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Abstract. We study the contribution of projection effects to the intrinsic thickness of the Fundamental Plane (FP) of elliptical
galaxies. The Monte–Carlo mapping technique between model properties and observed quantities, introduced by Bertin et al.
(2002), is extended to oblate, two–integrals galaxy models, with non–homologous density profiles, adjustable flattening, vari-
able amount of ordered rotational support, and for which all the relevant projected dynamical quantities can be expressed in
fully analytical way. In agreement with previous works, it is found that projection effects move models not exactly parallel to
the edge–on FP, by an amount that can be as large as the observed FP thickness. The statistical contribution of projection effects
to the FP thickness is however marginal, and the estimated physical FP rms thickness is'90% of the observed one (when
corrected for measurement errors).
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1. Introduction

In the observational three–dimensional space of central
velocity dispersionσ0, (circularized) effective radius Re,
and mean surface brightness within the effective ra-
dius Ie, early–type galaxies approximately locate on a
plane, called the Fundamental Plane (hereafter FP; Dressler
et al. 1987; Djorgovski & Davis 1987), and represented by
the best–fit relation:

logRe = α logσ0 + β log Ie+ γ. (1)

The coefficientsα, β, and γ depend slightly on the consid-
ered photometric band (e.g., Pahre et al. 1998; Scodeggio
et al. 1998). By measuringRe in kpc, σ0 in km s−1, and
Ie = L/(2πR2

e) in L�/pc2 (whereL is the total galaxy luminos-
ity), reported values in the Gunnr band areα = 1.24± 0.07,
β = −0.82± 0.02, γ = 0.1821 (Jørgensen et al. 1996, here-
after JFK96). One of the most striking observational properties
of the FP is its small and nearly constant scatter: the distri-
bution of logRe around the best–fit FP has a measured rms
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1 This value of γ refers to the Coma cluster and toH0 =

50 km s−1 Mpc−1.

(after correction for measurement errors, hereafterσint), that
corresponds to a scatter inRe at fixedσ0 and Ie ranging from
15% to 20% (see, e.g., Faber et al. 1987; JFK96).

For a stationary stellar system the scalar virial theorem can
be written as

GΥ∗L
Re

= KVσ
2
0, (2)

whereΥ∗ is the stellar mass–to–light ratio in the photomet-
ric band used for the determination ofL andRe, while the co-
efficient KV takes into account projection effects, the specific
mass density, the stellar orbital distribution (such as velocity
dispersion anisotropy and rotational support), and the effects
related to the presence of dark matter. Equations (1) and (2)
imply that in real galaxies, no matter how complex their struc-
ture is,Υ∗/KV is a well–defined function of any two of the
three observables (L,Re, σ0). For example, by eliminatingσ0

from Eqs. (1) and (2) one obtains that along the FP

Υ∗
KV
∝ R(2+4β+α)/α

e L−(2β+α)/α, (3)

where the dependence of the ratioΥ∗/KV on galaxy proper-
ties is commonly referred as the “FP tilt”. The physical con-
tent of Eq. (3) is truly remarkable: all stellar systems de-
scribed by Eq. (2) are in virial equilibrium, but only those for
whichΥ∗/KV scales according to Eq. (3) (and with the same
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scatter) correspond to real galaxies. In other words, Eq. (3)
indicates thatstructural/dynamical(KV) and stellar popula-
tion (Υ∗) properties in real galaxies are strictly connected, pos-
sibly as a consequence of their formation process: understand-
ing the origin of the FP tilt is thus of the utmost importance for
the understanding of galaxy formation.

A first possibility in this direction is to focus on the vari-
ation of asinglegalaxy property among the plethora in prin-
ciple appearing in the quantityΥ∗/KV, while fixing all the
others to some prescribed value: we call this approachorthog-
onal explorationof the parameter space. For instance, one can
explore the possibility that a systematic variation ofΥ∗ with L
is at the origin of the FP tilt, while considering the galaxies as
strictly homologous systems (i.e., with density and dynamical
structures only differing for the physical scales, and thusKV =

const. See, e.g., Bender et al. 1992; Renzini & Ciotti 1993;
van Albada et al. 1995, hereafter vABS; Prugniel & Simien
1996). Another possibility is to enforce a constantΥ∗, and to
assume that the galaxy density profiles, dark matter content and
distribution, stellar orbital distribution, and so on, vary sys-
tematically withL (see, e.g., Ciotti & Pellegrini 1992; Caon
et al. 1993; Renzini & Ciotti 1993; Djorgovski 1995; Hjorth
& Madsen 1995; Ciotti et al. 1996, hereafter CLR; Graham
& Colless 1997; Ciotti & Lanzoni 1997; Prugniel & Simien
1997).

Orthogonal explorations lead to important results, but, be-
sides starting from a (more or less) well motivated choice of
the specific parameter assumed to be responsible for the FP tilt,
they also bring to afine tuningproblem: the large variation of
such a parameter along the FP, necessary to reproduce the tilt,
must be characterized by a small scatter of it at any fixed posi-
tion on the FP in order to preserve the observed small thickness
(e.g., Renzini & Ciotti 1993; CLR). Moreover, the severity of
the fine tuning problem is strengthened by the unavoidable pro-
jection effects associated with the three–dimensional shape of
galaxies, if they also contribute to FP thickness. Thus,the inter-
pretation of the FP cannot be limited to the study of its tilt only,
but requires to take consistently into account also its thinness.

