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Abstract. Motivated by recentTransition Region and Coronal Explorer (TRACE)observations of damped oscillations in coro-
nal loops, Ruderman & Roberts (2002), studied resonant damping of kink oscillations of thin straight magnetic tubes in a cold
plasma. In their analysis, Ruderman & Roberts considered magnetic tubes with circular cross-sections. We extend their analysis
for magnetic tubes with elliptic cross-sections. We find that there are two infinite sequences of the eigenfrequencies of the tube
oscillations,{ωnc} and {ωns}, n = 1,2, . . .. The eigenfrequencies{ωnc} and {ωns} correspond to modes with 2n nodes at the
tube boundary. In particular,ω1c andω1s correspond to two kink modes. These modes are linearly polarized in the direction
of the large and small axis of the tube elliptic cross-section respectively. The sequence{ωnc} is monotonically growing and
{ωns}monotonically decreasing, and they both tend toωk asn→ ∞, whereωk is the frequency of the kink mode of tubes with
circular cross-sections. In particular,ω1c < ωk < ω1s. We calculate the decrements of the two kink modes and show that they
are of the order of decrement of the kink mode of a tube with a circular cross-section.
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1. Introduction

This study was motivated by the recent TRACE observations
of damped coronal loop oscillations (Aschwanden et al. 1999;
Nakariakov et al. 1999; Schrijver & Brown 2000; Aschwanden
et al. 2002; Schrijver et al. 2002). Aschwanden et al. (1999)
and Nakariakov et al. (1999) interpreted these observations
in terms of the kink mode of oscillation of a coronal loop.
Nakariakov et al. (1999) noted that the loop oscillations were
strongly damped with the characteristic damping time equal to
a few periods of oscillations.

Different mechanisms of damping of coronal loop os-
cillations were discussed by Roberts (2000) and Ofman &
Aschwanden (2002). Ruderman & Roberts (2002) suggested
that the damping of these oscillations is due to resonant absorp-
tion, which is the energy transfer from the global mode of os-
cillation of a coronal loop into quasi-Alfv´enic oscillations in a
thin dissipative layer. This layer embraces an ideal resonant po-
sition where the frequency of the global mode matches the local
Alfv én frequency. To study this process Ruderman & Roberts
(2002) solved the initial value problem for a thin straight mag-
netic tube with a circular cross-section and a thin inhomo-
geneous layer at its boundary. They showed that a damped
kink oscillation of this tube emerges from an arbitrary initial
perturbation after the time of order of a few periods of this
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oscillation. The characteristic damping time is of order of the
oscillation period times the ratio of the tube radius and the
thickness of the inhomogeneous layer. Goossens et al. (2002)
used the expression for the resonant damping rate of kink os-
cillations to investigate damped coronal loop oscillations in a
sample of 11 loops provided by Aschwanden et al. (2002).

One of the main results of Ruderman & Roberts (2002) is
that the asymptotic state attained by an initial perturbation af-
ter a few periods of the tube kink oscillation is completely de-
termined by the properties of the damped kink eigenmode of
the tube. This result can be easily generalized for configura-
tions more complicated than a straight magnetic tube with a
circular cross-section in a cold unstratified plasma considered
by Ruderman & Roberts (2002). Hence, it is not necessary to
solve the initial value problem every time to study the asymp-
totic state of tube oscillation caused by an initial perturbation.
Rather it is enough to study the damped eignemodes of the
tube oscillations. This observation enables us to concentrate on
studying eigenmodes in this paper. The aim of the paper is to
study the damped eigenmodes of a thin magnetic tube with an
elliptic cross-section in a cold plasma. Similar to Ruderman &
Roberts (2002), we assume that the damping of oscillations is
due to resonant absorption. This absorption occurs in a dissi-
pative layer embracing an ideal resonant line inside a thin in-
homogeneous layer at the tube boundary. In the next section
we formulate the problem. In Sect. 3 we derive the equations
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Fig. 1.A sketch of the equilibrium state, showing a magnetic flux tube
with plasma densityρi embedded in a plasma with densityρe. The
equilibrium magnetic field is everywhere has strengthB. The equilib-
rium density varies in the thin layer fromρi to ρe. The dashed lines
show the perturbed magnetic tube in its kink mode of oscillation.

relating the pressure perturbation at the boundaries of the in-
homogeneous layer. In Sect. 4 we study undamped waves in a
homogeneous tube and obtain the dispersion relations for these
waves in the approximation of an infinitely thin tube. In Sect. 5
we investigate resonant damping of kink modes. We present the
summary of our results and their discussion in Sect. 6.

2. Formulation

We consider a magnetic tube in a cold ideal plasma. To de-
scribe plasma motions we use the linear system of ideal MHD
equations

ρ
∂u

∂t
=

1
µ

(∇ × b) × B,
∂b
∂t
= ∇ × (u × B). (1)

Hereu is the velocity,ρ the equilibrium density,B the equi-
librium magnetic field, andb the perturbation of the magnetic
field; µ is magnetic permeability of empty space.

The equilibrium configuration is a straight magnetic tube
(see Fig. 1). The equilibrium magnetic field is everywhere
along thez-direction of Cartesian coordinatesx, y, z, and it
also has everywhere the same magnitudeB. The equilibrium
density is equal toρi inside the tube, andρe outside the tube,
ρe < ρi . It monotonically increases fromρe to ρi in a thin layer
at the tube boundary.

In what follows we assume that the tube has as ellip-
tic cross-section. We introduce elliptic coordinatess and ϕ
in the xy-plane (see Fig. 2). These coordinates are related to
Cartesian cordinates by

x = σ coshscosϕ, y = σ sinhssinϕ, (2)

whereσ is a quantity with the dimension of length. We as-
sume that the equilibrium density depends ons only, ρ = ρ(s).

Fig. 2.A sketch of elliptic coordinates in thexy-plane. The ellipses are
theϕ coordinate lines, and the hyperbolas are thes coordinate lines.
The two thick ellipses are the boundaries of the inhomogeneous layer.

The equation of the tube boundary iss = s0. Hence, the tube
cross-section is an ellipse with the large and small half-axis,a
andb, given by

a = σ coshs0, b = σ sinhs0. (3)

The ellipse eccentricity isε = 1/ coshs0. The density mono-
tonically increases fromρe to ρi in a thin layers0 − δ ≤ s≤ s0,
whereδ � s0. The thickness of this layer increases frombδ
in the x-direction (ϕ = 0) to aδ in the y-direction (ϕ = π/2).
The equilibrium density remains constant and equal toρi for
s≤ s0 − δ.

