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Abstract. We consider the stability properties of discs rotating with the angular velocity dependent on both the radial and
vertical coordinates. A vertical dependence ofΩ destabilizes the disc at any particular form of this dependence. The growth rate
of the vertical shear instability is calculated and compared with that of the magnetic shear instability. We find that the vertical
shear instability grows faster for a wide range of parameters.
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1. Introduction

The standard alpha viscosity prescription in accretion discs re-
quires a sufficiently strong turbulence that enhances the angu-
lar momentum transport. From the very beginning, differential
rotation has been regarded as the most promising source of tur-
bulence. In most accretion disc models, however, the radial de-
pendence of the angular velocity satisfies the Rayleigh stability
criterion

∂(s4Ω2)
∂s

> 0, (1)

wheres is the cylindric radius, andΩ is the angular velocity.
The inequality (1) is usually regarded as a sufficient condi-
tion of linear stability of the hydrodynamic flow in accretion
discs. Therefore, the origin of turbulence in discs is oftenly at-
tributed to the well-known Velikhov-Chandrasekhar instability
(Velikhov 1959; Chandrasekhar 1960) which can arise in mag-
netic differentially rotating fluid. This instability has been anal-
ysed in detail for stellar conditions (see Fricke 1969; Acheson
1978, 1979). The role of the magnetic shear instability in turbu-
lization of astrophysical discs was first considered by Safronov
(1969). Later on, Balbus & Hawley (1991) recognized that this
instability can give rise to MHD turbulence in magnetic accre-
tion discs since the necessary condition (a decrease of the angu-
lar velocity with the cylindrical radius) is fulfilled in thin discs.
Note that the magnetic shear instability can arise only if the
magnetic field is not very strong since a strong field stabilizes
differential rotation (see, e.g., Urpin 1996). Numerical simula-
tions done by a number of authors (Brandenburg et al. 1995;
Hawley et al. 1995; Matsumoto & Tajima 1995; Torkelsson
et al. 1995) indicate that this instability can provide an effi-
cient mechanism of the angular momentum transport and the
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magnetic field amplification. Calculations show that the level
of turbulence in magnetic accretion discs is sufficient to en-
hance the viscosity by orders of magnitude. For instance, es-
timates of the turbulent parameterα range from 0.001 to 0.7
depending on the magnetic field strength and the angular ve-
locity. It is worth noting that a complete analytical and numer-
ical treatment of MHD modes in stratified magnetic accretion
discs demonstrates a much richer variety of instabilities than
previously realized (Keppens et al. 2002), and the current view
on the origin of MHD turbulence is likely highly simplified.

Recently, the question of a pure hydrodynamic origin of
turbulence in astrophysical discs has been critically reexam-
ined on the basis of a large body of experimental and numer-
ical evidence (Richard & Zahn 1999; Longaretti 2002). This
problem is of particular importance for protoplanetary discs
because some of them (or their regions) are poorly conducting
(Fleming et al. 2000; Sano et al. 2000), and non-MHD mech-
anisms should be operative to provide an efficient turbulent
transport of the angular momentum. However, a non-MHD ori-
gin of turbulence cannot be excluded in accretion discs as well.
For instance, analysing the behavior of various types of shear
flows, Longaretti (2002) has argued that shearing sheet flows
should be turbulent, and that the lack of turbulence in accretion
disc simulations is most likely caused by a lack of resolution.

Likely, hydrodynamic processes in astrophysical discs are
much more complex than in simple shear flows because discs
are subject to both vertical and radial stratification. In such con-
ditions, the Rayleigh criterion (1) is not true criterion and does
not apply to accretion discs. Therefore, some linear instabilities
can arise even if the stability condition (1) is fulfilled. For ex-
ample, the vertical stratification, despite being usually stable,
can provide a catalyzing effect which under certain conditions
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induces a linear non-axisymmetric instability of anticycloni-
cally sheared flow (Molemaker et al. 2001). Recently, this in-
stability was reexamine by making use of a different approach
by Dubrulle et al. (2002) who enlarged the study towards con-
ditions typical of astrophysical discs. They found that thin discs
are potentially subject to this instability.

