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Abstract. Forced turbulence simulations are used to determine the turbulent kinematic visgo§ityn the decay rate of a

large scale velocity field. Likewise, the turbulent magnetitugivity, nz;, is determined from the decay of a large scale magnetic
field. In the kinematic regime, when the field is weak, the turbulent magnetic Prandtl numgileris about unity. When the

field is nonhelicaly; is quenched when magnetic and kinetic energies become comparable. For helical fields the quenching is
stronger and can be described by a dynamical quenching formula.
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1. Introduction however, this instability is suppressedu@dkger & Shalybkov
2002). On the other hand, the Reynolds number of the flow is
The concept of turbulent fiusion is often invoked when mod-quite large (18...10°) and the flow therefore most certainly
eling large scale flows and magnetic fields in a turbulefifrbulent. This led Noguchi et al. (2002) to invoke a turbulent
medium. Turbulent magnetic filision is similar to turbulent kinematic viscosityy;, but to retain the microscopic valuemf
thermal difusion which characterizes the turbulent exchangge resultinggffectivemagnetic Prandtl number they used was
of patches of warm and cold gas. This concept is also applied®2 — big enough for the magnetorotational instability to de-
turbulent magnetic diusion which describes the turbulent exyelop. On may wonder, of course, why one should not instead
change of patches of magnetic field witlfdient strengths and use turbulent values for both diieients, i.e.v/n; ~ 1. This

direction. Reconnection of magnetic field lines is not explicithyould lead to even more favorable conditions for the magne-
required, but in the long run unavoidable if the magnetic powgjrotational instability (Rdiger et al. 2002).

SpeCtrUm is to decrease toward small scales. The idea of Prandtbim”ar constraints have also been reported for the

is that only the energy carrying eddies contribute to the mixirgnvection-driven geodynamo: Christensen et al. (1999) found
of large scale distributions of velocity and magnetic field strugnat there is a minimum value &%, of about 0.25 below which
tures. This leads to a turbulent magnetiusion codficient dynamo action does not occur at all. Similar results have also
n ~ 3U¢, whereU is the typical velocity and the scale of the peen reported by Cattaneo (2003). These results are disturb-
energy carrying eddies. For the kinematic turbulent viscosityy, because both for the sun and for the eaRf, < 1.

one expects similar values. Analytic theory based on the quasir P, of order unity, on the other hand, earth-like magnetic
linear approximation also produces similar (but not identicadhnfigurations can more easily be reproduced (see Kutzner &
values ofi; andy; (e.g. Kitchatinov et al. 1994). Christensen 2002).

It is usually assumed that the values qf and v; are Because of these restrictions, one wonders whether the ef-
independent of the molecular (microscopic) viscosity and mdgctive magnetic Prandtl number to be used ismgtbut rather
netic difusivity, v andn. However, in the context of the geody-the turbulent valuePm ¢ = v/n:. This raises the important ques-
namo or in laboratory liquid metals the microscopic magnetions whethePy,; is actually of order unity and whether it is
Prandtl numberP., = v/n is very small £107%). This has independent of the microscopic valu&,. The aim of this pa-
dramatic consequences for the magnetorotational instabilgr is to estimate the value Bf,; using turbulence simulations.
(Balbus & Hawley 1991). This instability is generally accepted The knowledge of the value &y, is also important for
as the main mechanism producing turbulence in accretion diglas solar dynamo. The qualitative properties of the dynamo de-
(Balbus & Hawley 1998). For dficiently small values oPr,, pend on the relative importance of the large scale flows and
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hence on the magnitude gf If n; is too large, the influence of and
a meridional flow of say 10 s is small so that only little mod-
ification can be expected for the basi@-dynamo (Roberts &
Stix 1972). In this case, however, we know that convention&l”
dynamo models of the solar activity cycle havéfidulty to ex-

plain Spirer’s law of equatorward sunspot migration. The akg that for the turbulent magnetic Prandtl number is
ternative that the resulting poleward migration can be overcom-

pensated by an internal equatorward flow requiredizcgently p  _ "t _ 2 — 04 @)