Eliminatingbx andby from (1), we obtain

∂2u

∂t2
− V2

A
∂2u

∂z2
= −1
ρ
∇⊥ ∂P
∂t
,
∂P
∂t
= −ρV2

A ∇⊥ · u. (4)

HereP, V2
A and∇⊥ are the perturbation of the magnetic pres-

sure, the square of the Alfv´en speed, and the perpendicular gra-
dient given by

P =
Bbz

µ
, V2

A =
B2

µρ
, ∇⊥ = ∇ − ez

∂

∂z
, (5)

wherebz is thez-component of the perturbation of the magnetic
field andez is the unit vector in thez-direction.

We assume that the magnetic tube is bounded atz = 0 and
z = L by dense ideal infinitely conducting plasmas with the
magnetic field frozen in these plasmas. This implies the bound-
ary conditions

u = 0 at z= 0, L. (6)

Equation (6) coupled with the second equation in (4) im-
plies that

P = 0 at z= 0, L. (7)

We consider only the fundamental mode of the tube oscillation
with respect toz. Then it follows from (6) and (7) thatu andP
are proportional to sin(πz/L). Our analysis remains applicable
to an overtone if we regardL as the distance between successive
nodes along the loop. We also restrict our analysis to the normal
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modes and takeu and P proportional to e−iωt. Then Eqs. (4)
reduce to

ρ
(
ω2 − ω2

A

)
u = −iω∇⊥P, iωP = ρV2

A ∇⊥ · u, (8)

whereωA = πVA/L is the local Alfvén frequency.
Equations (8) are used in what follows for studying the

damped oscillations of a magnetic tube.

3. Equations for boundary values of pressure
perturbation

In this section we derive the equations relating the pressure per-
turbation at the boundaries of the inhomogeneous layer. We do
this by steps. First we obtain the solution in the inhomogeneous
layer (s0 − δ < s < s0). Then we obtain the solution in the in-
ternal (s< s0 − δ) and external (s> s0) homogeneous regions.
Finally we match these solutions at the boundaries of the inho-
mogeneous layer.

3.1. Solution in the inhomogeneous layer

Let us introduce the characteristic thickness of the inhomoge-
neous layer̀ . Since the thickness of the inhomogeneous layer
varies frombδ to aδ, it follows that` � a. Let us also introduce
the velocity components in thes andϕ-direction,u andv. The
following formulae are valid in elliptic coordinates (e.g. Korn
& Korn 1961):

∇⊥ = 1
H

(
es
∂

∂s
+ eϕ

∂

∂ϕ

)
, ∇⊥ · u = 1

H2

[
∂(Hu)
∂s

+
∂(Hv)
∂ϕ

]
, (9)

wherees andeϕ are unit vectors in thes andϕ-direction, and
the Lamé coefficientH is given by

H2 = σ2
(
sinh2 s+ sin2 ϕ

)
. (10)

We shall see in what follows that the eignefrequencies of the
tube oscillations are of the order ofωA. Using this fact and (9),
we obtain from (8) the estimates

1
H
∂P
∂s
∼ ρωAu,

1
H2

∂(Hu)
∂s

∼ ωA

ρV2
A

P. (11)

Now we notice thatH−2∂(Hu)/∂s∼ u/`. With this estimate in
mind we obtain from (11)

1
H
∂P
∂s
∼ `P

L2
· (12)

Using the approximate formula

P(s, ϕ) = P(s0, ϕ) +
∂P
∂s

(s− s0), (13)

and the estimate|s−s0| . `/H, we now obtain, with the account
of (12), that|P(s, ϕ) − P(s0, ϕ)| . (`/H)2P. This result shows
that we can neglect the variation ofP in the s-direction in the
inhomogeneous layer and takeP(s, ϕ) ≈ P(s0, ϕ). This approx-
imation significantly simplifies the analysis. It was first used by
Hollweg (1987) and subsequently by Hollweg & Yang (1988)
to study resonant absorption of MHD waves in a thin inhomo-
geneous layer in a planar geometry. Recently, it was used by

Ruderman & Wright (2000) to study nonstationary driven os-
cillations of a thin planar magnetic cavity, and by Ruderman &
Roberts (2002) to study resonant damping of kink oscillations
of a magnetic tube.

The only quantity that we need for what follows is the jump
of u across the inhomogeneous layer,u(s0, ϕ) − u(s0 − δ, ϕ).
Eliminatingv from (8) with the use of (9) yields

∂(Hu)
∂s

=
iω
ρ

H2P

V2
A

+
1

ω2 − ω2
A

∂2P
∂ϕ2

 · (14)

SinceP is determined by its values at the boundaries of the in-
homogeneous layer, this equation can be considered as an equa-
tion with known right-hand side. In what follows we shall see
that the real part of the frequency of a weakly damped eigen-
mode,ωr, satisfies the inequalityωAi < ωr < ωAe. This implies
that there is such a valuesA, s0−δ < sA < s0, thatωA(sA) = ωr.
For any fixedϕ, the positions = sA is called the Alfvén res-
onant position. In the vicinity of this position there are large
gradients of the velocity, so that dissipation is important. In
weakly dissipative plasmas dissipation is only important in a
thin dissipative layer embracing the Alfv´en resonant position
(e.g., Goosens 1991; Goossens & Ruderman 1995). In very
weakly dissipative plasmas, like the solar coronal plasma, the
thickness of the dissipative layer is of order`|ωi/ωr|, whereωi

is the imaginary part of the eigenfrequency (e.g., Ruderman
et al. 1995; Tirry & Goossens 1996). Inside the dissipative layer
there are spatial oscillations of all quantities with the wave-
length much smaller than the thickness of the dissipative layer.

In what follows we shall see thatωi/ωr ∼ `/a, so that the
thickness of the dissipative layer is of order`2/a � `. This
observation inspires us to consider the dissipative layer as a
surface of discontinuity and solve the ideal MHD equations to
the left and the right of this surface. It turns out that, to connect
the solutions to the left and the right of the dissipative layer,
it is enough to know the jumps ofu andP across the dissipa-
tive layer. The formulae expressing these jumps are called the
connection formulae.

This method of studying resonant MHD waves in weakly
dissipative plasmas was first suggested by Sakurai et al. (1991)
and then improved by Goossens et al. (1995) for the so-called
driven problem. In the driven problem, plasma oscillations are
imposed by an external source of energy, andω is assumed to
be real. The thickness of the dissipative layer is determined by
dissipation. Sakurai et al. (1991) derived the connection formu-
lae for the driven problem. It follows from the results obtained
by Ruderman et al. (1995) and Tirry & Goossens (1996) that
the same connection formulae are valid in the case of weakly
damped oscillations even in very weakly dissipative plasmas
where the thickness of the dissipative layer is determined by
the damping rate.

