

Given the importance of the value of the turbulent magnetic
Prandtl number it is useful to assess the problem using three-
dimensional simulations of turbulent flows. We determineνt
andηt by measuring the decay rate of a large scale (mean) ve-
locity and magnetic field,u andB, respectively. We emphasize
that we are not addressing the question whetherνt andηt can re-
ally be used in studies of the dynamo or the magnetorotational
instability, for example.

We consider weakly compressible nonhelically forced tur-
bulence and use a model similar to that of Brandenburg (2001),
but with kinetic helicity fluctuating about zero. Dynamo action
for such a model has recently been considered by Haugen et al.
(2003), but it sets in only at magnetic Reynolds numbers above
∼30, which is not the case in the present simulations. We begin
however by first reviewing the basic results for the values of
νt andηt within the framework of the quasilinear (Roberts &
Soward 1975; R¨udiger 1989) and other approximations.

2. Results from quasilinear approximation

For steady homogeneous isotropic turbulence the correlation
tensor is independent ofx andt, i.e.

〈u′i (x, t)u′j(x + ξ, t + τ)〉 = Qi j (ξ, τ), (1)

where angular brackets denote an ensemble average and primes
fluctuations about the average. In the quasilinear approxima-
tion the transport coefficients are conveniently expressed in
terms of the Fourier transformed correlation tensor,Q̂i j (k, ω),
which is normalized such that

Qi j (ξ, τ) =
"

Q̂i j (k, ω)ei(k·ξ−ωτ)dk dω. (2)

For the turbulent viscosity and the turbulent magnetic diffusiv-
ity one finds respectively (R¨udiger 1989)

νt =
4
15

"
ν3k6Q̂ll (k, ω)
(ω2 + ν2k4)2

dk dω, (3)

ηt =
1
3

"
ηk2Q̂ll (k, ω)
ω2 + η2k4

dk dω. (4)

Obviously, both quantities are of the same order of magnitude,
but they are not identical. In the limitsν, η→ 0 the expressions
are drastically simplified, i.e.

νt =
1
15

∞∫
−∞
〈u′(x, t) · u′(x, t + τ)〉dτ (5)

and

ηt =
1
6

∞∫
−∞
〈u′(x, t) · u′(x, t + τ)〉dτ, (6)

so that for the turbulent magnetic Prandtl number is

Pm,t =
νt
ηt
=

2
5
= 0.4. (7)

This results is similar to that of Nakano et al. (1979) for the
thermal Prandtl number.

Rüdiger (1989) lists a number of other approaches for cal-
culating turbulent transport coefficients, which all yield Prandtl
numbers around or below unity. One particular approach is the
renormalization group analysis which was applied to turbu-
lence by Forster et al. (1977) for the case of a passive scalar,
and later by Fournier et al. (1982) to the case with magnetic
fields. These results are valid in the long-time large-scale limit,
and the value ofPm,t turned out to be close to 0.7; see Eq. (23)
of Fournier et al. (1982).

Kitchatinov et al. (1994) use a mixing length approxima-
tion where terms of the form d/dt − ν∇2 are replaced byτ−1

corr,
whereτcorr is the correlation time of the turbulence. They find
νt = (4/15)τcorru2

rms andηt = (1/3)τcorru2
rms, so Pm,t = 4/5 =

0.8. Yet another approach is theτ-approximation where triple
correlations are replaced by a damping term that is propor-
tional to the quadratic moments (e.g. Kleeorin et al. 1996;
Blackman & Field 2002). Here no Fourier transformation in
time is used. This gives, as before,ηt = (1/3)τu2

rms (whereτ
is now interpreted as a relaxation time), butνt = (2/15)τu2

rms,
so Pm,t = 2/5 = 0.4. This is half the value obtained from the
mixing length approximation, but the same as in Eq. (7).

The fact that in all these casesPm,t is less than unity can be
traced back to the presence of the pressure term in the momen-
tum equation. If this term is ignored (as in pressureless Burgers
turbulence or “burgulence”) one always getsPm,t = 1.

It is tempting to speculate that the discrepancy between the
different analytic approaches is related to the validity of some
idealizing assumptions made in order to apply the quasilinear
and other approximations. Clearly, additional approaches are
needed to get a more complete picture regarding the correct
value ofPm,t. It is nevertheless encouraging thatPm,t does not
strongly deviate from unity.

In the remainder of this paper we estimateνt andηt numer-
ically by considering the decay of an initial large scale velocity
or magnetic field, respectively, in the presence of small scale
turbulence.