%f{u’(x, t) - u'(x,t+ 7))dr, (6)

small value ofy, which implies thaPy, > 1 (Choudhurietal. " 7 5

19955 Dikpati .& Charbonneau 1999; Bonanno et al. 2002). This results is similar to that of Nakano et al. (1979) for the
Given the importance of the value of the turbulent magnefic, a1 Prandtl number

Prandtl number it is useful to assess the problem using three—Ru.diger (1989) lists a number of other approaches for cal-

dimensional simulations of turbulent flows. We determine culating turbulent transport céieeients, which all yield Prandtl

andn; by measuring the decay rate of a large scale (mean) ye- . : :
locity and magnetic fields andB, respectively. We emphasize%%mbers around or below unity. One particular approach is the

: X renormalization group analysis which was applied to turbu-
that we are n_ot addr_essmg the question whetfend; can re- Ier?ce by Forster et al. (1977) for the case of a passive scalar,
glly be_ gsed in studies of the dynamo or the magnetorotanog%d later by Fournier et al. (1982) to the case with magnetic
instabiliy, fo_r example. . . fields. These results are valid in the long-time large-scale limit,
We consider weakly compressible nonhelically forced tug- d the value 0Py, turned out to be close to 0.7; see Eq. (23)
bulence and use a model similar to that of Brandenburg (200 Fournier et al ?1982) '
but with kinetic helicity fluctuating about zero. Dynamo action Kitchatinov ét al (1é94) use a mixing length approxima-
forsuch a model h_as recently been_considered by Haugen e{iglﬁ where terms of.the form/dt — vV2 are replaced by:L.
(2003), k.)Ut '.t sets in only at_ magnetic Reyn_olds n_umbers "’mov\\fﬁerercorr is the correlation time of the turbulence. They find
~30, which is not the case in the present simulations. We begm_ (4/15)rcor2. . andn, = (1/3)rcontoe, S0Py = 4/5 =
however by first reviewing the basic results for the values gf, corrms L gorims S E T mt = T
vi andn; within the framework of the quasilinear (Roberts &8'8' Yet another approach is theapproximation where triple

. A correlations are replaced by a damping term that is propor-
Soward 1975; Rdiger 1989) and other approximations. tional to the quadratic moments (e.g. Kleeorin et al. 1996;

Blackman & Field 2002). Here no Fourier transformation in
2. Results from quasilinear approximation time is used. This gives, as beforg,= (1/3)ruf,s (Wherer
] . is now interpreted as a relaxation time), but= (2/15)rU2,,
For ste_ady homogeneous |soFrop|c turbulence the correlatgmamyt = 2/5 = 0.4. This is half the value obtained from the
tensor is independent afandt, i.e. mixing length approximation, but the same as in Eq. (7).

/ / A, The fact that in all these casPg,; is less than unity can be
UG huj(x+ &1+ 7)) = Qi (6. 7), (@) traced back to the presence of the pressure term in the momen-
where angular brackets denote an ensemble average and prifi@gquation. If this term is ignored (as in pressureless Burgers
fluctuations about the average. In the quasilinear approxinidtbulence or “burgulence”) one always gés; = 1.
tion the transport cdicients are conveniently expressed in Itis tempting to speculate that the discrepancy between the
terms of the Fourier transformed correlation ten@ar(k, w), different analytic approaches is related to the validity of some

which is normalized such that idealizing assumptions made in order to apply the quasilinear
and other approximations. Clearly, additional approaches are
Qi1 = ff Qij(k, w)e®EedK dow. (2) needed to get a more complete picture regarding the correct

value of Pm;. It is nevertheless encouraging thi: does not
For the turbulent viscosity and the turbulent magnetitudiv-  Strongly deviate from unity.

ity one finds respectively (Rliger 1989) In the remainder of this paper we estimat@ndzn: numer-
. ically by considering the decay of an initial large scale velocity
_ 4 v3keQy (k, w)dkdw 3) or magnetic field, respectively, in the presence of small scale
"= 15 w? + v2k#)2 ’ turbulence.
1 7k2Qu (k, w)
=z ————dkdw. 4
m=3 ff 2 + 12K w (4) 3. The model