Sakurai et al. (1991) and Goossens et al. (1995) derived
the connection formulae in cylindrical geometry under the as-
sumption that all equilibrium quantities depend on the radial
coordinate only. However, it is straightforward to generalize
these formulae for a particular equilibrium considered in this
paper. As a result, we obtain

[[P]] = 0, [[u]] =
π|ωr|

HρA |∆|
∂2P
∂ϕ2
· (15)
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Here [[f ]] is the jump of the functionf (s, ϕ) across the dissipa-
tive layer,ρA = ρ(sA), andωA andH are calculated ats = sA.
The quantity∆ is given by

∆ = − dω2
A

ds

∣∣∣∣∣∣
s=sA

· (16)

When we neglected the variation ofP across the inhomoge-
neous layer then, strictly speaking, we only could assume thatP
is a piece-wise constant function ofs, in general, discontinuous
at s = sA. It follows from the first connection formula in (15)
thatP is continuous ats = sA and, therefore, it is independent
of s inside the inhomogeneous layer.

Sinceδ � s0, we can neglect the variation ofH across the
inhomogeneous layer. Then it follows from (14) that

u =



u(s0 − δ) + iωH(s− s0 + δ)

ρV2
A

P+
iω
H
∂2P
∂ϕ2

×
∫ s

s0−δ
ds′

ρ(s′)[ω2 − ω2
A(s′)]

, s0 − δ < s< sA ,

u(s0) − iωH(s0 − s)

ρV2
A

P− iω
H
∂2P
∂ϕ2

×
∫ s0

s

ds′

ρ(s′)[ω2 − ω2
A(s′)]

, sA < s< s0.

(17)

Neglectingωi in comparison withωr, we obtain from (17)

[[u]] = lim
ε→+0

[u(sA + ε) − u(sA − ε)] = u(s0) − u(s0 − δ)

− iωrHδ

ρV2
A

P− iωr

H
∂2P
∂ϕ2
P

∫ s0

s0−δ
ds

ρ(s)
[
ω2 − ω2

A(s)
] , (18)

whereP indicates the principal Cauchy part of an integral.
Comparing (15) and (18), we obtain

u(s0) − u(s0 − δ) = π|ωr|
HρA |∆|

∂2P
∂ϕ2
+

iωrHδ

ρV2
A

P

+
iωr

H
∂2P
∂ϕ2
P

∫ s0

s0−δ
ds

ρ(s)
[
ω2 − ω2

A(s)
] · (19)

3.2. Solution in the internal region

Now we obtain the solution in the internal region determined by
the inequalitys≤ s0−δ. In this region all equilibrium quantities
are constant. Eliminatingu from (8), we obtain

∇2
⊥P+

ω2 − ω2
Ai

V2
Ai

P = 0. (20)

The velocity componentu is determined by

u =
−iω

ρiH
(
ω2 − ω2

Ai

) ∂P
∂s
· (21)

In what follows we use the regular perturbation method to find
the solution to the problem, and expandP, u andω in the series

P = P0 + εP1 + . . . , u = u0 + εu1 + . . . ,
ω = ω0 + εω1 + . . . ,

(22)

whereε = δ/s0 � 1. Sinceωi/ωr ∼ `/a ∼ ε, we can takeω0

to be real. Using the expression for∇2⊥ in elliptic coordinates
(e.g. Korn & Korn 1961), we obtain from (20) in the zero order
approximation

1
H2

(
∂2P0

∂s2
+
∂2P0

∂ϕ2

)
+

4θi
σ2

P0 = 0, (23)

where

θi =
σ2

(
ω2

0 − ω2
Ai

)
4V2

Ai

· (24)

Let us look for the solution to Eq. (23) in the formP0 =

S(s)Φ(ϕ). Substitution of this expression in (23) yields

S′′

S
+ 4θi sinh2 s= −

(
Φ′′

Φ
+ 4θi sin2 ϕ

)
, (25)

where the prime indicates the derivative. Since the left-hand
side of this equation depends only ons, and the right-hand side
only onϕ, they both have to be constant. In particular, it follows
thatΦ satisfies the equation

Φ′′ + (h− 2θi cos 2ϕ)Φ = 0, (26)

whereh is a constant to be determined. The functionΦ(ϕ) has
to be periodic with the period 2π. Equation (26) is the Mathieu
equation. The theory of Mathieu equation states that, for any
θi , there are two infinite monotonically growing sequences of
positive numbers,µ0, µ1, µ2, . . ., andν1, ν2, . . ., such that (26)
has a periodic solution with the period 2π if and only if either
h = µn, or h = νn (e.g., Bateman 1955; Abramowitz & Stegun
1964). Whenh = µn, the corresponding periodic solution is
denoted by cen(ϕ, θi ). This function is even and hasn zeros
in the interval 0≤ ϕ < π. Whenh = νn, the corresponding
periodic solution is denoted by sen(ϕ, θi ). This function is odd
and, once again, it hasn zeros in the interval 0≤ ϕ < π.

It is straightforward to see that the points with elliptic co-
ordinatess = 0, ϕ = ϕ0 ands = 0, ϕ = −ϕ0 correspond to the
same point in thexy-plane. This implies that the solution has
to satisfy the regularity conditions ats= 0:

P(0, ϕ) = P(0,−ϕ), u(0, ϕ) = −u(0,−ϕ). (27)

Using (21), we rewrite the second condition as

∂P(s, ϕ)
∂s

∣∣∣∣∣
s=0
= − ∂P(s,−ϕ)

∂s

∣∣∣∣∣
s=0
· (28)

It follows from (25) and (26) thatS(s) has to satisfy the modi-
fied Mathieu equation

S′′ − (h− 2θi cosh 2s)S = 0. (29)

Whenh = µn andΦ = cen(ϕ, θi ), the first equation in (27) is
satisfied automatically, while (28) givesS′(0) = 0. With the
accuracy up to a multiplicative constant, there is only one solu-
tion to (29) satisfying this condition. It is denoted by Cen(s, θi )
(Bateman 1955; Abramowitz & Stegun 1964). Whenh = νn
andΦ = sen(ϕ, θi ), (28) is satisfied automatically, while the
first equation in (27) givesS(0) = 0. Once again, with the ac-
curacy up to a multiplicative constant, there is only one solution
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to (29) satisfying this condition. It is denoted by Sen(s, θi ). Note
that Cen(s, θi ) is an even and Sen(s, θi ) an odd function ofs, and
they are related to the functions cen and sen by

Cen(z, θ) = cen(iz, θ), Sen(z, θ) = −i sen(iz, θ). (30)

The general solution to (23) is given by

Pi
0 = Ci

0 Ce0(s, θi ) ce0(ϕ, θi ) (31)

+

∞∑
n=1

[
Ci

n Cen(s, θi ) cen(ϕ, θi ) + Di
n Sen(s, θi ) sen(ϕ, θi )

]
,

whereCi
n and Di

n are arbitrary constants, and we use the su-
perscript “i” to indicate that this is the solution in the internal
region.