3. The model

The equations describing compressible isothermal hydromag-
netic flows with constant sound speed,cs, are

du
dt
= −c2

s∇ ln ρ +
J × B
ρ
+ Fvisc+ f , (8)

d lnρ
dt
= −∇ · u, (9)
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∂B
∂t
= ∇ × (u × B) + η∇2B, (10)

whereu is the velocity,ρ the density,B is the magnetic field,
and J = ∇ × B/µ0 is the current density withµ0 being the
vacuum permeability. The viscous force is

Fvisc = ν
(
∇2u + 1

3∇∇ · u + 2S · ∇ ln ρ
)
, (11)

whereSi j =
1
2(ui, j +uj,i)− 1

3δi j∇ ·u is the traceless rate of strain
tensor.

We solve the equations using the Pencil Code1, which is
a memory-efficient sixth-order finite difference code using the
2N-RK3 scheme of Williamson (1980). For most of the simu-
lations a resolution of 1283 meshpoints is used, but in Sect. 5 a
higher resolution of up to 5123 meshpoints was necessary.

We focus on the case where the forcing,f , occurs at a
wavenumber aroundkf = 10. The forcing is such that the tur-
bulence is subsonic and nonhelical. We consider two different
periodic initial conditions,

B = (cosk1z, 0, 0)B0 (nonhelical) (12)

and

B = (cosk1z, sink1z, 0)B0 (helical), (13)

whereB0 is the amplitude of the initial field. In the fully he-
lical case one may expect a different decay time because the
magnetic helicity is a conserved quantity in the limit of small
magnetic diffusivity. For the velocity field we use similar initial
conditions, but we do not expect this to be sensitive to helicity,
because kinetic helicity is not conserved in the limitν→ 0, and
would only be conserved in the unphysical caseν = 0.

A detailed discussion of the initial conditions may at first
glance appear somewhat surprising, because for forced turbu-
lent flows the initial conditions are normally forgotten after
about one turnover time. This is indeed the case for hydrody-
namic turbulence, but not for hydromagnetic turbulence if the
magnetic field has net magnetic helicity. The reason is that, re-
gardless of the level of turbulence, the net magnetic helicity can
only change on the resistive time scale. Our results below con-
firm this and they are indeed in agreement with earlier model
predictions (cf. Blackman & Brandenburg 2002). The situation
would be different if the initial field was bi-helical, i.e. with op-
positely helical contributions at different scales. This case has
been studied elsewhere (Yousef & Brandenburg 2003).

In Fig. 1 we show kinetic and magnetic energy spectra of
the run withRe= 150 andRm = 15 at three different times us-
ing a resolution of 5123 meshpoints. The kinetic energy shows
indications of a short inertial range in 15< k < 40. Below the
forcing scale, in 2< k < 9, velocity and magnetic fields are
random andδ-correlated in space, giving rise to ak2 spectrum.
The magnetic energy is substantially weaker than the kinetic
energy. This is because here the magnetic Prandtl number is
small, Pm = 0.1, and the magnetic Reynolds number is sub-
critical for dynamo action. With our definition ofRm the criti-
cal value lies around 25 (Haugen et al. 2003). The small scale
magnetic energy is therefore maintained by constantly stirring
the slowly decaying large scale field.

1 http://www.nordita.dk/data/brandenb/pencil-code

Fig. 1.Kinetic and magnetic energy spectra at three different times for
a run withRe= 150 andRm = 15.

Given that the initial large scale field depends only onz,
it makes sense to define a mean field by averaging over the
x andy directions. Alternatively, one might define an average
by Fourier filtering, but this has the disadvantage that not all
the Reynolds rules are satisfied. For example, the average of a
product of a mean and a fluctuating quantity would not van-
ish. However, for all practical purposes our horizontal average
is nearly equivalent to a projection onto thek = k1 Fourier
mode. Indeed, the main reason for forcing at a large wavenum-
ber, kf = 10, is that we need some degree of scale sepa-
ration. Without scale separation, there would be no way of
distinguishing between mean and fluctuating fields. Since the
velocity fluctuations are constantly driven via the forcing term,
it would be impossible to measure any decay of the mean ve-
locity. Nevertheless, even with scale separation there will al-
ways be a certain level of noise in the mean field whose energy
is (k1/kf )2 times smaller than energy of the fluctuations. This
means that we can measure an exponential decay of the mean
field only in a certain window where nonlinear effects are al-
ready weak, but were the noise level is not yet reached.