] . . The equations describing compressible isothermal hydromag-
Obviously, both quantities are of the same order of magnitugsic flows with constant sound speeg,are

but they are not identical. In the limitsp — 0 the expressions

are drastically simplified, i.e. % =—-2VInp + JxB + Fuisc + f, (8)
1 ,
Ve = 1—5_f<u (X, 1) - U (x, t+7))dr ©) d('j# =-V-u, ®)
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B T T
(29_t =V x (ux B) + V2B, (10) i

whereu is the velocity,o the densityB is the magnetic field,
andJ = V x B/up is the current density witlug being the
vacuum permeability. The viscous force is

1074k,

10~

o t= 40/ (Urmsky)
,,,,, t= 85/ (urmsks)
whereS;; = 1(u;j+uj;) - 25V uis the traceless rate of strain Lo-10 £=130/ (temski)
tensor. ‘ ‘

We solve the equations using the Pencil Coadehich is 1 10 100
a memory-éicient sixth-order finite dference code using the k
2N-RK3 scheme of Williamson (1980). For most of the simu-. o ) o
lations a resolution of 128meshpoints is used, but in Sect. 5 &'9- 1. Kinetic and magnetic energy spectra at threfedent times for
higher resolution of up to 58aneshpoints was necessary, 2 Un WithRe= 150 andRy = 15.

We focus on the case where the forcirfg,occurs at a
wavenumber arounk = 10. The forcing is such that the tur-  Given that the initial large scale field depends onlyzpn
bulence is subsonic and nonhelical. We consider tviferént it makes sense to define a mean field by averaging over the
periodic initial conditions, x andy directions. Alternatively, one might define an average
B = (coskyz,0,0)By (nonhelical) (12) by Fourier filtering, but thi_s has the disadvantage that not alll

the Reynolds rules are satisfied. For example, the average of a
and product of a mean and a fluctuating quantity would not van-
B = (coskyz sinkyz 0)By  (helical) (13) @sh. However,_for all practical_pur_poses our horizontal average

is nearly equivalent to a projection onto thke= k; Fourier

whereBy is the amplitude of the initial field. In the fully he-mode. Indeed, the main reason for forcing at a large wavenum-
lical case one may expect afidirent decay time because th@er, ki = 10, is that we need some degree of scale sepa-
magnetic helicity is a conserved quantity in the limit of smafation. Without scale separation, there would be no way of
magnetic difusivity. For the velocity field we use similar initial distinguishing between mean and fluctuating fields. Since the
conditions, but we do not expect this to be sensitive to helicityelocity fluctuations are constantly driven via the forcing term,

because kinetic helicity is not conserved in the limit 0, and it would be impossible to measure any decay of the mean ve-
would only be conserved in the unphysical caseO. locity. Nevertheless, even with scale separation there will al-

A detailed discussion of the initial conditions may at firsiyays be a certain level of noise in the mean field whose energy
glance appear somewhat surprising, because for forced turiguk; /k;)? times smaller than energy of the fluctuations. This
lent flows the initial conditions are normally forgotten aftemeans that we can measure an exponential decay of the mean
about one turnover time. This is indeed the case for hydrodield only in a certain window where nonlineaffects are al-
namic turbulence, but not for hydromagnetic turbulence if theady weak, but were the noise level is not yet reached.
magnetic field has net magnetic helicity. The reason is that, re-
gardless of the level of turbulence, the net magnetic helicity can
only change on the resistive time scale. Our results below céh-Results
firm this and they are indeed in agreement with earlier modgl; Decay of ii and B
predictions (cf. Blackman & Brandenburg 2002). The situation
would be diferent if the initial field was bi-helical, i.e. with op- We begin by considering the decay of a helical large scale mag-
positely helical contributions at fierent scales. This case ha#etic field and compare it with the decay of a large scale helical
been studied elsewhere (Yousef & Brandenburg 2003).  Velocity field in a purely hydrodynamic simulation; see Fig. 2.