In the first order approximation we obtain from (20)

∂2Pi
1

∂s2
+
∂2Pi

1

∂ϕ2
+

4H2θi

σ2
Pi

1 = −
2ω0ω1H2

V2
Ai

Pi
0. (32)

3.3. Solution in the external region

The motion in the external region is described by (20) and (21),
however withωAe andVAe substituted forωAi andVAi . We once
again use the expansions (22) and arrive at the equation ob-
tained from (23) by substitutingθe for θi , where

θe =
σ2(ω2

0 − ω2
Ae)

4V2
Ae

· (33)

Looking for a solution in the formP0 = S(s)Φ(ϕ), we obtain
Eqs. (26) and (29) forΦ andS with θe substituted forθi . Similar
to the previous subsection, we obtain that eitherh = µn and
Φ = cen(ϕ, θe), n = 0, 1, 2, . . ., or h = νn andΦ = sen(ϕ, θe),
n = 1, 2, . . ..

In what follows we study only non-leaky modes and as-
sume thatω0 < ωAe, so thatθe < 0 (Cally 1986). In a non-leaky
mode, the perturbation have to vanish far from the tube. This
implies the condition

lim
s→∞S(s) = 0. (34)

With the accuracy up to a multiplicative constant, the solution
to the modified Mathieu equation withθe < 0 satisfying (34)
is equal to Fek(s, θe) whenh = µn, and it is equal to Gek(s, θe)
whenh = νn, where Fek and Gek are the modified Mathieu
functions of the third kind (Bateman 1955). Hence, the general
solution in the zero order approximation in the external region
reads

Pe
0 = Ce

0 Fek0(s, θe) ce0(ϕ, θe)

+

∞∑
n=1

[
Ce

n Fekn(s, θe) cen(ϕ, θe)

+De
n Gekn(s, θe) sen(ϕ, θe)

]
, (35)

whereCe
n and De

n are arbitrary constants, and we use the su-
perscript “e” to indicate that this is the solution in the external
region.

In the first order approximation we obtain Eq. (32), how-
ever withθe, VAe, Pe

0 andPe
1 substituted forθi , VAi , Pi

0 andPi
1

3.4. Matching solutions

To obtain the dispersion equation determining the eigenfre-
quencies of the tube oscillations, we need to match the solu-
tions in the internal, intermediate and external regions. Since
we neglected the pressure variation in the intermediate region,
the pressure at the boundary of the internal region has to coin-
cide with the pressure at the boundary of the external region.
This condition gives us two equations of the first and second
order approximation:

Pe
0 = Pi

0, Pe
1 = Pi

1 − s0
∂Pi

0

∂s
· (36)

To derive the second equation in (36) we have used the expan-
sionPi

0(s0 − δ) = Pi
0(s0) − δ ∂Pi

0/∂s. All quantities in (36) are
calculated ats= s0.

The second boundary condition is the continuity ofu. It has
to be satisfied at both boundaries of the intermediate region.
This implies that we can substituteue(s0) for u(s0) andui (s0−δ)
for u(s0−δ) in (19). Then, using (21) and a similar equation for
the external region, we rewrite (19) as

iω

ρeH(ω2
Ae − ω2)

∂Pe

∂s

∣∣∣∣∣
s=s0

− iω

ρiH(ω2
Ai − ω2)

∂Pi

∂s

∣∣∣∣∣∣
s=s0−δ

=
π|ωr|

HρA |∆|
∂2Pe

∂ϕ2
+

iωrHδ

ρV2
A

Pe

+
iωr

H
∂2Pe

∂ϕ2
P

∫ s0

s0−δ
ds

ρ(s)
[
ω2

r − ω2
A(s)

] , (37)

wherePe on the right-hand side of this equation is calculated
at s = s0. Since∆ ∼ Hω2

A/δ, we conclude that the right-hand
side of (37) is of orderε. This, in particular, enables us to sub-
stituteω0 for ωr on the right-hand side of (37). Then, making
proper expansions, we obtain from (37) in the zero and first
order approximation

1

ρe

(
ω2

Ae − ω2
0

) ∂Pe
0

∂s
=

1

ρi

(
ω2

Ai − ω2
0

) ∂Pi
0

∂s
, (38)

1

ρe

(
ω2

Ae − ω2
0

) ∂Pe
1

∂s
− 1

ρi

(
ω2

Ai − ω2
0

) ∂Pi
1

∂s

=
ω1

ω0

 ω2
Ai + ω

2
0

ρi

(
ω2

Ai − ω2
0

)2

∂Pi
0

∂s
− ω2

Ae + ω
2
0

ρe

(
ω2

Ae − ω2
0

)2

∂Pe
0

∂s


− s0

ρi

(
ω2

Ai − ω2
0

) ∂2Pi
0

∂s2
− iπ|ω0|s0

ω0ρA |∆|δ
∂2Pe

0

∂ϕ2
+

H2s0

ρV2
A

Pe
0

+
s0

δ

∂2Pe
0

∂ϕ2
P

∫ s0

s0−δ
ds

ρ(s)
[
ω2

0 − ω2
A(s)

] · (39)

In this equationPi
0,1, Pe

0,1 and all their derivatives are calculated
at s= s0.

4. Eigenmodes of a homogeneous tube

In this section we consider waves in a homogeneous mag-
netic tube, where there is no inhomogeneous layer, i.e.δ = 0.
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In this case the solution is given by the first terms in the ex-
pansions (22). Substituting (31) and (35) in the first equation
in (36) and in (38), we obtain the system of equations

Ci
0Ce0(s0, θi ) ce0(ϕ, θi ) +

∞∑
n=1

[
Ci

n Cen(s0, θi ) cen(ϕ, θi )

+Di
n Sen(s0, θi ) sen(ϕ, θi )

]
= Ce

0 Fek0(s0, θe) ce0(ϕ, θe)

+

∞∑
n=1

[
Ce

n Fekn(s0, θe) cen(ϕ, θe)

+De
n Gekn(s0, θe) sen(ϕ, θe)

]
, (40)

1

ρi (ω2
Ai − ω2

0)

{
Ci

0 Ce′0(s0, θi ) ce0(ϕ, θi )

+

∞∑
n=1

[
Ci

n Ce′n(s0, θi ) cen(ϕ, θi ) + Di
n Se′n(s0, θi ) sen(ϕ, θi )

]}

=
1

ρe(ω2
Ae − ω2

0)

{
Ce

0 Fek′0(s0, θe) ce0(ϕ, θe)

+

∞∑
n=1

[
Ce

nFek′n(s0, θe) cen(ϕ, θe)

+De
nGek′n(s0, θe) sen(ϕ, θe)