Apart from being vertically and radially stratified, discs ro-
tate with the angular velocity,Ω, which depends on both the
cylindrical radius,s, and the vertical coordinate,z (see, e.g.,
Kippenhahn & Thomas 1982; Urpin 1984; Kley & Lin 1992). It
was first argued by Kippenhahn & Thomas (1982) that a slight
baroclinity in the angular velocity distribution is necessary to
fulfil hydrostatic and thermal equilibrium in accretion discs.
The dependence ofΩ onz is relatively weak but it can trigger a
number of instabilities. For instance, Knobloch & Spruit (1986)
have found that adiabatic baroclinic waves can be unstable in
thin accretion discs if vertical and radial stratification is taken
into account. The instability occurs only for non-axisymmetric
perturbations and is analogous to baroclinic instability encoun-
tered in geophysics. Due to the dominant effect of the Kepler
shear, instability is possible only if radial temperature gradients
has a very short lengthscale (of the order of scaleheigh), or if
the stratification is close to convective instability. Both these
conditions are unlikely to be fulfilled and, probably, baroclinic
waves play no important role in accretion discs.

The instability first considered by Goldreich & Schubert
(1967) seems to be more suitable for the conditions of ac-
cretion discs. It does not require strong radial stratification
but is caused by the vertical shear alone. This instability has
been considered recently by R¨udiger et al. (2002) who exam-
ined the behaviour of linear and non-linear small-scale per-
turbations and concluded that the stabilizing effect of stratifi-
cation is sufficient to stabilize even non-linear perturbations.
Simulations have been done by making use of a version of the
ZEUS-3D code which does not allow one to treat properly the
effect of thermal conductivity and, therefore, the authors con-
sidered only adiabatic fluctuations. However, small-scale mo-
tions in discs are likely non-adiabatic. The exchange of heat be-
tween perturbations and the surrounding medium substantially
reduces the influence of the buoyancy force and decreases the
stabilizing effect of stratification (Urpin & Brandenburg 1998).
As a result, the stability properties of thermally conducting
discs can well be different from those obtained in the adiabatic
limit.

In the present paper, we consider in detail how the verti-
cal shear instability can operate in the conditions of accretion
discs. The main difference to stellar conditions is caused by a
high radiative thermal conductivity that makes the thermal re-
laxation time scale comparable to the hydrodynamic time scale.
We compare the growth rates of the vertical and magnetic shear
instabilities and find that the latter grows much more slowly
within a wide range of wavelengths except perturbations with
a very short wavelength. The turbulent viscosity caused by the
vertical shear instability is estimated. We argue that the vertical
gradient ofΩ existing in accretion discs is sufficient to enhance
substantially the angular momentum transport.

The paper is organized as follows. In Sect. 2, the main equa-
tions are presented governing the behaviour of perturbations

in the Boussinesq approximation, and the dispersion equation
for short wavelength perturbations is derived. The stability cri-
terion is discussed in Sect. 3, and the growth time of instability
is calculated in Sect. 4. In Sect. 5, we estimate the turbulent vis-
cosity produced by the considered instability in accretion discs.

2. Dispersion equation for short-wavelength
perturbations

Consider a non-magnetic axisymmetric disc of finite verti-
cal extent, not necessarily thin. The unperturbed angular ve-
locity depends on boths and z coordinates,Ω = Ω(s, z);
s, ϕ, z are cylindrical coordinates. We treat axisymmetric
short-wavelength perturbations with the space-time depen-
dence exp(γt − ik · r) wherek = (ks, 0, kz) is the wave vector,
|k · r | � 1. Small perturbations will be marked by the sub-
script 1, whilst unperturbed quantities will have no subscript,
except for indicating vector components when necessary. In the
unperturbed state, the disc is assumed to be in hydrodynamic
equilibrium,

∇p
ρ
= G = g + Ω2s, (2)

whereg is the gravity of the central object. Solving Eq. (2) to-
gether with the thermal balance equation, one can obtains- and
z-dependences ofρ, p, andΩ. In a thin disc, these dependences
can be represented in a simple analytical form (see Kley & Lin
1992).