Recently, a statistical approach to this problem, based on
Monte–Carlo simulations and overcoming the intrinsic limi-
tations of orthogonal explorations has been proposed (Bertin
et al. 2002, hereafter BCD). In this study the authors showed
that, ascribing the origin of the FP tilt to thecombinedef-
fect of luminosity dependent mass–to–light ratio and shape pa-
rameterm in spherically symmetric and isotropicR1/m models
(Sersic 1968), can reconcile the FP tilt with the observed large
dispersion ofm at fixed galaxy luminosity (see Figs. 5 and 6
in CLR and Figs. 7 and 9 in BCD). Note, however, that in the
BCD analysis the FP thickness is entirely produced by vari-
ations from galaxy to galaxy of theirphysicalproperties, as
a consequence of the assumption of spherical symmetry. On
the other hand, elliptical galaxies are in general non spherical,
and the quantities entering the FP expression do depend on the
observation angle: it is therefore of great interest to estimate
the contribution of projection effects to the FP thickness, and
to quantify itsphysicalscatter. Few analytical works have ad-
dressed this issue in the past (e.g., Faber et al. 1987; Saglia
et al. 1993; Jørgensen et al. 1993; Prugniel & Simien 1994;

JFK96; vABS), their conclusions pointing in the direction of
a small contribution of projection effects to the FP thickness.
A different source of information on projection effects is also
represented by the end–products ofN–body numerical simu-
lations (see, e.g., Pentericci et al. 1995; Nipoti et al. 2002a,b,
2003; Gonz´ales & van Albada 2003). The impression one gets
from these simulations is that projection effects can be signifi-
cant contributors to the FP thickness, the range spanned by the
models for changing viewing angle being comparable toσint or
more.

We explore this matter further, by extending the BCD ap-
proach to a class of oblate ellipsoids with non homologous
density profiles, adjustable flattening and variable amount of
internal velocity streaming. However, in order to maintain
the dimension of the parameter space acceptable we do not
take into account the presence of DM halos, and the stellar
mass–to–light ratioΥ∗ is assumed to be constant within each
galaxy. For these models all the relevant quantities can be
expressed explicitly, thus allowing for fast numerical calcu-
lation. The paper is organized as follows. In Sect. 2 we de-
rive the relevant properties of the adopted models. In Sect. 3
we illustrate in detail a few representative cases, focusing on
the effects of the various model parameters on the observa-
tional properties entering the FP relation. In Sect. 4 the results
of the Monte–Carlo investigations are shown, and finally, in
Sect. 5 we summarize and discuss the results. Appendix A col-
lects the explicit formulas describing the model internal dy-
namics, while in Appendix B we derive the expressions for
the associated projected quantities. In Appendix C the simplest
model of the family (the homogeneous ellipsoid) is described
in detail.

2. The models

2.1. 3D quantities

In our study we use a family of oblate galaxy models with
homeoidal density distribution, belonging to the so–called
Ferrers ellipsoids (Ferrers 1877). The density profile is
given by

ρ(m) = ρ0 ×
{

(1−m2)n if 0 ≤ m≤ 1,
0 if m> 1,

(4)

whereρ0 is the central density,n ≥ 0 is an integer number,
and in cylindrical coordinates2 (R, ϕ, z) the isodensity surfaces
are labeled bym2 ≡ R2/R2

t + z2/(q2R2
t ). With this choiceRt

is the model semi–major axis, while its flattening is given by
0 < q ≤ 1. Note that these density profiles, when considered in
detail, are only a rough approximation of those of real galax-
ies, especially for low values ofn. However, most of the model
properties that are relevant for this study show a behavior sur-
prisingly similar to that of galaxy models with more realistic
density profiles(see Sect. 3). In addition the above mentioned
properties can be explicitly written in analytic form, making
the models suitable for Monte–Carlo simulations.

2 These coordinates are related to the natural Cartesian coordinate
system by the relationsR=

√
x2 + y2, cosϕ = x/R, sinϕ = y/R.
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The mass withinm and the total mass of the models are
given by

M(m) = ρ0R3
t 2πqB3/2,n+1(m2), (5)

and

M = ρ0R3
t 2πqB

(
3
2
, n+ 1

)
, (6)

respectively, whereBa,b(z) ≡
∫ z

0
ta−1 (1 − t)b−1dt is the incom-

plete Euler Beta function,B(a, b) ≡ Ba,b(1) = Γ(a)Γ(b)/Γ(a+b)
is the complete Euler Beta function, andΓ is the complete Euler
Gamma function.

We assume that the density profiles in Eq. (4) are supported
by a dynamics described by a two–integrals distribution func-
tion f = f (E, Lz) (whereE andLz are the energy and thezcom-
ponent of the angular momentum of stars). Thus, the Jeans
equations reduce to3

∂ρσ2
R

∂z
= −ρ∂φ

∂z
, (7)

and

∂ρσ2
R

∂R
−
ρ
(
v2
ϕ − σ2

R

)
R

= −ρ∂φ
∂R
, (8)

whereφ is the gravitational potential,vR = vz = 0 every-
where, the off–diagonal elements of the velocity dispersion
tensor vanish, andσ2

R = σ
2
z (see, e.g., Binney & Tremaine

1987, hereafter BT). The appropriate boundary conditions are
σ2

R = σ
2
z = 0 onm = 1 (Ciotti 2000), and so, the formal solu-

tion of Eqs. (7) and (8) is:

ρσ2
R =

∫ zt

z
ρ
∂φ

∂z′
dz′, (9)

wherezt ≡ q
√

R2
t − R2, and

ρ
(
v2
ϕ − σ2

R

)
= R

∂ρσ2
R

∂R
+ ρ
∂φ

∂R

 · (10)

As it is well known, the gravitational potential of homeoidal
systems can be obtained by evaluating a two–dimensional in-
tegral (see, e.g., Chandrasekhar 1969), but in general this in-
tegral cannot be expressed in terms of elementary functions.
From this point of view the density profiles adopted here are
a nice exception: their potential can be written explicitly (forn
integer) as a finite sum of integer powers ofRandz. Thus, from
Eqs. (9) and (10) alsoρσ2

R andρ(v2
ϕ −σ2

R) can be written in the
same way (their explicit expression is given in Appendix A).