]}
, (41)

where the prime indicates the derivative with respect tos.
The functions cen(ϕ, θ) and sen(ϕ, θ) can be expanded in

the Fourier series (e.g. Bateman 1955; Abramowitz & Stegun
1964)

ce2m+ j(ϕ, θ) =
∞∑

r=0

A2m+ j
2r+ j (θ) cos[(2r + j)ϕ], (42)

se2m+1+ j(ϕ, θ) =
∞∑

r=0

B2m+1+ j
2r+1+ j (θ) sin[(2r + 1+ j)ϕ], (43)

wherem = 0, 1, 2, . . . and j = 0, 1. The coefficientsA2m
2r (θ),

r = 0, 1, 2, . . ., are related by recurrence relations, and the
same is true forA2m+1

2r+1 (θ), B2m+1
2r+1 (θ) and B2m+2

2r+2 (θ). These re-
currence relations can be found in, e.g., Bateman (1955) and
Abramowitz & Stegun (1964). Substituting (42) and (43) in
(40) and (41) and collecting terms proportional to cos(nϕ) and
sin(nϕ), we obtain four infinite systems of linear homogeneous
algebraic equations with respect toCi,e

n andDi,e
n :

∞∑
m=0

Ce2m+ j(s0, θi )A
2m+ j
2n+ j (θi )C

i
2m+ j

=

∞∑
m=0

Fek2m+ j(s0, θe)A
2m+ j
2n+ j (θe)Ce

2m+ j , (44)

1

ρi (ω2
Ai − ω2

0)

∞∑
m=0

Ce′2m+ j(s0, θi )A
2m+ j
2n+ j (θi )C

i
2m+ j

=
1

ρe(ω2
Ae − ω2

0)

∞∑
m=0

Fek′2m+ j(s0, θe)A
2m+ j
2n+ j (θe)C

e
2m+ j , (45)

and
∞∑

m=0

S e2m+1+ j(s0, θi )B
2m+1+ j
2n+1+ j (θi )D

i
2m+1+ j

=

∞∑
m=0

Gek2m+1+ j(s0, θe)B
2m+1+ j
2n+1+ j (θe)D

e
2m+1+ j , (46)

1

ρi (ω2
Ai − ω2

0)

∞∑
m=0

S e′2m+1+ j(s0, θi )B
2m+1+ j
2n+1+ j (θi )D

i
2m+1+ j

=
1

ρe(ω2
Ae − ω2

0)

∞∑
m=0

Gek′2m+1+ j(s0, θe)B
2m+1+ j
2n+1+ j (θe)D

e
2m+1+ j,

(47)

wheren = 0, 1, 2, . . . Each of the system of Eqs. (44), (45)
and (46), (47), represent two systems of equations, one for
j = 0 and the other forj = 1. The condition of existence of
a non-trivial solution to each of these systems is that the cor-
responding infinite determinant is zero. This conditions gives
four dispersion equations determiningω0.

In general, the dispersion equations forω0 can be solved
only numerically. However the analysis is strongly simplified
in the approximation of a thin magnetic tube, wherea � L.
Sincea = σ coshs0 ≥ σ, it follows thatθe ∼ θi ∼ (a/L)2 � 1.
Now we use the expansions ofAm

n (θ) andBm
n (θ) in power series

of θ (Abramowitz & Stegun 1964) to obtain

A0
0 = 2−1/2 + O

(
θ2

)
, An

n = 1+ O(θ2), Bn
n = 1+ O(θ2),

An
n+2m = O(θm), Bn

n+2m = O(θm), (m= 1, 2, . . .),

An
n−2m = O(θm), Bn

n−2m = O(θm), (m= 1, 2, . . . , [n/2]),

(48)

where n = 0, 1, 2, . . ., and [n/2] indicates the integer part
of n/2. Using the relations (30), the Fourier expansions (42)
and (43), and the asymptotic formulae (48), we obtain the
asymptotics valid for|θ|1/2es� 1:

Ce0(s, θ) ∼ 2−1/2, Cen(s, θ) ∼ cosh(ns),

Sen(s, θ) ∼ sinh(ns),
(49)

wheren = 1, 2, . . .
Let us introduce new variables

C̃e
0 =

p0

π
Ce

0, C̃e
2m−1 =

(−1)mp2m−1

π|θe|1/2A2m−1
1

Ce
2m−1,

C̃e
2m =

(−1)mp2m

2πmA2m
0

Ce
2m,

D̃e
2m−1 =

(−1)mq2m−1

π|θe|1/2B2m−1
1

De
2m−1, D̃e

2m =
2m(−1)mq2m

πθeB2m
2

De
2m,

(50)

wherem = 1, 2, . . . We substitute (50) in the four systems of
equations, the first and second given by (44), (45) withj = 0, 1,
and the third and fourth given by (46), (47) withj = 0, 1. As
a result, we obtain four infinite systems of linear homogeneous
algebraic equations, the first one forCi

2m andC̃e
2m, the second

one forCi
2m+1 andC̃e

2m+1, the third one forDi
2m+1 and D̃e

2m+1,
and the fourth one forDi

2m+2 andD̃e
2m+2, wherem = 0, 1, 2, . . .

Using (48), (49), and (A.11)–(A.15), it is straightforward to
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show that all elements of the infinite matrices of the four sys-
tems except the diagonal elements tend to zero asθi,e → 0.
Then, in the leading order approximation with respect toa/L,
the first and second systems reduce to

21/2Ci
0 = −(ln |θe| + 2s0 + 2γ − 2 ln 2)C̃e

0,

ρ−1
e (ω2

Ae − ω2
0)−1C̃e

0 = 0,

 (51)

cosh(ns0)Ci
n = e−ns0C̃e

n,

sinh(ns0)

ρi (ω2
Ai − ω2

0)
Ci

n = −
e−ns0

ρe(ω2
Ae − ω2

0)
C̃e

n,

 (52)

while the third and fourth system reduce to

sinh(ns0)Di
n = e−ns0D̃e

n,

cosh(ns0)

ρi

(
ω2

Ai − ω2
0

)Di
n = −

e−ns0

ρe

(
ω2

Ae − ω2
0

) D̃e
n,

 (53)

wheren = 1, 2, . . .
It is obvious that system (51) has only the trivial solution

Ce
0 = C̃e

0 = 0 for any value ofω0. A non-trivial solution of
this system would give us the only wave mode that changes the
area of the tube. It would be similar to the axisymmetric wave
propagating along a thin magnetic tube with a circular cross-
section. This wave propagates with the tube speedcT (Defouw
1976), which is zero in a cold plasma. This implies that the
axisymmetric wave cannot be described in the cold plasma ap-
proximation. The non-existence of a non-trivial solution to sys-
tem (51) is in a good agreement with this result.