We use the Boussinesq approximation since the growth
time of instabilities associated with shear is typically much
longer than the period of sound wave with the same wave-
length. The linearized momentum, continuity and thermal bal-
ance equations read

γV1 + 2Ω × V1 + eϕsV1 · ∇Ω = −∇p1

ρ
− βGT1 − νk2V1, (3)

k · V1 = 0, (4)

γT1 + V1 · (∆∇T) = −χk2T1, (5)

where V1, p1 and T1 are perturbations of the hydrody-
namic velocity, pressure and temperature, respectively;β =
−(∂ lnρ/∂T)p is the thermal expansion coefficient,χ andν are
the thermal diffusivity and viscosity, respectively; (∆∇T) =
∇T − ∇adT is the difference between the actual and adiabatic
temperature gradients; we denote byeϕ the unit vector in the az-
imuthal direction. In the momentum Eq. (3), it is assumed that
the density perturbation in the buoyancy force is mainly deter-
mined by the temperature perturbation, thusρ1 = −ρβT1, in
accordance with the idea of the Boussinesq approximation. As
it was mentioned, perturbations are generally non-adiabatic in
discs, and the effect of the radiative heat transfer has to be taken
into account in Eq. (5). The disc is assumed to be optically
thick, and the thermal diffusivity,χ, can be expressed in terms
of the radiative thermal conductivity,κ, by χ = κ/ρcp wherecp

is the thermal capacity at constant pressure. Viscosity is taken
into account in Eq. (3) because we consider short wavelength
perturbations andν enters this equation in a product withk2.
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However, we neglect the effect of viscous dissipation in Eq. (5)
where its contribution is∝k and is negligible compared to ad-
vection.

In a stratified flow, the buoyancy force acts as a stabiliz-
ing factor if the temperature gradient is subadiabatic. However,
stabilization due to buoyancy may be drastically reduced if the
exchange of heat proceeds faster than the change of momen-
tum caused by the buoyancy force (Townsend 1958). The ef-
fect of the thermal conductivity is of particular importance for
short-wavelength perturbations which can exchange heat with
the surrounding plasma on a very short time scale proportional
to k−2. From Eq. (5), one can express the temperature perturba-
tion in terms ofV1,

T1 = −V1 · (∆∇T)
γ + ωχ

, (6)

whereωχ = χk2 is the inverse time scale of dissipation due to
the thermal conductivity. For very short wavelengths (k→ ∞),
one hasT1 → 0 and, hence, the stabilizing effect of stratifica-
tion in Eq. (3) tends to zero for such perturbations.

Equations (3)–(5) yield the following dispersion equation

γ3 + a2γ
2 + a1γ + a0 = 0 (7)

where

a2 = ωχ + 2ων, a1 = Q2 + ω2
g + ων(ων + 2ωT),

a0 = ωχ(Q2 + ω2
ν) + ωνω

2
g, (8)

and

Q2 = 4Ω2k2
z

k2
+ 2Ωs

kz

k2

(
kz
∂Ω

∂s
− ks
∂Ω

∂z

)
,

ω2
g = −β(∆∇T) ·

[
G− k

k2
(k ·G)

]
, ων = νk

2,

ωg is the frequency of the buoyancy waves, andων is the in-
verse time scale of dissipation due to viscosity;Q2 represents
the effects associated with the angular velocity and its gradient.
Equation (7) describes three low-frequency modes that can ex-
ist in incompressible non-magnetic fluids. The sound waves are
excluded from consideration in the Boussinesq approximation.

In the case of vanishing viscosity,ων → 0, Eq. (7) can be
rewritten as

γ2 = −Q2 − γ ω
2
g

γ + ωχ
, (9)

Equation (9) illustrates well the difference between the adia-
batic and non-adiabatic calculations. Ifχ , 0, Eq. (9) is cubic
and has three different roots corresponding to three complex
modes. If we assume adiabaticity of perturbations (ωχ = 0)
then the dispersion Eq. (9) degenerates to a quadratic equation,

γ2 = −Q2 − ω2
g, (10)

which describes only two modes. Thus, one mode is lost in
the adiabatic approximation and, occasionally, this lost mode
is most unstable in the conditions of accretion discs.