In Fig. 1 we show kinetic and magnetic energy spectra biere, large scale velocity and magnetic fields are defined as
the run withRe= 150 andR,, = 15 at three dferent times us- horizontal averages overandy; the result is denoted liyand
ing a resolution of 512meshpoints. The kinetic energy show®, respectively. During the time interval when mean velocity
indications of a short inertial range in 5k < 40. Below the and magnetic field decay exponentially, the corresponding de-
forcing scale, in 2< k < 9, velocity and magnetic fields arecay rates are determined as
random and-correlated in space, giving rise tckAspectrum. —

The magnetic energy is substantially weaker than the kinetjc _ d In(a®)/2 = _ dIn(B")Y2
liC . {U) = ———, 1(B)=——— (14)
energy. This is because here the magnetic Prandtl number’is dt dt

small, P, = 0.1, and the magnetic Reynolds number is sul?r—1 the graphs oft,(0) and 1s(B) an exponential decay shows

critical for dynamo action. With our definition &, the criti- D as a plateau. The maanetic field decay is initiallv slow. so
cal value lies around 25 (Haugen et al. 2003). The small scar%— P ' 9 Y y '

. . L . (B) is initially not constant, but then it speeds up aku{B)
magnetic energy 1S therefore maqntamed by constantly Stlrrlrr@aches a plateau. The decay of the velocity field is immedi-
the slowly decaying large scale field.

ately fast andi,(u) lies immediately on a plateau. This sug-
1 http://www.nordita.dk/data/brandenb/pencil-code gests that the turbulent magnetidfdsivity is afected by the

Fusc=v(V2Uu+3VV-u+2S-Vinp), (11) 10-8

T
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Fig. 2. Decay of large scale helical velocity and magnetic fields, . .

(dashed and solid lines, respectively). The grapti@j has been Fi9-3.Dependence of the turbulentflision codficient on the mag-
shifted so that botii(t) andB(t) share the same tangent (dash-dotte'a'tUde of the mean field. The initial field is helical and corresponds to
line), whose slope correspondswo= 7 = 0.86ums/ki. The decay of data pomts on the right hand side of the pRt, ~ 20. The data are

a nonhelical magnetic field is shown for comparison (dotted line). Pest fitted bya =8 = 0.4 R.

strong initial field that in turn gives rise to a quenching of
the turbulent magnetic fiusivity. Strong means that the mag- 1.01
netic field strength is comparable with the equipartition field L
strength Beq = (uopu?)2. The initially strong large scale flow £
and the associated vorticity, on the other hand, do not and ar

also not expected taf@ct the turbulent viscosity and the asso- o

ciated deciy of this large scale flow. H8f < Beg, however, <04

bothtU andB decay at the same ratek, and g, respectively. [

This allows us to calculate 0.2}

Vi = /lu/kz, m = /lB/kZ, (15) 0.0L L

wherek; is the wavenumber of the initial large scale veloc- 0.01 1—30'/1; 100

ity and magnetic fields. From the present simulations, where oo

ks /ky = 10, we find Fig. 4. Dependence of the turbulentfidision codicient on the mag-
s nitude of the mean field. The initial field is nonhelic®, ~ 20. The

nxn=(08...09)xums/ki (forB™ < ng) (16) data are best fitted by = 1, independent dRn,.

Oncelu] has decreased below a certain leved.(uyy,s), it can-

not decay further and continues to fluctuate arou@@@ns,

corresponding to the level of the rms velocity of the (forced!) Before we discuss theffective quenching behavior gf in

turbulence ak = k; (see the dashed line in Fig. 2). more detail we should note that Eq. (17), and in particular the
The quenching of the magnetiddisivity, . = m(B), can value ofa, do not apply universally and depend on the field ge-

be obtained from one and the same run by simply determametry. This is easily demonstrated by considering a nonhelical

ing the decay ratelg(B), at diferent times, corresponding toinitial field. In that case the decay becomes unquenched already

different values oB = |B]; see Fig. 3. To describe departureg,, §2/ng ~ 1. Equation (17) can still be used as a reasonable

from purely exponential decay we adopBadependen ex- it formula, but nowa = 1 produces a good fit (independent of
pression of the form Rm); see Fig. 4.