To split v2
ϕ into streaming motionvϕ ≡ vϕ (that for sim-

plicity we assume nowhere negative), and azimuthal disper-
sion,σ2

ϕ ≡ (vϕ − vϕ)2 = v2
ϕ − v2ϕ, we adopt the Satoh (1980)

k–decomposition:

v2ϕ = k2(v2
ϕ − σ2

R), (11)

3 We use symbolv for the velocity in the phase space, whileu(x) ≡
v is thestreamingvelocity as defined in Eq. (B2). In general, a bar
over a quantity means average over phase–space velocities.

and

σ2
ϕ = σ

2
R +

(
1− k2

) (
v2
ϕ − σ2

R

)
, (12)

with 0 ≤ k ≤ 1. For k = 0 no ordered motions are present,
and the velocity dispersion tensor is maximally tangentially
anisotropic, while fork = 1 the velocity dispersion tensor is
isotropic, and the galaxy flattening is due to azimuthal stream-
ing velocity (the so called “isotropic rotator”). In principle,
by relaxing the hypothesis of a constantk and allowing for
k = k(R, z), even more rotationally supported models can be
constructed, up to themaximum rotationcase considered in
Ciotti & Pellegrini (1996), wherek(R, z) is defined so that
σ2
ϕ = 0 everywhere4.

2.2. Projected quantities

To project the galaxy models on the plane of the sky (the
projection plane), we employ a Cartesian coordinate system
(x′, y′, z′), with the line of sight (los) directed along thez′ axis,
and with thex′ axis coincident with thex axis of the natural
Cartesian system introduced at the beginning of Sect. 2.1. The
angle betweenz andz′ is θ, with 0 ≤ θ ≤ π/2: θ = 0 corre-
sponds to the face–on view of the galaxy, whileθ = π/2 to the
edge–on view. With this choice, the projection plane is (x′, y′),
and thelos direction in the natural coordinate system is given
by n = (0,− sinθ, cosθ).5 Accordingly, the coordinates of the
two Cartesian systems are related by

x = x′,

y = y′ cosθ − z′ sinθ,

z= y′ sinθ + z′ cosθ,

(13)

and the homeoid labeled bym can be rewritten in the observer
coordinate system as:

m2 =

(√
Az̃′ +

B√
A
ỹ′

)2

+ ˜̀2, (14)

where from now on, the symbol “∼” over a coordinate will in-
dicate normalization toRt, and

A ≡ sin2 θ + cos2 θ/q2,

B ≡ (1/q2 − 1) sinθ cosθ,

`2 ≡ x′2 + y′2/q(θ)2,

q(θ)2 ≡ cos2 θ + q2 sin2 θ.

(15)

When integrating a model quantity along thelos at given
(x′, y′), the limits onz′ are derived by settingm= 1 in Eq. (14)

z̃′± = −B
A
ỹ′ ±

√
1− ˜̀2

A
· (16)

4 Note that the important issue of the models phase–space consis-
tency is beyond the tasks of this work.

5 The los vector pointstoward the observer, and sopositiveveloci-
ties correspond to ablue–shift.
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For examples, the surface density profile is given by

Σθ(`) ≡
∫ z′+

z′−
ρdz′

= ρ0 Rt
q

q(θ)
B

(
1
2
, n+ 1

) (
1− ˜̀2

)n+1/2
, (17)

where ρ(x′, y′, z′) is obtained by substitution of Eq. (14)
in Eq. (4). The quantitỳ determines the size of the el-
liptic isophotes, and their (constant)apparent ellipticity is
ε = 1− q(θ). For a fixed̀ , the major and minor isophotal semi-
axes area = ` andb = q(θ)`, and the associatedcircularized
radius is defined by the identityπR2

` = πab, i.e.,R` =
√

q(θ)`.
In particular, thecircularized effective radius Re is given by

Re =
√

q(θ)`e, (18)

where`e is the solution of the equationMθ(`e) = M/2, and
where the projected mass within` is

Mθ(`) ≡
∫
`′≤`
Σθ(`

′) dx′ dy′

= ρ0R3
t 2π qB

(
3
2
, n+ 1,

) [
1−

(
1− ˜̀2

)n+3/2
]
. (19)

We obtain

`e =
√

1− 2−1/(n+3/2)Rt ≡ R0
e, (20)

with R0
e the effective radius of the model when seen face–on

(or in case of spherical symmetry). As can be easily proved,the
identity Re =

√
q(θ)R0

e is a general property of all axisymmetric
homeoidal distributions, independently of their specific density
profile.

To obtain the velocity fields at (x′, y′) we integrate along the
los their projected component onn. This is done by transform-
ing the corresponding spatial velocity moments from cylindri-
cal to Cartesian coordinates (see Appendix B). For example,
the loscomponent of thestreamingvelocity field is

vn ≡ 〈v, n〉 = vini, (21)

where〈, 〉 is the standard inner product and the repeated index
convention has been applied. The analogous quantity associ-
ated to the velocity dispersion tensor is

σ2
n ≡ 〈v − u, n〉2 = σi j ninj. (22)

By using the two definitions above, and Eqs. (B.4)–(B.5),
the expressions forvn andσ2

n are:

vn = −vϕ cosϕ sinθ, (23)

and

σ2
n = σ

2
R +

(
1− k2

) (
v2
ϕ − σ2

R

)
cos2 ϕ sin2 θ, (24)

where the last identity is obtained by using Eq. (12). The cor-
responding (mass–weighted) projected fields are obtained by

changing coordinates in Eqs. (23) and (24), and then integrat-
ing onz′:

Σθ(`)vp(x′, y′) ≡
∫ z′+

z′−
ρvndz′, (25)

Σθ(`)V2
p(x′, y′) ≡

∫ z′+

z′−
ρv2ndz′, (26)

and

Σθ(`)σ2
p(x′, y′) ≡

∫ z′+

z′−
ρσ2

ndz′. (27)

In generalσ2
p will not coincide with the velocity dispersion we

measure in observations: in fact, in presence of a non–zero pro-
jected velocity fieldvp, the correct definition for this quantity is