3. The criteria of instability

The condition that at least one of the roots of Eq. (7) has a
positive real part (unstable mode) is equivalent to one of the
following inequalities

a2 < 0 , a1a2 < a0 , a0 < 0 (11)

being fulfilled (see, e.g., Aleksandrov et al. 1985; DiStefano III
et al. 1994). Sinceωχ andων (and, hence,a2) are positive de-
fined quantities, the first condition,a2 < 0, will never apply,
and only the two other conditions determine the instability of
accretion discs.

Substituting the values ofa0, a1 anda2, we can transform
the second condition (11) to

(ωχ + ων)ω2
g + 2ων[Q2 + (ων + ωχ)2] < 0. (12)

In accretion discs, the radiative viscosity dominates usually the
molecular viscosity. Then, we haveν/χ ∼ (cs/c)2 wherecs is
the sound speed (Thomas 1930). Estimating the temperature of
the disc asT ∼ 106 K andcs ∼ 107cm/s, we obtainν/χ ∼ 10−7.
Since typicallyω2

g ∼ Q2 ∼ Ω2, we can neglect in Eq. (12) all
terms proportional toων if

ω2
g ∼ Ω2 � ωνωχ. (13)

This inequality can be fulfilled for a wide range ofk becauseν
is small, and we consider only perturbation satisfying Eq. (13).
Then, the criterion (12) simplifies,

ω2
g < 0. (14)

This inequality describes the condition of convective instabil-
ity in accretion discs. In the caseΩ = 0 andg ‖ ∆∇T, Eq. (14)
reduces to the well-known Schwarzschild criterion of convec-
tion. Note thatg and∆∇T are generally not parallel in accre-
tion discs, therefore a consideration of convection requires a
detailed knowlegde of the 2D structure and is beyond the scope
of the present paper.

The third criterion (11),a0 < 0, yields

ωχ(Q
2 + ω2

ν) + ωνω
2
g < 0. (15)

Viscosity plays no role in this condition if

Q2 ∼ Ω2 >
ν

χ
ωνωχ. (16)

This inequality is even less restricting than Eq. (13), and can
be fulfilled for a wider range ofk. For perturbations with such
wavevectors, the inequality (15) is equivalent toQ2 < 0, or

k2
z

k2
· ∂

s3∂s
(s4Ω2) − kzks

k2
· 2Ωs

∂Ω

∂z
< 0 . (17)

Note the difference between the criterion (17) and the condition
of instability of adiabatic perturbations,Q2+ω2

g < 0, that can be
obtained from Eq. (10). This difference is of crucial importance
for convectively stable discs withω2

g > 0. For thin disks, the ra-
dial dependence ofΩ is approximately given by the Keplerian
law,Ω ∝ s−3/2 and, hence, the first term on the l.h.s. of the in-
equality (17) is positive. The sign of the second term depends
on the direction of a wave vector, and this term may cause a
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destabilizing effect. In thin disks withz/s� 1, the vertical de-
pendence ofΩ can be calculated analytically (see, e.g., Urpin
1984; Kley & Lin 1992), and we have

∂Ω/∂z≈ qΩz/s2 (18)

where q is the parameter in the series expansion ofΩ(s, z)
around the equator. This parameter can be calculated using
Eq. (A31) of the paper by Kley & Lin (1992) and is of the
order of 0.05−0.13 depending on the zone of a disc. Then, the
term associated with the vertical shear dominates the r.h.s. of
the inequality (17) if

ks > | (kz/2q)(s/z) | . (19)

The instability arises for perturbations with the wavelength
much shorter in the radial direction than vertically. Evidently,
the necessary condition of instability can not be fulfilled at the
central plane of the disk where∂Ω/∂z= 0.

Note that for any dependence ofΩ onz, there exists a region
in the plane (ks, kz) where the condition of instability,Q2 <
0, is satisfied. In the general case, the instability arises if the
components of a wave vector satisfy the inequality
∣∣∣∣∣ks

kz

∣∣∣∣∣ > |∂(s
4Ω2)/∂s|

|2Ωs4∂Ω/∂z| , (20)

and ks and ks are of the same/opposite sign if the quantity
[∂(s4Ω2)/∂s]/[∂Ω/∂z] is positive/negative.