4. Results

4.1. Decay of ū and B̄

We begin by considering the decay of a helical large scale mag-
netic field and compare it with the decay of a large scale helical
velocity field in a purely hydrodynamic simulation; see Fig. 2.
Here, large scale velocity and magnetic fields are defined as
horizontal averages overx andy; the result is denoted byu and
B, respectively. During the time interval when mean velocity
and magnetic field decay exponentially, the corresponding de-
cay rates are determined as

λu(u) =
d ln〈u2〉1/2

dt
, λB(B) =

d ln〈B2〉1/2
dt

· (14)

In the graphs ofλu(u) andλB(B) an exponential decay shows
up as a plateau. The magnetic field decay is initially slow, so
λB(B) is initially not constant, but then it speeds up andλB(B)
reaches a plateau. The decay of the velocity field is immedi-
ately fast andλu(u) lies immediately on a plateau. This sug-
gests that the turbulent magnetic diffusivity is affected by the
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Fig. 2. Decay of large scale helical velocity and magnetic fields
(dashed and solid lines, respectively). The graph ofu(t) has been
shifted so that bothu(t) andB(t) share the same tangent (dash-dotted
line), whose slope corresponds toνt = ηt = 0.86urms/kf . The decay of
a nonhelical magnetic field is shown for comparison (dotted line).

strong initial field that in turn gives rise to a quenching of
the turbulent magnetic diffusivity. Strong means that the mag-
netic field strength is comparable with the equipartition field
strength,Beq = 〈µ0ρu2〉1/2. The initially strong large scale flow
and the associated vorticity, on the other hand, do not and are
also not expected to affect the turbulent viscosity and the asso-
ciated decay of this large scale flow. For|B| � Beq, however,
bothu andB decay at the same rates,λu andλB, respectively.
This allows us to calculate

νt = λu/k
2
1, ηt = λB/k

2
1, (15)

wherek1 is the wavenumber of the initial large scale veloc-
ity and magnetic fields. From the present simulations, where
kf/k1 = 10, we find

νt ≈ ηt = (0.8 . . .0.9)× urms/kf (for B
2 � B2

eq). (16)

Once|u| has decreased below a certain level (<0.1urms), it can-
not decay further and continues to fluctuate around 0.08urms,
corresponding to the level of the rms velocity of the (forced!)
turbulence atk = k1 (see the dashed line in Fig. 2).

The quenching of the magnetic diffusivity, ηt = ηt(B), can
be obtained from one and the same run by simply determin-
ing the decay rate,λB(B), at different times, corresponding to
different values ofB = |B|; see Fig. 3. To describe departures
from purely exponential decay we adopt aB-dependentηt ex-
pression of the form

ηt(B) = ηt0/(1+ aB
2
/B2

eq), (17)

whereηt0 is the unquenched (kinematic) value ofηt, described
approximately by Eq. (16), anda is a fit parameter. According
to Cattaneo & Vainshtein (1991) the parametera is expected to
be of the order of the magnetic Reynolds number based on the
microscopic magnetic diffusivity,

Rm = urmskf/η. (18)

Figure 3 suggests thata ≈ 0.4Rm.

Fig. 3. Dependence of the turbulent diffusion coefficient on the mag-
nitude of the mean field. The initial field is helical and corresponds to
data points on the right hand side of the plot.Rm ≈ 20. The data are
best fitted bya = 8 = 0.4 Rm.

Fig. 4. Dependence of the turbulent diffusion coefficient on the mag-
nitude of the mean field. The initial field is nonhelical.Rm ≈ 20. The
data are best fitted bya = 1, independent ofRm.

Before we discuss the effective quenching behavior ofηt in
more detail we should note that Eq. (17), and in particular the
value ofa, do not apply universally and depend on the field ge-
ometry. This is easily demonstrated by considering a nonhelical
initial field. In that case the decay becomes unquenched already

for B
2
/B2

eq ≈ 1. Equation (17) can still be used as a reasonable
fit formula, but nowa = 1 produces a good fit (independent of
Rm); see Fig. 4.

In the nonhelical case there is an initial phase where the
field increases due to the wind-up of the large scale field. Since
we measureηt from the decay rate of the large scale field, this
would formally imply negative values ofηt. Traces of this effect

can still be seen in Fig. 4 nearB
2
/B2

eq = 1. For this reason our

method can only give reliable results if|B| <∼ 0.8Beq. In the
case of a helical initial field, on the other hand, we haveJ ×
B = 0, i.e. the large scale field is force-free and interacts only
weakly with the turbulence. In particular, there is no significant
amplification from the initial wind-up of the large scale field.
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Fig. 5.Dynamical quenching model with helical and nonhelical initial
fields. The quenching parameters are ˜g = 0 (solid line) and 3 (dotted
line). The graph for the nonhelical cases has been shifted int so that
one sees that the decay rates are asymptotically equal at late times.