Σθ(`)σ
2
los(x

′, y′) =
∫ z′+

z′−
ρ

(
〈v, n〉 − vp

)2
dz′

= Σθ(`)
(
σ2

p + V2
p − v2p

)
, (28)

where the last expression is derived from the identity〈v, n〉2 =
σ2

n + v
2
n. Note that, independently of thelos orientation, on the

isophotal minor axisy′ (where, by definition, cosϕ = 0) vn, V2
p,

andv2p vanish, andσn = σR: on this axisσ2
p is the projection

of σ2
R andσ2

los = σ
2
p. In addition, the last identity holds every-

where when observing the galaxy face–on (θ = 0), or in the
casek = 0. Since the observed velocity dispersion is always
measured within a given aperture, we finally integrateσ2

los over
the isophotes (even thoughσlos in general is not constant over
isophotes):

Mθ(`)σ2
los,a(`)= 〈Σθσ2

los〉`≡
∫
`
′ ≤`
Σθ(`′)σ2

los(x
′, y′)dx′ dy′. (29)

In Appendix B we obtain the explicit expressions forσ2
p, V2

p
and their aperture values. Unfortunately,vp cannot be cast in
algebraic form whenn > 0, and so we have to resort to nu-
merical integration of Eq. (25) for its evaluation; the details are
given in Sect. 3.

As a check of the exactness of the derived projected fields,
we use a general consequence of the projected virial theorem
(see, e.g., Ciotti 2000), i.e.

〈Σθ
(
σ2

p + V2
p

)
〉`=Rt = 2ninj Ki j

= −n2
1W11 − n2

2W22 − n2
3W33, (30)

whereKi j is the kinetic energy tensor, and

Wi j = −
∫
ρxi
∂φ

∂xj
d3x (31)

are the components of the potential energy tensor. For our mod-
els, W22 = W11, n1 = 0, and the explicit expressions ofW11

andW33 are given in Appendix A.
We recall that a similar approach to the one presented in

this Section was adopted by vABS, who used a homeoidal,
modified Jaffe density profile; in particular, they studied the
projected field corresponding (in our notation) to the quantity
σ2

los + v
2
p = σ

2
p + V2

p averaged within 0.5Re.
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3. The model properties

To better understand the results of the Monte–Carlo simula-
tions presented in Sect. 4, here we illustrate in details a few
representative models, focusing on the effects of the various
parameters on the projected velocity fields, and on the observa-
tional quantities entering the FP.

The projected velocity dispersion and quadratic velocity
fields in Eqs. (27) and (26) are evaluated by using the explicit
expressions given in Appendix B. To obtain the projected field
vp in Eq. (25) a numerical integration onz′ is required. For sym-
metry properties we restrict the computation to the first quad-
rant of the projection plane, that is organized with an ellipsoidal
grid made of 50 uniformly spaced isophotal contours. Each
contour is divided in 50 angles, while thelos lengthz′+ − z′−
(see Eq. (16)) is divided in 100 elements. The computation of
the projected fields on this grid, by means of a double precision
Fortran90 code, requires'20 min on a 1.2 GHz workstation.
To check the robustness and correctness of the code, for all the
explored models (many more than those presented) we have
verified the projected virial theorem given in Eq. (30), and we
found relative errors<∼10−3.

The illustrative cases presented here all refer to a model
with n = 3 and q = 0.3, but their main properties apply
to the whole family of models studied in this paper. Due to
the constancy of the mass–to–light ratio within each model,
the mass weighted and the luminosity weighted quantities are
coincident.

Figure 1 shows the edge–on view of the two observation-
ally accessible projected fields,σlos andvp, in the isotropic ro-
tator case. As expected, the maximum value ofσlos is reached
at the center, whileσlos is not constant on isophotes. Note
that inside the ellipse corresponding to a circularized radius
of Re/8 (an aperture often used to correctσ0 in the FP studies;
e.g., JFK96),σlos is constant well within 10% (in fact, better
than 1%). As a consequence of the adopted decomposition of
azimuthal motions and of the edge–on view of the model, the
projected streaming velocity fieldvp (dashed lines) is nearly
vertical6, its value decreases towards the center of the galaxy,
and vanishes on they′ axis. As anticipated in Sect. 2.1 the
adopted density profiles, at variance with real galaxies, are very
flat in their inner regions: this is clearly visible here, where the
surface brightnessµ = −2.5 logΣθ(`) drops from the center to
Re by an amount∆µ = [(2n+1)/(2n+3)] 2.5 log 2 <∼ 1, in con-
trast with the drop of more than 8 magnitudes forR1/4 galaxies.

In Fig. 2 we show the same model seen atθ = π/4: for
obvious geometrical reasons, the lines of constantσlos are now
more similar to the optical isophotes.The fieldσlos within Re/8
is still constant with very good approximation, even thoughRe

has increased according to Eq. (18). The fieldvp is deformed by
projection effects, and its value, normalized to the maximum
of σlos, is lower than in the edge–on case, as expected.

When the amount of ordered rotation is substantially re-
duced (for example, by assumingk = 0.5), the resulting

6 The n = 0 model is an exception: its lines of constantvp are al-
ways parallel to the isophotal minor axis (Eq. (C.7)), and in the edge–
on, isotropic rotator case,σlos is constant on isophotes (Eqs. (C.9)
and (C.10)).

Fig. 1. The projected velocity fields of the (n = 3,q = 0.3, k = 1)
model, when seen edge–on (θ = π/2). The color contour plot shows
the velocity dispersion fieldσlos normalized to its maximum value
σlos,max ' 0.23Rt

√
Gρ0. Dashed lines represent the projected rotation

field vp/σlos,max, with numerical values labelled in the figure. Solid
lines are the surface brightness isophotesµ = −2.5 logΣθ(`) sampled
at 1 mag difference, while dotted lines are the isophotes corresponding
to Re/8 andRe.