4. The growth rate of instability

Since the coefficients of Eq. (7) are real there exist three real
roots or one real and two complex conjugate roots. The num-
ber of roots with a positive real part is determined by Routh
criterium (DiStefano III et al. 1994), which states that the num-
ber of unstable modes of a cubic Eq. (7) is given by the number
of changes of sign in the sequence
{

1, a2,
a2a1 − a0

a2
, a0

}
· (21)

If we assume that conditions (13) and (16) are satisfied and
viscosity is negligible then this sequence reads

{1 , ωχ , ω2
g , ωχQ

2}· (22)

Assuming the disc to be convectively stable (ω2
g > 0), we ob-

tain that under the condition (17) only one real mode is un-
stable. If the disc is convectively unstable (ω2

g < 0) and the
condition (17) holds then again there should be only one un-
stable mode. However, if disc is convectively unstable but the
condition (17) is not fulfilled then two modes are unstable.

The rootsγi (i = 1, 2, 3) of the cubic Eq. (7) can be repre-
sented asγi = xi − a2/3. The expressions forxi are

x1 = u+ v , x2 = ε1u+ ε2v , x3 = ε2u+ ε1v, (23)

where

ε1,2 = −1
2
± i

√
3

2
, (u, v) =

(
−q±

√
q2 + p3

)1/3

, (24)

and

q =
ωχ

6

(
2
9
ω2
χ + 2Q2 − ω2

g

)
, p =

1
9

(Q2 + ω2
g − ω2

χ) (25)

(see, e.g., Bronstein & Semendyaev 1957). These expressions
are rather cumbersome but they can be simplified very much in
some limiting cases. We consider the most important cases of
a low thermal frequency,

ωχ < |Q2 + ω2
g|1/2, (26)

and a high thermal frequency,

ωχ > |Q2 + ω2
g|1/2 (27)

(but still assuming that Eqs. (13) and (16) hold). The condi-
tion (26) corresponds to perturbations with a relatively large
lengthscale, the condition (27) is adopted to relatively small
scale perturbations. In the Keplerian disc, we have

ωχ = χk
2 ∼ Ω

(
χ

csH

)
(kH)2, (28)

whereH is the half-thickness of the disc; we took into account
thatcs/H ∼ Ω. Then,ωχ ∼ Ω if

k ∼ kcr =

(
Ω

χ

)1/2

∼ 1
H

(
csH
χ

)1/2

· (29)

The radiative thermal diffusivity, χ, is large in accretion disc
models, and usuallyχ/csH ≥ 1. Therefore, the thermal fre-
quency is typically larger then the Keplerian frequency for
short wavelength perturbations withkH � 1. Since|ωg| ∼ Ω,
the conditions (26) and (27) are equivalent tok < kcr (relatively
large scales) andk > kcr (relatively small scales), respectively.

Under the condition (26) (ork < kcr), we have from the
expressions (23)–(25) with the accuracy in term∝ωχ,

γ1 ≈ − ωχQ
2

Q2 + ω2
g

, γ2,3 ≈ ±i
√

Q2 + ω2
g −

ωχω
2
g

2(Q2 + ω2
g)
· (30)

In convectively stable Keplerian discs (ω2
g > 0), we have

Q2 +ω2
g > 0 (Urpin & Brandenburg 1998; R¨udiger et al. 2002)

and, hence, only the first mode can be unstable ifQ2 < 0. The
growth time of instability,τL, is given by

τL ≈ 1
ωχ

∣∣∣∣∣∣∣
Q2 + ω2

g

Q2

∣∣∣∣∣∣∣ · (31)

If the thermal conductivity is small or the wavelength of pertur-
bations is relatively long, then the growth time becomes large,
and the instability is inefficient.