A non-trivial solution to system (52) exists only when the
determinant of this system is zero. This condition results in

ω2
0 = ω

2
nc ≡

ρω2
A[1 + tanh(ns0)]

ρi + ρe tanh(ns0)
· (54)

Similarly, the condition of existence of a non-trivial solution to
system (53) results in

ω2
0 = ω

2
ns ≡

ρω2
A[1 + tanh(ns0)]

ρi tanh(ns0) + ρe
· (55)

When deriving Eqs. (54) and (55), we have taken into account
that ρeω

2
Ae = ρiω

2
Ai = ρω

2
A. The tube boundary perturbed by

the modes corresponding toωnc andωns is shown in Fig. 3 for
n = 1, 2, 3. It is straightforward to show that

ω1c < ω2c < ω3c < . . . ,

ω1s > ω2s > ω3s > . . .
(56)

In addition,

lim
n→∞ω

2
nc = lim

n→∞ω
2
ns = ω

2
k ≡

2ρω2
A

ρi + ρe
, (57)

whereωk is the frequency of the kink mode of a thin mag-
netic tube with a circular cross-section (e.g. Ryutov & Ryutova
1976; Edwin & Roberts 1983). It follows from (56) and (57)
thatωnc < ωms for anyn ≥ 1 andm≥ 1

The limit s0 → ∞ corresponds to a tube with a circular
cross-section, because in this limita/b → 1. In this limit we

Fig. 3. A sketch of the tube boundary perturbed by eigenmodes. The
upper, middle and bottom panels correspond ton = 1, n = 2 and
n = 3. The left panels correspond toωnc, and the right toωns. The
dashed and solid lines show the unperturbed and perturbed boundaries
respectively. In the middle panel the perturbed boundary is shown for
two successive moments of time separated by a half period.

obtain a well-know result for waves in thin magnetic tubes with
circular cross-sections (e.g. Spruit 1982):

ωnc = ωns = ωk (n = 1, 2, . . .). (58)

In the opposite limit, wheres0 → 0, the tube cross-section is
shrunk into the interval [−σ, σ] of the x-axis. In this limit

ωnc = ωAi , ωns = ωAe (n = 1, 2, . . .). (59)

These results are not surprising at all. In the modes corre-
sponding toωnc, the motion is along thex-axis, so it does not
perturbed the external plasma. As a result, the magnetic field
lines inside the tube oscillate with their own Alfv´en frequency,
which is equal toωAi . In the modes corresponding toωns, the
motion is perpendicular to thex-axis, and it perturbes a re-
gion of the external plasma with the characteristic sizeσ. The
mass of the plasma inside the tube can be neglected in com-
parison with the mass of the plasma in this region. As a result,
the plasma oscillates with the frequency equal to the external
Alfv én frequencyωAe. For n = 1 this result recovers the cor-
responding result for kink oscillations of a magnetic slab (e.g.
Enwin & Roberts 1982).

Expressions (54) and (55) take especially simple forms for
n = 1:

ω2
1c =

ρω2
A(a+ b)

aρi + bρe
, ω2

1s =
ρω2

A(a+ b)

bρi + aρe
· (60)

Recall thata andb are the small and large half-axis of the el-
liptic cross-section. Whena = b, ω1c = ω1s = ωk.
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Let us study polarization of the two kink modes. When
ω0 = ω1c, it follows from (51)–(53) that

Ci
n = C̃e

n = 0 (n = 0, 2, 3, . . .), C̃e
1 =

1
2(e2s0 + 1)Ci

1,

Di
n = D̃e

n = 0 (n = 1, 2, . . .).
(61)

Similarly,

Ci
n = C̃e

n = 0 (n = 0, 1, 2, . . .),

Di
n = D̃e

n = 0 (n = 2, 3, . . .) D̃e
1 =

1
2(e2s0 − 1)Di

1,
(62)

whenω0 = ω1s. Using (42), (43) and (48) we obtain that, for
|θi,e| � 1,

ce1(ϕ, θi,e) ≈ cosϕ, se1(ϕ, θi,e) ≈ sinϕ. (63)

It follows from (50), (61), (62), (A.12) and (A.14) that, for
|θe| � 1,

Ce
1 Fek1(s, θe) ≈ 1

2(e2s0 + 1)Ci
1e
−s,

De
1 Gek1(s, θe) ≈ 1

2(e2s0 − 1)Di
1e
−s.

(64)

Then, making use of (49) and (61)–(64), we obtain from (31)
and (35)

Pi
0 = Ci

1 coshscosϕ, Pe
0 =

1
2

(
e2s0 + 1

)
Ci

1e−s cosϕ, (65)

whenω0 = ω1c, and

Pi
0 = Di

1 sinhssinϕ, Pe
0 =

1
2

(
e2s0 − 1

)
Di

1e−s sinϕ, (66)

whenω0 = ω1s. Using Eqs. (8), (65), (66), and the relations
between unit vectors of elliptic,es andeϕ, and Cartesian coor-
dinates,ex andey,

es = H−1(ex sinhscosϕ + ey coshssinϕ),

eϕ = H−1(−ex coshssinϕ + ey sinhscosϕ),
(67)

we obtain for thex andy-component of the velocity,vx andvy,

vx = v0c, vy = 0 (ω0 = ω1c), (68)

vx = 0, vy = v0s (ω0 = ω1s). (69)

Here v0c is a constant proportional toCi
1, and v0s is a con-

stant proportional toDi
1. Hence, the kink oscillation with the

frequencyω1c is polarized in the direction of the large axis
of the elliptic cross-section. The kink oscillation with the fre-
quencyω1s is polarized in the direction of the small axis of the
elliptic cross-section.

Let us study the dependences ofω1c and ω1s on a/b.
Using (57) and (60) we obtain

ω2
1c

ω2
k

=
(1+ a/b)(1+ ρi/ρe)
2[1+ (a/b)(ρi/ρe)]

,
ω2

1s

ω2
k

=
(1+ a/b)(1+ ρi/ρe)

2(a/b+ ρi/ρe)
· (70)

In Fig. 4 the dependences ofω1c/ωk andω1s/ωk on a/b are
shown forρi/ρe = 10, which is typical value for coronal loops.
When a/b → ∞, ω1c/ωk →

√
(ρi + ρe)/(2ρi ) ≈ 0.742 and

ω1s/ωk →
√

(ρi + ρe)/(2ρe) ≈ 2.345. The limiting value for
ω1c/ωk is shown in Fig. 4 by the dotted horizontal line. The
quantityω1s/ωk becomes close to its limiting value only for
unrealistically large values ofa/b, so that it is not shown in
Fig. 4.

Fig. 4. The solid and dashed curves show the dependences ofω1c/ωk

andω1s/ωk on a/b respectively forρi/ρe = 10. The dotted horizontal
line shows the limiting value ofω1c/ωk for a/b→ ∞.