Fig. 2. The fieldsσlos/σlos,max and vp/σlos,max of the same model in
Fig. 1 when seen atθ = π/4. In this caseσlos,max ' 0.24Rt

√
Gρ0.

velocity fields are modified as shown in Fig. 3 (θ = π/2) and
in Fig. 4 (θ = π/4). Direct comparison with Figs. 1 and 2 in-
dicates that such a reduction ofk moves the maximum ofσlos

from the center to the external regions of the model, a conse-
quence of the increase ofσϕ at large galactocentric distances
on the equatorial plane in order to sustain the model flatten-
ing. This trend ofσlos is usually not observed in real galaxies,
and it can be ascribed to the too “rigid” Satoh decomposition:
however,σlos is again nearly constant within Re/8.

While we have shown here a few illustrative examples, we
find that for all the models studied in detailσlos stays nearly
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Fig. 3. The fieldsσlos/σlos,max and vp/σlos,max of the model in Fig. 1
when seen edge–on, in case of a substantial reduction of the ordered
motions (k = 0.5). The maximum value of the velocity dispersion field
is σlos,max ' 0.41Rt

√
Gρ0; all the comments in the caption of Fig. 1

apply.

constant withinRe/8. For example, for then = 0 model, by
expanding Eq. (C.11) for̀̃<< 1 we obtain

σ2
los,a(`)

σ2
p(0, 0)

∼ 1+

[
3(1− k2) sin2 θ

2

(
w1

q2w3
− 1

)
− 1

] ˜̀2

2
, (32)

and soσp(0, 0) andσlos,a(Re/8) differ less than 0.1%, while
for the n = 3 models represented in Figs. 1–4 the two quan-
tities differ less than 1%. This implies that when using aper-
tures of the order ofRe/8, the averagelos velocity dispersion
can be safely replaced by its central value, i.e.,σlos,a(Re/8) '
σlos(0, 0) = σp(0, 0), independently of rotation and los in-
clination angle(note that the last identity holds exactly; see
Sect. 2.2). These considerations are also confirmed by the cus-
pier models discussed in vABS.

We now describe how models “move” in the edge–on view
of the FP, when changing the intrinsic (i.e.,n, q, andk) and ob-
servational (θ) parameters. In Fig. 5a we illustrate the behavior
of threen = 0 models in the (logRe,FP, logRe) space, where
logRe,FP ≡ α logσ0 + β log Ie+ γ. Two models have maximum
intrinsic flattening (q = 0.3), and differ for the amount of ro-
tation (k = 1, andk = 0); the third one is a rounder (q = 0.5)
isotropic rotator. Owing to the particularly simple expression
of σlos,a (Eq. (C.11)), we also investigate the effect of adopting
different apertures for the estimate ofσ0. In all cases, varying
the projection angle from 0 toπ/2, makesRe to decrease ac-
cording to Eq. (18), thus producing the vertical down–shift of
the representative models; obviously, such a shift is smaller for
the rounder galaxy. WhenRe decreasesIe increases, and galaxy
models move along straight lines of constant inclination with
respect to the edge–on FP, independently of their specific den-
sity distribution (see comments below Eq. (20)), and provided
thatσ0 is only weakly dependent on thelos inclination. We
find that even whenσ0 is measured within apertures of up to
the order ofRe, the effect on the model displacement in the FP
is marginal, independently of the viewing angle and the amount

Fig. 4. The fieldsσlos/σlos,max and vp/σlos,max of the same model in
Fig. 3 when seen atθ = π/4. In this caseσlos,max ' 0.31Rt

√
Gρ0.

of rotational support. The only relevant case is when the total
aperture is considered (circles)andthe galaxy flattening is sup-
ported by the azimuthal velocity dispersion (these results can
be qualitatively interpreted by using Eq. (C.11) with˜̀ = 1)7.
In Fig. 5b, the effect of the viewing angle for different values of
the shape parametern is illustrated. At variance with Fig. 5a,
all models have the same flattening (q = 0.3), mass, mass–
to–light ratio, and truncation radius. The amount of projection
effects is quantitatively similar for different values ofn, being
mainly due to the dependence ofRe on the viewing angle. In
summary, since in all cases the directions along which models
move are not parallel to the FP best fit line,projection effects
do contribute to the observed FP scatter, with effects<∼2σint.

Interestingly, from Fig. 5b it is also evident that the trend
of n along the FP is in agreement with what found observation-
ally when galaxy light profiles are fitted with theR1/m mod-
els (e.g., Caon et al. 1993; CLR; Graham & Colless 1997;
Prugniel & Simiens 1997; Ciotti & Lanzoni 1997; BCD): in
fact, in this latter class, anincreaseof m corresponds to the
galaxy density profile being radiallyflatter in the external re-
gions, as Ferrers models behave fordecreasing n. However,
the amount of this effect in Ferrers density profiles is substan-
tially smaller. This can be estimated by considering the behav-
ior of KV = GM/Reσ

2
p(0, 0): in the spherical limit, 4.93 <∼

KV(n) <∼ 6 for 0 ≤ n ≤ 10, to be compared with the range
7.96 >∼ KV(m) >∼ 1.75 for 1≤ m≤ 10 in case ofR1/m models
(BCD). Thus, while structural non–homology alone, with con-
stantΥ∗, is sufficient to reproduce the whole tilt of the FP in the
case of theR1/m models (CLR; Ciotti & Lanzoni 1997; BCD),
this is not true for the Ferrers ellipsoids. Also note that, at least
in the spherical limit, the values ofKV(n) are within the range
spanned by the virial coefficient in the case of theR1/m models.

7 Note that the observed velocity dispersion entering the FP
relation is usually corrected to a circular aperture with diame-
ter 1.19h−1 kpc (e.g., Jørgensen at al. 1999), corresponding to a ra-
dial range∼0.05Re–Re for h = 0.5, and for typical values ofRe. In
any case, the FP equations derived by usingRe/8 or the fixed metric
aperture are in mutual good agreement (JFK96).
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Fig. 5. Panela): effects of los direction and spectroscopic aperture
on threen = 0 models, arbitrarily placed on the edge-on FP (solid
line), as a function of flattening (q) and amount of ordered rotation
(k). Dotted lines markσint. In each model, the three aperture radii
are Re/8 (squares),Re (triangles), whole aperture (circles), and for
each aperture radius, the three points at decreasingy-axis correspond
to θ = 0, π/4, π/2. Panelb): effects of los direction and density
profile on the position of the models along the edge–on FP, when
σ0 = σp(0,0). As in panel a,θ increases along the arrows.