If the condition (27) is fulfilled then, with the accuracy in
terms∝ω−1

χ , the roots are

γ1 ≈ −ωχ , γ2,3 ≈ ±i
√

Q2 − ω
2
g

2ωχ
· (32)

In convectively stable discs, one of the mode is unstable ifQ2 <
0. In this case, the growth time of unstable mode,τS, is given
by

1
τS
∼ |Q|. (33)



V. Urpin: Comparison of vertical and magnetic shear instabilities 401

Since the condition (17) can be satisfied only for perturbations
with |ks/kz| � 1, the growth rate depends on the ratiokz/ks

rather than on the wavelength of perturbations. The maximum
growth rate is reached at

kz

ks
≈ s4Ω(∂Ω/∂z)
∂(s4Ω2)/∂s

· (34)

In the Keplerian disc, this ratio is

kz

ks
≈ q · z

s
, (35)

and the corresponding maximum growth rate is given by

1
τS max

≈ Ω
∣∣∣∣∣qz

s

∣∣∣∣∣ · (36)

Thus, the growth time of instability is short and is comparable
to the time scale of vertical shear.

The mechanism of instability is qualitatively simple, par-
ticularly in the limit of highωχ. Let us assume that the initial
laminar rotation is slightly perturbed and a perturbation of the
azimuthal velocity,V1ϕ, depends both ons- andz-coordinates.
This additional rotation produces a perturbation of the pres-
sure, p1 which depends ons and z as well. If we neglect
stratification, the magnitude ofp1 can be estimated from the
“geostrophic equlibrium” which implies a balance of the pres-
sure and Coriolis forces ins-direction. Ifks � kz, one has for
the pressure perturbation

p1/p ∼ (2iΩ/c2
sks)V1ϕ. (37)

The buoyancy force is strongly suppressed for short-
wavelength perturbations, therefore the vertical component of
the pressure force cannot be compensated by other forces. This
uncompensated component generates a flow with the vertical
acceleration

V̇1z ≈ ikzp1/ρ. (38)

SinceΩ depends onz, the vertical flow redistributes the an-
gular momentum. Advection of the angular momentum by the
vertical flow altersV1ϕ with the rate

∆V1ϕ

∆t
≈ −s · ∂Ω

∂z
V1z. (39)

Depending on the sign of (∂Ω/∂z)(kz/ks), this additional ro-
tation can increase or decrease the initial perturbation of the
azimuthal velocity causing instability or stability of the differ-
ential rotation.

The origin of turbulence in accretion discs is oftenly at-
tributed to the magnetic shear instability (Balbus & Hawley
1991). It is interesting, therefore, to compare the properties of
these instabilities. In the presence of a poloidal field, both in-
stabilities can arise in a differentially rotating fluid only if the
field strength is weaker than some critical value which depends
on the type of instability (Urpin & Brandenburg 1998). In the
Keplerian disc, the stabilizing field that suppresses the vertical
shear instability,BVS, is given by

BVS ∼
√

8πρ q
Ω

k

∣∣∣∣∣ zs
∣∣∣∣∣ · (40)

The magnetic shear instability represents instability of Alfv´en
waves which are better adopted to the magnetic field and, there-
fore, requires generally a stronger field to be suppressed. In this
case, the stabilizing field is

BMS ∼
√

12πρ
Ω

k
· (41)

This field is approximately (s/H) times greater thanBVS.
Therefere, if the magnetic field satisfies the conditionBMS >
B > BVS then only the magnetic shear instability can exist in
the disc. In a weaker field,B < BVS, both instabilities arise.
To have impression about the stabilizing fields, we can esti-
mate BMS and BVS in the accretion disc around the neutron
star with more or less standard mass (∼1.4 M�) and accretion
rate (∼10−8 M�/yr). Using the disc model calculated, for exam-
ple, by Urpin (1983) we obtainΩ ∼ 1 s−1, ρ ∼ 10−3 g/cm3,
H ∼ 108 cm at s = 109 cm. Then, for perturbations with
the wavelength∼0.1 H ∼ 107 cm, we haveBVS ∼ 106 G and
BMS ∼ 107 G. Note that both values are rather strong compared,
for example, to the dipole magnetic field of the “standard” neu-
tron star which is∼103−104 G at this distance. Therefore, it is
plausible thatB < BVS in a significant fraction of the disc vol-
ume, and both instabilities can generally exist.