4.2. Comparison with the dynamical quenching model

In the case of a helical field and forB
2
/B2

eq
>∼ R−1

m the slow

decay ofB is related to the conservation of magnetic helicity.
As discussed already by Blackman & Brandenburg (2002), this
behavior is related to the phenomenon of selective decay (e.g.
Montgomery et al. 1978) and can be described by the dynam-
ical quenching model. This model goes back to an early paper
by Kleeorin & Ruzmaikin (1982, see also Kleeorin et al. 1995),
but it applies even to the case where the turbulence is nonheli-
cal and where there is noα effect in the usual sense. However,
the magnetic contribution toα is still non-vanishing because it
is driven by the helicity of the large scale field.

To demonstrate this quantitatively we solve, in the one
mode approximation (k = k1) with B = B̂ exp(ik1z), the mean-
field induction equation

dB̂
dt
= ik1 × Ê − ηk2

1B̂ (19)

together with the dynamicalα-quenching formula (Eq. (13) of
Blackman & Brandenburg 2002)

dα
dt
= −2ηk2

f

α + R̃m
Re(Ê∗ · B̂)

B2
eq

 , (20)

where

Ê = αB̂ − ηtik1 × B̂ (21)

is the electromotive force, and̃Rm is defined as the ratioηt0/η,
which is expected to be close to the value ofRm as defined by
Eq. (18).

In Fig. 5 we show the evolution ofB/Beq for helical and
nonhelical initial conditions,̂B ∝ (1, i, 0) and B̂ ∝ (1, 0, 0),
respectively. In the case of a nonhelical field, the decay rate is
not quenched at all, but in the helical case quenching sets in for

B
2
/B2

eq
>∼ R−1

m .

In the helical case, the onset of quenching atB
2
/B2

eq ≈
R−1

m is well reproduced by the simulations. In the nonhelical
case, however, some weaker form of quenching sets in when

Fig. 6.Decay rate for three different values ofReandRm = 20 (fixed),
corresponding to values ofPm = Rm/Re ranging from 0.1 to 1. All
three curves have a plateau where the value ofλB is the same. For
Rm = 80 and 150 the graphs ofλB have been shifted int so that all
three graphs show the plateau in approximately the same time interval.

B
2
/B2

eq ≈ 1 (Fig. 4). We refer to this as standard quenching
(e.g. Kitchatinov et al. 1994) which is known to be always
present. In Blackman & Brandenburg (2002) this was modeled
by allowing in Eq. (21)ηt to beB-dependent. They adopted the
formula

ηt = ηt0/(1+ g̃|〈B〉|/Beq) (22)

and found that, for a range of different values ofRm, g̃ = 3
resulted in a good description of the simulations of cyclicαΩ-
type dynamos (Brandenburg et al. 2002). We emphasize that
thisηt is notused in a diagnostic way as in Eq. (17), but rather
in the numerical solution of Eqs. (19) and (20). The resulting
decay law, shown as a dotted line in Fig. 5, agrees now with
the decay law seen in the turbulence simulations (Fig. 2). The
helical case with ˜g = 3 is still compatible with the simulations.

5. Independence of microscopic viscosity

Finally we need to show that the turbulent magnetic Prandtl
number is indeed independent of the microscopic magnetic
Prandtl number. In Fig. 6 we plot the decay rates, obtained by
differentiating lnB(t), for three different values of the micro-
scopic viscosity, keepingη fixed. The resulting values of the
flow Reynolds number,Re = urmskf/ν, vary between 20 and
150, givingPm in the range between 0.1 and 1. Within plot
accuracy the three values ofλB turn out to be identical in the
interval where the decay is exponential.

The duration of this interval isurmskf∆t ≈ 200, which is
comparable to the time interval in Fig. 2 during which the decay
is exponential. In one of the three cases (Rm = 20) the initial
field was rather strong, so that it takes a long time before the
magnetic helicity constraint becomes unimportant so that the
field can decay exponentially (urmskf t ≈ 800).