5. Resonant damping of kink oscillations

In this section we study resonant damping of the two linearly
polarized kink modes in the long wavelength approximation.
We start our calculation with determiningPi

1 andPe
1. To do this

we use (32) and a similar equation for the external region with
a/L� 1. Then, neglecting terms of order (a/L)2, we conclude
thatPi

1 andPe
1 satisfy

∂2Pi,e
1

∂s2
+
∂2Pi,e

1

∂ϕ2
= 0. (71)

Taking into account thatPi
1 has to satisfy the first boundary

condition in (27) and the boundary condition (28), we arrive at

Pi
1 = U i

0+

∞∑
n=1

[
U i

n cosh(ns) cos(nϕ) +Wi
n sinh(ns) sin(nϕ)

]
,(72)

whereU i
n andWi

n are arbitrary constants.Pe
1 has to vanish as

s→ ∞. The solution to (71) satisfying this condition is

Pe
1 =

∞∑
n=1

e−ns [Ue
n cos(nϕ) +We

n sin(nϕ)
]
, (73)

where once againUe
n and We

n are arbitrary constants. Now
we substitute (65), (66), (72) and (73) in the second equation
in (36) and in (39), neglect terms that tend to zero asa/L→ 0,
and collect the terms proportional either to cosϕ, or to sinϕ.
As a result we arrive at equations

U i
1 coshs0 − Ue

1e−s0 = Ci
1s0 sinhs0, (74)

sinhs0

ρi

(
ω2

Ai − ω2
1c

)U i
1 +

e−s0

ρe

(
ω2

Ae − ω2
1c

)Ue
1

= −Ci
1

 iπs0 coshs0

ρA |∆|δ − s0 coshs0

ρi

(
ω2

Ai − ω2
1c

)
+
ω1

ω1c


(
ω2

Ai + ω
2
1c

)
sinhs0

ρi

(
ω2

Ai − ω2
1c

)2
+

(
ω2

Ae + ω
2
1c

)
coshs0

ρe

(
ω2

Ae − ω2
1c

)2


− s0 coshs0

δ
P

∫ s0

s0−δ
ds

ρ(s)[ω2
1c − ω2

A(s)]

 , (75)



M. S. Ruderman: Oscillations of coronal loops with elliptic cross-sections 295

whenω0 = ω1c. Forω0 = ω1s we obtain

Wi
1 sinhs0 −We

1e−s0 = Di
1s0 coshs0, (76)

coshs0

ρi (ω2
Ai − ω2

1c)
Wi

1 +
e−s0

ρe

(
ω2

Ae − ω2
1c

)We
1

= −Di
1

 iπs0 sinhs0

ρA |∆|δ − s0 sinhs0

ρi

(
ω2

Ai − ω2
1s

)
+
ω1

ω1s


(
ω2

Ai + ω
2
1s

)
coshs0

ρi

(
ω2

Ai − ω2
1s

)2
+

(
ω2

Ae + ω
2
1s

)
sinhs0

ρe

(
ω2

Ae − ω2
1s

)2


− s0 sinhs0

δ
P

∫ s0

s0−δ
ds

ρ(s)
[
ω2

1s − ω2
A(s)

]
 · (77)

The system of Eqs. (74) and (75) is an inhomogeneous linear
system of algebraic equations forU i

1 andUe
1. Its determinant

coincides with the determinant of the system (52) withn = 1.
Since the latter is zero whenω0 = ω1c, system (74), (75) has
a solution only if its right-hand side satisfies the compatibil-
ity condition. This condition determinesω1 for the mode with
ω0 = ω1c. Similarly, the determinant of the system of Eqs. (76)
and (77) is also zero, and the corresponding compatibility con-
dition determinesω1 for the mode withω0 = ω1s.

The real part ofω1 gives only a small correction toω0 and
can be neglected. In contrast, the imaginary part ofω1 is very
important because it describes resonant damping of the oscilla-
tions. Introducing the decrementγ = −ε=(ω1), where= indi-
cates the imaginary part of a quantity, we obtain

γc =
πa2bω3

1c(ρi − ρe)2

2|∆|(a+ b)(aρi + bρe)2
, (78)

γs =
πab2ω3

1s(ρi − ρe)2

2|∆|(a+ b)(bρi + aρe)2
· (79)

It is straightforward to show that, for not very large eccentricity
ε, γc ∼ γs ∼ δω1c,s, whereaδ is the maximum andbδ the mini-
mum thickness of the inhomogeneous layer at the tube bound-
ary. Whena = b, γc andγs coincide with the decrement of the
kink mode oscillation of a thin tube with circular cross-section
given by Eq. (56) of Ruderman & Roberts (2002).

Let us study howγc andγs depend ona/b. We assume that
the (small) ratio of the area of the inhomogeneous region to the
area of the total tube cross-section remains constant whena/b
varies. Since the equations of the boundaries of the inhomoge-
neous region ares= s0−δ ands= s0, andδ� 1, the thickness
of this region is approximately equal toH(s0, ϕ)δ. The length
of an infinitesimal arc of the boundary corresponding to the
variation ofϕ from ϕ to ϕ + dϕ is H dϕ. Hence, the area of the
inhomogeneous region,Sin, is given by

Sin = δ

∫ 2π

0
H2(s0, ϕ) dϕ = δσ2

∫ 2π

0

(
sinh2 s0 + sin2 ϕ

)
dϕ

= πδσ2
(
1+ 2 sinh2 s0

)
= πδ

(
a2 + b2

)
.

Since the area of the cross-section is equal toScr = πab, the
condition thatSin/Scr = const. reduces to

δ = δ0
2a/b

1+ (a/b)2
, (80)

whereδ0 corresponds to the circular cross-section (a = b).
In what follows we assume that the density varies linearly

in the inhomogeneous region in the direction perpendicular to
the region boundary. Sinceδ � s0, it is equivalent to the as-
sumption thatρ is a linear function ofs, i.e.ρ in the inhomoge-
neous region is given by

ρ = ρe+ (s0 − s)(ρi − ρe)/δ. (81)

The conditionsω2
1c = ω

2
A andω2

1s = ω
2
A reduce toρ = ρAc and

ρ = ρAs respectively, where

ρAc =
aρi + bρe

a+ b
, ρAs =

aρe+ bρi

a+ b
· (82)

Using (16) and (81) we immediately obtain

∆ = −π
2ρV2

A(ρi − ρe)

ρ2
AL2δ

· (83)

Then, with the aid of (82), we arrive at

∆c = −
π2ρV2

A(a+ b)2(ρi − ρe)

L2δ(aρi + bρe)2
, (84)

∆s = −
π2ρV2

A(a+ b)2(ρi − ρe)

L2δ(aρe+ bρi )2
· (85)

Now, usingγ to indicate the common value ofγc andγs for
a = b, we obtain

γc

γ
=

25/2(a/b)3(1+ ρi/ρe)3/2[
1+ (a/b)2

]
(1+ a/b)3/2

[
1+ (a/b)(ρi/ρe)

]3/2 , (86)

γs

γ
=

25/2(a/b)2(1+ ρi/ρe)3/2[
1+ (a/b)2

]
(1+ a/b)3/2(a/b+ ρi/ρe)3/2

· (87)

It is easy to see thatγc/γ → 0 andγs/γ → 0 whena/b→ ∞.
It can be shown thatγc < γ for any a/b > 1. In Fig. 5 the
dependences ofγc/γ andγs/γ ona/b are shown forρi = 10ρe.
We can see that, for moderate values ofa/b (a/b . 2)γc andγs

do not differ fromγ very much.