Compare the growth rates of the instabilities. The growth
rate of the magnetic shear instability under the condition (27)
and forB� BMS is given by

γ2
MS ≈ −2sΩ

kz

k2

ω2
A

Q2

(
kz
∂Ω

∂s
− ks
∂Ω

∂z

)
, (42)

whereωA = (k·B)/
√

4πρ is the Alfvén frequency (see Urpin &
Brandenburg 1998). On contrast to the vertical shear instability,
γMS is maximal forkz � ks. For such perturbations, we obtain
from Eq. (42) the following expression for the growth time in
the case of Keplerian rotation

1
τMS
≈ √3ωA . (43)

It is easy to check that everywhere within the rangeB < BVS

where both instability can exist the growth rate of the vertical
shear instability is greater.

Since bothBMS andBVS depends on the wavevector of per-
turbations, we can describe the above regimes in terms of the
wavelengths as well. In a given magnetic field,B, the condition
B < BVS is equivalent to

λ >

√
2π
q
· cA

Ω
· s

H
, (44)

whereλ = 2π/k is the wavelength andcA = B/
√

4πρ is the
Alfv én velocity. Therefore, the vertical shear instability grows
faster for perturbations with the wavelength satisfying the in-
equality (44). The conditionBMS > B > BVS can be rewritten as

√
2π
q
· cA

Ω
· s

H
> λ >

2π√
3
· cA

Ω
· (45)
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If the wavelength satisfies this condition then only the mag-
netic shear instability arises but the vertical shear instability is
suppressed. If

λ <
2π√

3
· cA

Ω
(46)

then the both instabilities do not exist.

5. Discussion

We have shown that accretion discs always are subject to in-
stability for short wavelength perturbations. This instability is
associated with the heat transport and the vertical shear, and
can arise at any dependence of the angular velocity on the ver-
tical coordinate,z. The most rapidly growing perturbations in a
thin accretion discs have the growth rate of the order ofΩ|qz/s|.
For these perturbations, the ratio of the vertical and radial com-
ponents of the wavevector is small,kz/ks ∼ z/s, or, in other
words, the radial wavelength has to be approximately a fac-
tor s/z shorter than the vertical one. Perturbations arise faster
near the disc surface than near the central plane. The growth
time of the most unstable perturbations is relatively short and,
likely, the considered instability may be a candidate for the ori-
gin of turbulence in discs.

We can estimate the turbulent viscosity associated with the
vertical shear instability. The turbulent viscosity concept is of
limited validity in complex situations and has been rightly crit-
icized (see, e.g., Tennekes & Lumley 1972). In simple shear
flows, however, this concept provides more or less accurate
scalings of mean flow properties, and it has been widely used
to describe turbulent transport in accretion discs. A calcula-
tion of the coefficient of viscosity requires generally a numeri-
cal solution of hydrodynamic equations with non-linear terms.
However, the order of magnitude estimate of turbulence pro-
duced by the vertical shear can be obtained by making use
the qualitative approach developed by a number of authors
for laboratory experiments with shear flows (see, for a detail,
Townsend 1958; Zahn 1983).

Consider a stratified inviscid plane Couette flow with the
velocity W(z) directed alongx-axis and the gravityg against
z-axis. As mentioned above, the buoyancy force acts as a stabi-
lizing factor ifω2

g > 0. The influence of this force can be char-
acterized by the dimensionless numberR = ω2

g/(dW/dz)2. The
stabilizing influence of buoyancy is strong atR ≥ Rcr ∼ 1 and
the flow is stable. On the contrary, the stabilization due to buoy-
ancy is negligible at smallR≤ Rcr ∼ 1. However, this inference
is invalid for dissipative flows where the stabilizing effect of
buoyancy can be suppressed by an efficient heat transport. This
effect was first estimated by Townsend (1958) who showed that
the critical value,Rcr, is increased by the factorωχ/(dW/dz) for
perturbations withωχ > (dW/dz). Due to this, the perturbations
with the wavelength satisfying the inequality

ω2
g

(dW/dz)2
· (dW/dz)
ωχ

≤ 1, (47)

may be unstable. The turbulent viscosity,νT, is determined
by the largest among the unstable scales satisfying the condi-
tion (47),Lm, and can be estimated as (see, e.g., Zahn 1983)

νT ∼ 1
3

L2
m

dW
dz
· (48)

We will use this estimate ofνT for turbulence associated with
the vertical shear in discs.