In particular, they are close to the value of 4.65 that charac-
terizes the de Vaucouleurs profileR1/4. SinceKV is the only
model-dependent property that explicitly enters the FP relation
(through Eq. (3)), this ensures that the class of models we are
using is suitable for our investigation. The behavior ofKV(n)
for different flattenings and viewing angles is summarized in
Table 1.

4. Simulations and results

4.1. The numerical procedure

In this section we extend the statistical approach presented
in BCD, and we determine the most general manifold (in
the parameter space) defined by the models that lie on the
observed FP. In practice, for each seven–dimensional point
(n,Υ∗, L,Rt, q, k, θ) in the model space, we determineRe, Ie,
andσ0. Then, we check if the model “belongs” to the FP. The
observational FP that we take as a reference is the one obtained

Table 1. The quantityKV for Ferrers ellipsoids as a function ofn, q,
and viewing angleθ, whenσ0 = σp(0,0).

KV q = 1 q = 0.3 q = 0.3

θ = 0 θ = π/2

n = 0 4.93 8.29 15.13

n = 3 5.78 8.61 17.36

n = 6 5.92 8.68 17.72

n = 10 6.00 8.71 17.89

by JFK96 for the Coma cluster galaxies in Gunnr (Eq. (1)). For
its intrinsic scatter we adopt the valueσint = 0.057, as quoted
by JFK96 for the galaxies withσ0 ≥ 100 km s−1.

The domains of model parameters considered in the simula-
tions are the following: 0≤ n ≤ 6, 1≤ Υ∗ ≤ 10 (different from
galaxy to galaxy, but constant within each model), 2.7 ≤ L ≤
50 (in 1010 L�, the same range of values spanned by the JFK96
Coma cluster galaxies), 1≤ Rt ≤ 200 (in kpc), 0.3 ≤ q ≤ 1,
and 0≤ θ ≤ π/2. The values ofn andΥ∗ are randomly ex-
tracted from uniform distributions, while power-law distribu-
tions p(L) ∝ L−1 andp(Rt) ∝ R−1.5

t have been used to extractL
andRt by means of the von Neuman rejection technique. The
assumption of strongly non uniform input distributions forL
andRt was necessary in order to end (after the FP selection)
with galaxy models having a luminosity function and a distri-
bution of effective radii in agreement with those observed (see
Sect. 4.3). For the extraction of the flatteningq a fit to the ob-
served distribution of intrinsic ellipticity (as derived for a pop-
ulation of oblate spheroids by Binney & de Vaucouleurs 1981)

p(q) '
0.6(q+ 0.055)

(
q2 − 1.07q+ 0.377

)
q2 − 1.197q+ 0.372

, (33)

has been used. Even though the assumption of a population
made of oblate spheroids only is not fully consistent with ob-
servations (see, e.g., Binney & Merrifield 1998), it is acceptable
for our investigation, and it is also consistent with the geometry
of the adopted models. Concerning the estimate of the model
central velocity dispersion, we recall that the way how models
move along the FP is almost the same when using apertures of
Re/8 or Re, and so, according to the results of Sect. 3, we as-
sumeσ0 = σp(0, 0). In such a way the dimensionality of the
parameter space is reduced by excludingk from the analysis.
Finally, to sample the effect of thelos inclination, we compute
the projections of each model along 11 viewing angles equally
spaced in 0≤ cosθ ≤ 1.

For each projection angle we first check whetherRe and
σ0 are within the ranges 1≤ Re/kpc ≤ 20 and 100 ≤
σ0/(km s−1) ≤ 350; if not, the model is discarded as un-
realistic, otherwise we construct theangle averagequanti-
ties 〈logRe〉, 〈logσ0〉, 〈log Ie〉, and〈logRe,FP〉 = α 〈logσ0〉 +
β 〈log Ie〉 + γ, we calculate the quantity8 〈∆FP〉 ≡ 〈logRe〉 −
〈logRe,FP〉, and we apply the following criteria to check
whether this candidate model “belongs” or not to the FP.

8 We define residuals about the FP the quantity∆FP ≡ logRe −
logRe,FP.



826 B. Lanzoni and L. Ciotti: Projection effects on the FP thickness

Since the FP residuals are consistent with being distributed
as a Gaussian (JFK96), we require that, according to the
von Neuman rejection technique, theangle average modelis
extracted from the distribution

p(〈∆FP〉) ∝ exp
(
−〈∆FP〉2/2σ2

inp

)
, (34)

whereσinp is an input parameter. We finally accept the model if
it also belongs to the face-on FP, i.e., if it satisfies 0.54x+ y <∼
4.2, with 2.66x ≡ 2.21〈logRe〉 − 0.82〈log Ie〉 + 1.24〈logσ0〉,
and 1.49y ≡ 1.24〈log Ie〉 + 0.82〈logσ0〉 (JFK96).

The end product of a complete run is the data sample com-
posed by the 11 projections of each accepted model. For this
sample, in the (logRe,FP, logRe) space we estimate both the
linear best–fit and the rms of the residuals around the best fit
line, rms (∆FP). The procedure is repeated by changing the
input parametersσinp until rms (∆FP) = 0.057. Thephysi-
cal thickness of the FP is then evaluated as rms (〈∆FP〉), and
the contribution of projection effects is estimated asσproj =√

rms (∆FP)2 − rms (〈∆FP〉)2.
Note that in this approach, due to the high dimensionality

of the parameter space, to the thinness of the FP, and to the von
Neuman rejections onL, Rt, q, and〈∆FP〉, we usually need to
calculateseveral hundreds thousand projected modelsfor each
choice ofσinp. This is feasible with the adopted class of mod-
els, becauseRe andσ0 can be expressed in a fully analytical
way.