6. Summary and discussion

In this paper we have studied the damped oscillations of a thin
straight magnetic tube with an elliptic cross-section in a cold
ideal plasma. The damping of the oscillations is due to resonant
absorption in a thin inhomogeneous layer at the tube boundary.
Our main results are:

(i) There are two infinite sequences of the tube eigenmodes,
{ωnc} and {ωns} (n = 1, 2,. . . ), corresponding to the global
modes of the tube. The sequence{ωnc} is monotonically in-
creasing, and the sequence{ωns} is monotonically decreasing.
Whenn→ ∞, ωnc,s → ωk, whereωk is the frequency of kink
oscillations of a tube with a circular cross-section. The modes
corresponding toωnc,s have 2n nodes at the tube boundary.
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Fig. 5.The solid and dashed curves show the dependences ofγc/γ and
γs/γ on a/b respectively forρi/ρe = 10.

(ii) The eigenfrequenciesω1c,s correspond to the two kink
modes of the tube. They are given by Eq. (60). The kink mode
with the frequencyω1c is polarized along the large axis, and
with the frequencyω1s along the small axis of the elliptic
cross-section.

(iii) The ratio of the mode decrements to the mode fre-
quencies are of the order of`/a, where` is the characteris-
tic thickness of the inhomogeneous layer at the tube boundary.
The decrements are given by Eqs. (78) and (79). For moderate
values of the ratio of the large,a, and small,b, half-axis of the
elliptic tube cross-section (a/b . 2) the decrements of the two
kink modes do not differ very much from the decrement of the
kink mode of a tube with the circular cross-section.

The results obtained in this paper may be important for in-
terpretation of the observed coronal loop oscillations. When
analyzing the results of the observations it is assumed that an
oscillation of a coronal loop is a damped harmonic oscillation.
Then the best fit is used to determine its amplitude, phase and
decrement.

The results obtained in this paper imply that coronal loop
oscillations may be superpositions of two damped harmonic os-
cillations with different frequencies rather than a single damped
harmonic oscillation. It would be rather interesting to analyze
observations of coronal loop oscillations assuming that these
oscillations are superpositions of two harmonic oscillations.

Appendix A

In this Appendix we calculate the asymptotic expressions for
Fekn(z, θ) and Gekn(z, θ) valid when θ < 0 and |θ| � 1.
We use the expansions of cen(z, θ), sen(s, θ), and the modified
Mathieu functions Feyn(z, θ) and Geyn(z, θ) in series of prod-
ucts of Bessel functions, the relations (30), and the expres-
sions of Fekn(z, θ) and Gekn(z, θ) in terms of Cen(z, θ), Sen(s, θ),
Feyn(z, θ) and Geyn(z, θ) (Bateman, Sects. 16.5 and 16.6). In
addition, we use the relations

Jn(iz) = inIn(z), H(1)
n =

2
π

i −n−1Kn(z), (A.1)

whereJn is the Bessel function,In the modified Bessel func-
tion, H(1)

n the Hankel function, andKn the modified Bessel

function of the third kind (McDonald function). As a result,
we obtain the following expressions valid forθ < 0:

Fek2m(z, θ) =
p2m

πA2m
0

∞∑
r=0

(−1)rA2m
2r Ir

(
|θ|1/2e−s

)
Kr

(
|θ|1/2es

)
,

(A.2)

Fek2m+1(z, θ) =
p2m+1

πA2m+1
1

∞∑
r=0

(−1)rA2m+1
2r+1

×
[
Ir

(
|θ|1/2e−s

)
Kr+1

(
|θ|1/2es

)
−Ir+1

(
|θ|1/2e−s

)
Kr

(
|θ|1/2es

) ]
, (A.3)

Gek2m+1(z, θ) =
q2m+1

πB2m+1
1

∞∑
r=0

(−1)r B2m+1
2r+1

×
[
Ir

(
|θ|1/2e−s

)
Kr+1

(
|θ|1/2es

)
+Ir+1

(
|θ|1/2e−s

)
Kr

(
|θ|1/2es

) ]
, (A.4)

Gek2m+2(z, θ) =
q2m+2

πB2m+2
2

∞∑
r=0

(−1)r B2m+2
2r+2

×
[
Ir(|θ|1/2e−s) Kr+2(|θ|1/2es)

−Ir+2(|θ|1/2e−s) Kr (|θ|1/2es)
]
, (A.5)

wherem= 0, 1, 2, . . ., and

A2m
0 p2m = ce2m(0) ce2m(π/2), (A.6)

|θ|1/2A2m+1
1 p2m+1 = i ce2m+1(0) ce′2m+1(π/2), (A.7)

|θ|1/2B2m+1
1 q2m+1 = −i se′2m+1(0) se2m+1(π/2), (A.8)

θB2m+2
2 q2m+2 = se′2m+2(0) se′2m+2(π/2). (A.9)

Using Eq. (48) together with the asymptotics for the modi-
fied Bessel functions valid for smallz (Abramowitz & Stegun
1964),

In(z) ∼ zn

2nn!
, K0(z) ∼ − ln

z
2
− γ, Kn+1 ∼ 2nn!

zn+1
, (A.10)

wheren = 0, 1, 2, . . . andγ ≈ 0.577 is Euler’s constant, we ob-
tain from (A.2)–(A.5) the following asymptotics for the modi-
fied Mathieu functions valid for|θ|1/2es� 1:

Fek0(z, θ) ∼ − p0

2π
(ln |θ| + 2z+ 2γ − 2 ln 2) , (A.11)

Fek2m+1(z, θ) ∼ (−1)mp2m+1

π|θ|1/2A2m+1
1

e−(2m+1)z, (A.12)

Fek2m+2(z, θ) ∼ (−1)mp2m+2

2π(m+ 1)A2m+2
0

e−(2m+2)z, (A.13)

Gek2m+1(z, θ) ∼ (−1)mq2m+1

π|θ|1/2B2m+1
1

e−(2m+1)z, (A.14)

Gek2m+2(z, θ) ∼ 2(m+ 1)(−1)m+1q2m+2

πθB2m+2
2

e−(2m+2)z, (A.15)

wherem= 0, 1, 2, . . .
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