Since only perturbations withkz/ks ≤ qz/s are unstable
in accretion discs, the vertical shear instability likely gener-
ates a highly anisotropic turbulence. For such turbulence, the
eddy viscosity is also anisotropic and, hence, should be rep-
resented by a tensor. The angular momentum transfer in the
radial direction is determined by thesϕ-component of the vis-
cosity tensor, therefore we will estimate this component alone.
Since the growth rate of unstable perturbations withk < kcr

decreases rapidly with an increase of the wavelength, the main
contribution to the eddy viscosity is likely provided by small
scale turbulence withk > kcr. By analogy with a plane-parallel
flow, the radial component of viscosity can be represented in
the form (48) but, in our case, dW/dz should be replaced by
the vertical shear,s∂Ω/∂z ∼ qzΩ/s2, and the lengthscaleLm

should be taken equal to the maximal radial wavelength of un-
stable small scale perturbations (see Eq. (29))

Lm ∼ 2π
kcr
∼ 2π

(
χ

Ω

)1/2
· (49)

Then, the order of magnitude estimate ofνT is

νT ∼ 4
3
π2qχ

(z
s

)
· (50)

This value of turbulent viscosity is sufficient to provide an ef-
fective angular momentum transport in accretion discs. The
viscosity depends on both the radial and vertical coordinates
and reaches its maximum near the disc surface. Equation (50)
is not probably applicable near the equatorial plane where
∂Ω/∂z ≈ 0. At smallz, the viscosity can be enhanced due to
overshooting by turbulent eddies generated above and below
the central plane.

Note that hydrodynamic motions generated by instabil-
ity will try to redistribute the angular momentum in the disc
and smooth the vertical gradient ofΩ. The characteristic time
scale of this process,τinst, should obviously be longer than the
growth time of instability. For typical conditions of accretion
discs, however,τinst > τS is longer than both the time scale re-
quired to reach hydrostatic equilibrium,τh ∼ H/cs ∼ Ω−1, and
the thermal time scale,τth ∼ ω−1

χ . Therefore, az-dependence
of all quantities (includingΩ) in z-unstable discs is primarily
determined by hydrostatic equilibrium and thermal balance but
instability leads only to small departures from the equilibrium
state. This justifies the choice of az-dependence in Eq. (17) and
argues that instability will lead to disc turbulence rather than
self-stabilize the flow by redistributing the angular momentum
to the state withΩ = Ω(s).

In the present paper, we have addressed the behaviour only
of axisymmetric perturbations. Most likely, however, that the
obtained results can apply to non-axisymmetric perturbations
as well, if the azimuthal wavelength is much longer than the
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vertical one,kz � kϕ. Note that, generally, the time behaviour
of non-axisymmetric perturbations can be rather complicated.
Korycansky (1992) studied non-axisymmetric perturbations in
a rotating flow with the radial shear and vertical stratification,
taking into account dissipative effects but neglecting the ver-
tical shear. He found that if heat diffusion and viscosity are
included, then non-axisymmetric perturbations with some par-
ticular dependence ons decay asymptotically after the initial
transient growth (even if the disc is convectivelly unstable or
the angular momentum gradient is negative but not very large).
This conclusion has been obtained by making use of the “shear-
ing sheet” approximation that is quite different from the “eigen-
function” approach used in this paper. The eigenfunctions can
grow or decay only exponentially independently whether local
or global instabilities are considered. Of course, a superposition
of eigenfunctions can exhibit a much more complex behaviour
like that treated by Korycansky (1992). As it was correctly rec-
ognized by the auther, the ultimate dissipation of any particular
sheared perturbations does not imply that an entire wave packet
has to decay.

Likely, turbulence produced by the instability considered
should be substantially anisotropic since the radial turbulent
lengthscale is about|s/z| times shorter than the vertical one for
unstable perturbations. In spite of a relatively short radial co-
herence length, the generated turbulence may be efficient in the
radial transport of angular momentum. Our estimates show that
in thin accretion discs the turbulent viscosity can be compara-
ble to the radiative thermal diffusivity. Direct numerical simu-
lations of the vertical shear instability in accretion disc and cal-
culations ofα and other turbulent parameters will be addressed
in a forthcoming paper.
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