= =2 In the nonhelical case there is an initial phase where the
B) = mo/(1+aB" /B2 17) . .. : ) .
m(B) = o/ (1+ 2B /Bgy). (47 field increases due to the wind-up of the large scale field. Since
whereny is the unquenched (kinematic) valuergfdescribed We measurey from the decay rate of the large scale field, this
approximately by Eq. (16), aralis a fit parameter. According would formally imply negative \2/a|U€S aof. Traces of this #ect
to Cattaneo & Vainshtein (1991) the parametés expected to can still be seen in Fig. 4 ne& /ng = 1. For this reason our
be of the order of the magnetic Reynolds number based on fhghod can only give reliable results|B| < 0.8Beq In the
microscopic magnetic ffusivity, case of a helical initial field, on the other hand, we have
Ren = Urmske /7. (18) B=0, i.e. the large scale field is force—free an_d interacts only
weakly with the turbulence. In particular, there is no significant
Figure 3 suggests that~ 0.4R,. amplification from the initial wind-up of the large scale field.
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Fig. 5. Dynamical quenching model with helical and nonhelical initial 400 500 600 700 800 900 1000 1100
fields. The quenching parameters gre 0 (solid line) and 3 (dotted ., k,

rms

line). The graph for the nonhelical cases has been shiftedarthat

one sees that the decay rates are asymptotically equal at late time&:ig. 6. Decay rate for three fierent values oReandRy, = 20 (fixed),
corresponding to values d&f,, = Ry/Reranging from 0.1 to 1. All
three curves have a plateau where the valu@gois the same. For

4.2. Comparison with the dynamical quenching model Ry, = 80 and 150 the graphs df have been shifted ihso that all

— three graphs show the plateau in approximately the same time interval.

In the case of a helical field and f@" /B3, * R the slow

decay ofB is related to the conservation of magnetic helicity.2 . . .

As discussed already by Blackman & Brandenburg (2002), t s/ng.z L §F|g. 4). We refer to Fh's as standard quenching

behavior is related to the phenomenon of selective decay (€. 9- Kitchatinov et al. 1994) which is known_to be always

Montgomery et al. 1978) and can be described by the dyn _sent._ln Blackman & Brandenburg (2002) this was modeled

ical quenching model. This model goes back to an early pa é(rallowmg in Eq. (21)r to beB-dependent. They adopted the

by Kleeorin & Ruzmaikin (1982, see also Kleeorin et al. 1995 grmula

but it applies even to_ the case V\_/here the turbulence is nonhﬁtli-z o/ (L + él<§>l/|3ea) (22)

cal and where there is noeffect in the usual sense. However,

the magnetic contribution te is still non-vanishing because itand found that, for a range offékrent values oRy, g = 3

is driven by the helicity of the large scale field. resulted in a good description of the simulations of cyaeliz-

To demonstrate this quantitatively we solve, in the origpe dynamos (Brandenburg et al. 2002). We emphasize that
mode approximatiork( = k) with B = B exp(k.2), the mean- this; is notused in a diagnostic way as in Eq. (17), but rather

field induction equation in the numerical solution of Egs. (19) and (20). The resulting
. decay law, shown as a dotted line in Fig. 5, agrees now with

d_B =ik x&E— nkfé (19) the_decay Iaw_seien iq the_ turbulenge simulation; (Fig..2). The

d helical case witly = 3 is still compatible with the simulations.

together with the dynamical-quenching formula (Eg. (13) of

Blackman & Brandenburg 2002) 5. Independence of microscopic viscosity

da _ 0 I:}mRe(é* - B) o) Finally we need to show that the turbulent magnetic Prandt

at k| e+ B2, ’ (20) number is indeed independent of the microscopic magnetic

Prandtl number. In Fig. 6 we plot the decay rates, obtained by
where differentiating InB(t), for three diferent values of the micro-
A A . A scopic viscosity, keeping fixed. The resulting values of the
&=aB-mikixB @) fow Reynolds numbemRe = Umeki/v, vary between 20 and

is the electromotive force, arfdh, is defined as the ratigo/n, 190; 9iVingPr in the range between 0.1 and 1. Within plot
which is expected to be close to the valueRgfas defined by accuracy the three values 4 turn out to be identical in the
Eq. (18). interval where the decay is exponential.