The numerical resolution used in most of the models is
1283 mesh points. However, asRe is increased, higher reso-
lution is required. ForRe= 80 we used 2563 mesh points and
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for Re = 150 we used 5123 mesh points. This implies mesh
a Reynolds number,urms∆x/ν, based on the mesh spacing∆x,
of about 18. Empirically we know that larger values are not
generally possible.

6. Conclusions

The turbulence simulations presented here have shown that the
turbulent magnetic Prandtl number is always of order unity,
regardless of the values of themicroscopicmagnetic Prandtl
number. Under the assumption of incompressibility, both the
quasilinear approximation and the renormalization group
approach give turbulent magnetic Prandtl numbers somewhat
below unity, which is related to the pressure term in the mo-
mentum equation. Here we find insteadPm,t ≈ 1. There are sev-
eral plausible reasons for this discrepancy: (i) our simulations
are actually weakly compressible, (ii) they are non-steady and,
(iii) the idealizing assumptions made in the analytic approaches
may not be justified.

Our results have also shown that, for nonhelical magnetic
fields, the turbulent magnetic diffusivity is quenched when the
magnetic energy becomes comparable to the kinetic energy. For
helical magnetic fields, however, an apparent suppression of
the decay rate is observed which agrees with predictions from a
dynamical quenching model. If this suppression is described by
an algebraic expression, quenching would set in for magnetic
energies much below the kinetic energy.

The present work demonstrates that the dynamical quench-
ing approach is not restricted to dynamos, but it can also deal
with decay problems, as was already mentioned in Blackman &
Brandenburg (2002). The dynamical quenching model is usu-
ally formulated in terms ofα, but for helical mean fieldsJ and
B are parallel and the separation into contributions fromαB
andηt J becomes less meaningful. It is for this reasons that an
α term appears in the description of the decay of helical fields,
rather than a dynamical contribution toηt-quenching.

The remaining quenching ofηt that affects both helical and
nonhelical fields is consistent with an algebraic quenching for-
mula that is non-catastrophic, i.e. independent of the micro-
scopic magnetic diffusivity.

Although our results suggest that the turbulent magnetic
Prandtl number is of order unity, we cannot claim that it is safe
to use turbulent viscosity and magnetic diffusivity in a simu-
lation of the dynamo or the magnetorotational instability, for
example, as a replacement of a fully resolved simulation. First
of all, the functional form of the turbulent transport coefficients
is for realistic turbulent flows more complicated and involves
in practice tensorial rather than scalar coefficients. Numerical
evidence for this has been presented elsewhere in the con-
text of shear flow turbulence (Brandenburg & Sokoloff 2002).
Furthermore, there will be additional terms such as theα-effect
(see Sect. 4.2) and the AKA-effect (Frisch et al. 1987; see
also Brandenburg & Rekowski 2001). Most importantly, turbu-
lent transport may be nonlocal, as is well known in meteorol-
ogy when modeling atmospheric flows (Stull 1984; Ebert et al.
1989), where the turbulent transport is described by so-called
transilient matrices (see also Miesch et al. 2000 for examples
of astrophysical convection). Nonlocal transport means that the

transport coefficients have to be replaced by integral kernels.
In Fourier space, the convolution with an integral kernel corre-
sponds to a multiplication with a wavenumber dependent fac-
tor. There is indeed some evidence that the main contribution
comes only from the smallest wavenumbers (Brandenburg &
Sokoloff 2002). This is primarily a consequence of a lack of
scale separation in naturally forced turbulence, such as shear
flows or convection. In the present context, however, this is
not an issue because we have deliberately considered the case
where the scale of the turbulent eddies is much smaller than the
scale of the large scale field (kf/k1 = 10).

Finally, we wish to point out that studies of instabilities
(e.g. the magnetorotational or the dynamo instability) using tur-
bulent transport coefficients can sometimes lead to paradoxical
situations. In the case of solar convection, for example, one ex-
pects from mixing length theory that turbulent viscosity and
thermal diffusivity are on the order of a few times 1012 cm2 s−1.
However, using such values in a global model of the sun leads
to an instability (R¨udiger 1989; R¨udiger & Spahn 1992), which
is in fact nothing but a repetition of the original convection in-
stability that leads to turbulence in the first place (Tuominen
et al. 1994). It is therefore plausible that the actual values of
the turbulent transport coefficients should rather be close to the
those for marginal stability. This would lead to a global con-
straint similar to the magnetic helicity constraint that governs
the nonlinear behavior of theα-effect in helical hydromagnetic
turbulence. At present, however, there is no theoretical frame-
work that allows self-consistent modeling of convection using
mean-field theory.
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