4.2. Projection effects on the FP thickness

Following the procedure described above, we find that for
σinp ' 0.054 the sample of accepted models defines a synthetic
FP that matches very well the observed one, both in the edge-
on (Fig. 6a) and in the face-on (Fig. 6b) views. The model FP
is characterized (by construction) by rms (∆FP) = σint, while
its physicalthickness is rms (〈∆FP〉) ∼ 0.052= 0.91σint. It fol-
lows thatσproj ∼ 0.41σint. In this simulation, the fraction of
accepted models is∼2.2%.

Another possibility to estimate the contribution of projec-
tion effects to the FP thickness is that of selecting the an-
gle averaged models from what we call the “zero–thickness”
FP: in practice, we adoptedσinp = 0.001 in Eq. (34), so that
the dispersion produced by the accepted models when seen
from the 11 different los is entirely due to projection. Note
how, in agreement with the results shown in Fig. 5, the fi-
nal data set nicely fills the 1σ strip in Fig. 6c. In these zero–
thickness realizations, the fraction of accepted model is∼0.4%,
and rms (∆FP)' 0.45σint. Accordingly, we quantify the phys-

ical FP scatter asσphys=
√
σ2

int − σ2
proj ' 0.89σint.

As a test of the robustness of the above estimates we also
explored the case in which the distribution of∆FP is a step
function, i.e., instead of using Eq. (34), we accept the model if

δ ≡ |10〈∆FP〉 − 1| ≤ δinp, (35)

and we choseδinp so that rms (∆FP) of the selected models
equalsσint: the resulting values forσphysandσproj are in perfect
agreement with those obtained with the previous approach.

Fig. 6. Accepted models (dots) selected according to Eq. (34) and
σinp = 0.054, plotted in the edge-on (panela)), and face-on (panelb))
views of the FP. For models in panela), σint = 0.057. Solid triangles
are the Coma cluster galaxies in Gunnr (from JFK96). Panelc): the
edge-on FP for the models selected in the “zero–thickness” approxi-
mation. Solid and dashed lines in panelsa) andc) represent Eq. (1)
and its intrinsic scatter, respectively. The dotted line in panelb) marks
the “zone of exclusion” (JFK96).

For the whole sample of models that reproduces the ob-
served FP no systematic trends with the FP residuals are shown
by n, q, Re, L, σ0, while we find marginal correlations be-
tween the apparent ellipticityε = 1−q(θ) and the mass-to-light
ratio Υ∗, and∆FP. In agreement with the analysis of JFK96
(cf. Fig. 8a therein) and Saglia et al. (1993), flatter galaxies in
projection are preferentially characterized by positive residuals
(Fig. 7a), while∆FP decreases from positive to negative values
for increasingΥ∗ (Fig. 7b).
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Fig. 7. Distribution of the residuals about the FP as a function of apparent ellipticity (panela)) and mass–to–light ratio (panelb)), for models
reproducing the observed FP. Points within the dashed lines correspond to models with|Re/Re,FP− 1| <∼ 0.15.

Fig. 8. Histograms of the properties of the models reproducing the observed FP (solid lines). Dotted histograms in panelsa), b), c) correspond
to the observational data for the Coma cluster in Gunnr (from JFK96). The dotted line in paneld) represents the input distribution ofq, as
given in Eq. (33).

4.3. The FP tilt

We now address the issue of the FPtilt , and compare the prop-
erties of the models that reproduce the observed FP against the
available observational counterparts.

In Fig. 8 the distributions of the model properties are shown
with solid lines, while those of the adopted observational sam-
ple are represented with dotted lines. From Fig. 8 it is apparent
how the FP selection modifies the input power-law distribu-
tions ofL andRt into distributions that match remarkably well
the observed ones forL andRe. In particular, the result should

be contrasted with the one (not shown here) obtained when ex-
tractingL andRt from uniformdistributions: in that case, logL
andRe peak at∼1.1 and∼14, respectively. An interesting case
is presented by the flatteningq: in Fig. 8d it is apparent how
the input distribution (dotted curve) is not modified by the FP
selection. Also the effect on the shape parametern is not very
strong, even if the FP seems to be marginally selective against
the lowest and the highest values ofn (Fig. 8e). On the con-
trary, the effect on the mass-to-light ratio is remarkable: its in-
put uniform distribution has been substantially altered towards
small values by the FP selection (Fig. 8f). Note the peak around
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Fig. 9. Distribution along the FP of luminosity and mass–to–light ratio of the models that reproduce the observed FP (dots). Solid triangles
correspond to the observational data for the Coma cluster in Gunnr (from JFK96).

Υ∗ ' 3, a value in good agreement with the commonly accepted
stellar mass–to–light ratios in elliptical galaxies in the Gunnr
band.

We now describe how the model properties vary along the
FP. Whilen andq do not show any particular trend or segrega-
tion, L andΥ∗ are found to systematically increase withRe,FP

(Fig. 9). In both cases, the scatter is large, but almost constant
for fixed Re,FP. As shown in Fig. 9a, not only the trend ofL
with Re,FP, but also the overall region populated by the models
in this space, correspond remarkably well to those found in the
observations.

The distributions ofL andΥ∗ along the FP translate in a
well defined mutual dependence of these model properties, as
illustrated in Fig. 10 (small dots). Also in this case the agree-
ment with the estimates from the observational data is remark-
able (cf. Fig. 3a in JFK96). The large scatter inΥ∗ at fixedL
is by construction consistent with the small thickness of the
FP: apparently, other model properties vary within the sample
of accepted models so that their combined effect is to main-
tain the FP thin. A clearer view of the situation can be ob-
tained by considering only galaxy models lying on the ideal-
ized zero–thickness FP (open circles): the relation betweenΥ∗
and L is better defined now, even though the scatter inΥ∗ at
fixed L is still significant. In case of an orthogonal exploration
based on a systematic trend ofΥ∗ with galaxy luminosity, the
set of models would be just a 1–dimensional line in Fig. 10 (cf.
to Fig. 6 in BCD). Here, such a case can be mimicked by re-
stricting further to a sub–sample of models characterized by a
small range of flattenings (for example, 0.9 ≤ q ≤ 1, filled tri-
angles in Fig. 10). For this latter data set, the strict correlation
Υ∗ ∝ L0.3 is obtained, as predicted by Eq. (3) withKV ∼ const.