In Fig. 5 we show the evolution cE/Beq for helical and The duration of this interval isimskiAt =~ 200, which is
nonhelical initial conditionsB « (1,i,0) andB « (1,0,0), comparable to the time interval in Fig. 2 during which the decay
respectively. In the case of a nonhelical field, the decay ratd§&xponential. In one of the three casé (= 20) the initial

not quenched at all, but in the helical case quenching sets in fi§id was rather strong, so that it takes a long time before the
Ez/B2 >Rl magnetic helicity constraint becomes unimportant so that the
eq ™ :

s field can decay exponentially kit ~ 800).

In the helical case, the onset of quenchingBayBZ, ~ The numerical resolution used in most of the models is
Rl is well reproduced by the simulations. In the nonhelicdl28® mesh points. However, &Reis increased, higher reso-
case, however, some weaker form of quenching sets in wHation is required. FoRe = 80 we used 256mesh points and
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for Re = 150 we used 512mesh points. This implies meshtransport cofficients have to be replaced by integral kernels.
a Reynolds numbeut,hsAX/v, based on the mesh spacing, In Fourier space, the convolution with an integral kernel corre-
of about 18. Empirically we know that larger values are naponds to a multiplication with a wavenumber dependent fac-
generally possible. tor. There is indeed some evidence that the main contribution
comes only from the smallest wavenumbers (Brandenburg &
Sokoldf 2002). This is primarily a consequence of a lack of
scale separation in naturally forced turbulence, such as shear
The turbulence simulations presented here have shown thatftbe's or convection. In the present context, however, this is
turbulent magnetic Prandtl number is always of order unitgpt an issue because we have deliberately considered the cas
regardless of the values of tmicroscopicmagnetic Prandtl where the scale of the turbulent eddies is much smaller than the
number. Under the assumption of incompressibility, both tiseale of the large scale fiel& (k; = 10).
quasilinear approximation and the renormalization group Finally, we wish to point out that studies of instabilities
approach give turbulent magnetic Prandtl numbers somewfay. the magnetorotational or the dynamo instability) using tur-
below unity, which is related to the pressure term in the mbulent transport cdicients can sometimes lead to paradoxical
mentum equation. Here we find instedd; ~ 1. There are sev- situations. In the case of solar convection, for example, one ex-
eral plausible reasons for this discrepancy: (i) our simulatiopscts from mixing length theory that turbulent viscosity and
are actually weakly compressible, (i) they are non-steady amidermal difusivity are on the order of a few times%#@n? s,
(iif) the idealizing assumptions made in the analytic approachdewever, using such values in a global model of the sun leads
may not be justified. to an instability (Ridiger 1989; Rdiger & Spahn 1992), which
Our results have also shown that, for nonhelical magneiscin fact nothing but a repetition of the original convection in-
fields, the turbulent magneticftlisivity is quenched when thestability that leads to turbulence in the first place (Tuominen
magnetic energy becomes comparable to the kinetic energy. &oal. 1994). It is therefore plausible that the actual values of
helical magnetic fields, however, an apparent suppressiontted turbulent transport c@iécients should rather be close to the
the decay rate is observed which agrees with predictions frorthase for marginal stability. This would lead to a global con-
dynamical guenching model. If this suppression is describeddiyaint similar to the magnetic helicity constraint that governs
an algebraic expression, quenching would set in for magndtie nonlinear behavior of the-effect in helical hydromagnetic
energies much below the kinetic energy. turbulence. At present, however, there is no theoretical frame-
The present work demonstrates that the dynamical quenualork that allows self-consistent modeling of convection using
ing approach is not restricted to dynamos, but it can also deatan-field theory.
with decay problems, as was already mentioned in Blackman & _
Brandenburg (2002). The dynamical quenching model is uSALF_knowIedgementMe tha_nkthe anonymous referee for making use-
ally formulated in terms of, but for helical mean fields and ful suggestions and drawing our attention tc_) the paper by Fournier
B are parallel and the separation into contributions froBn et al (1.9 82). Use of the supercomputers in Odense (Horseshoe),
= . . . Trondheim (Gridur), and Leicester (Ukpis acknowledged.
andnJ becomes less meaningful. It is for this reasons that an
a term appears in the description of the decay of helical fields,
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