We recall that in this class of modelsn has only a minor ef-
fect in determiningσ0 (at variance with the shape parameter in
the case ofR1/m models). However, the behavior of the density

Fig. 10.Υ∗ vs.L for the models that reproduce the observed FP (small
dots). Circles correspond to models belonging to the zero–thickness
FP, while black filled triangles are their sub–sample in which 0.9 ≤
q ≤ 1.

profiles andL is qualitatively the same in the two families, as
discussed at the end of Sect. 3. In fact, when limiting to Ferrers
ellipsoids with constantΥ∗ and q, a correlation between the
shape parameter and the luminosity appears, withn decreasing
for increasingL.
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5. Discussion and conclusions

In this paper we have explored the importance of projection ef-
fects on the FP thickness. We extended the statistical approach
introduced by BCD to a class of oblate galaxy models, with
variable density profile, flattening, amount of rotation, and fully
analytical spatial and projected dynamical properties. In partic-
ular, after generating galaxy models corresponding to random
choices of the model parameters, we retained only those defin-
ing a FP with the same tilt and thickness as the observed one.
With this approach not only we quantified the importance of
projection effects on the observed FP thickness (thus also de-
termining the “physical” FP scatter associated to the dispersion
in the galaxy internal properties), but we also studied in a con-
sistent way the possible origins of the FP tilt. Such a framework
represents a valuable alternative to the somewhat arbitrary or-
thogonal explorations, where the property responsible for the
FP tilt is selected a priori, and afine tuningproblem for the
selected parameter is unavoidable. In the present approach in-
stead, we find that model properties can vary significantly from
galaxy to galaxy, while preserving the observed FP thinness
(a result in agreement with what found by BCD). Of course,
we stress again that (at a deeper level) the very existence of the
FP with such a small scatteris a fine tuning case, in the sense
that stellar population (Υ∗) and structural and dynamical prop-
erties (KV) are tightly correlated, as described by Eq. (3). The
reason for that can only be found in a comprehensive theory of
galaxy formation and evolution.

The main results of the present work can be summarized as
follow:

– For the adopted class of models the contribution of ordered
streaming motions to the observed velocity dispersion is
negligible when small/medium apertures (<∼Re) are used for
the spectroscopic observations. This implies that a system-
atic decrease of rotational support with increasing luminos-
ity is not at the origin of the FP tilt of elliptical galaxies.
However, the contribution of rotation can be non negligible
when using larger apertures, and this must be taken prop-
erly into account when studying the FP at high redshift.

– When observed from different los inclinations models
move along a direction that is not exactly parallel to the best
fit line of the edge–on FP, thus confirming that projection
effects do contribute to the observed FP scatter. The amount
of such a shift depends mainly on the intrinsic flattening of
the models (being larger for more flattened systems) and,
to a minor extent, on the adopted aperture used for the de-
termination ofσ0.

– The estimated contribution of projection effects to the ob-
served dispersion of logRe around the FP is∼0.4σint,
while the FPphysical scatter(as determined by varia-
tions of the physical properties from galaxy to galaxy),
is ∼0.9σint. It follows that, when studying the correla-
tions between galaxy properties required to reproduce the
FP tilt and thickness, spherical models are an acceptable
approximation.

– Weak correlations of the FP residuals with galaxy
mass–to–light ratio and apparent ellipticity are found.

The latter is in good agreement with the results of JFK96
and Saglia et al. (1993).

– For the models that reproduce the observed FP, a very good
agreement between their properties (L, Re, σ0, andq) and
the observational data is found. Also the trend ofΥ∗ with L
corresponds very well to the one estimated from the obser-
vations. In order to get these results, it has been crucial to
extract the models from steep power-law distributions ofL
andRt, while uniformdistributions in input produce an ex-
cess of models with bright luminosities and large effective
radii. While the conclusions about the contribution of pro-
jection effects to the physical FP thickness would remain
unchanged, it is still unclear why the requirement that mod-
els belong to the FP is so selective against lowL andRe.

– For what concerns the FP tilt,L andΥ∗ of the accepted
models appear to systematically increase withRe,FP. The
corresponding increase ofΥ∗ with L is also well defined
and in very good agreement with the observational esti-
mates. In addition, in the (Υ∗, L) plane, the models appear
to be segregated in terms of the flattening: at any fixedL,
systems with lowΥ∗ are preferentially rounder than those
with highΥ∗.

– The ranges of variation of the shape parametern, flatten-
ing, and mass–to–light ratio for models of given luminos-
ity can be very large, although consistent (by construction)
with a thin FP. This naturally solves the fine tuning problem
met by the “orthogonal exploration” approach, and it pro-
vides better agreement with observational data. In practice,
model parameters mutually combine in such a way that a
large dispersion of galaxy properties is allowed at any fixed
location of the FP, while preserving its thinness.

For simplicity we have used, as a guiding tool for the present
investigation, simple one–component, two–integrals oblate
galaxy models. The study would be best carried out with other
families of models, better justified from the observational and
physical point of view, but for the present purposes the sim-
ple models used provide an adequate demonstration. In fact,
although the density distributions adopted here are not a good
representation of real elliptical galaxies, the conclusions ob-
tained about the projection effects on the FP can be considered
robust. It is also reassuring that the displacements in the FP
space of our models due to a change in thelos direction agree
both qualitatively and quantitatively with the analogous results
obtained from the end–products ofN–body simulations. This is
because the wayRe (and thusIe) depends on the viewing angle
is the same for all homeoidally stratified density distributions.
A substantial improvement of the present exploration, assum-
ing more realistic density profiles, would require much more
time expensive simulations, since numerical calculation of the
projected velocity dispersion would be necessary.
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