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Abstract. We consider the stability properties of discs rotating with the angular velocity dependent on both the radial and
vertical coordinates. A vertical dependence&xdestabilizes the disc at any particular form of this dependence. The growth rate
of the vertical shear instability is calculated and compared with that of the magnetic shear instability. We find that the vertical
shear instability grows faster for a wide range of parameters.
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1. Introduction magnetic field amplification. Calculations show that the level

. . L . . of turbulence in magnetic accretion discs ighgient to en-
The standard alpha viscosity prescription in accretion discs [ ce the viscosity by orders of magnitude. For instance, es-
quires a sfficiently strong turbulence that enhances the angyl .

lar momentum transport. From the very beginningtatential mates of the turbulent parametenrange from 0.001 to 0.7
. port. y beginni gi erpending on the magnetic field strength and the angular ve-
rotation has been regarded as the most promising source of

u T . . .
) . . city. It is worth noting that a complete analytical and humer-
bgfggr?éénomﬁzt;r?clz(la;lro:e?(;scict ms‘;?g;ég?&e\é?’ Itgie r:as(:;itlji(li%él treatment of MHD modes in stratified magnetic accretion
P 9 y yielg %cs demonstrates a much richer variety of instabilities than

criterion previously realized (Keppens et al. 2002), and the current view
I(s'Y?) 20 @ ©n the origin of MHD turbulence is likely highly simplified.
os ’ Recently, the question of a pure hydrodynamic origin of

wheres is the cylindric radius, an€ is the angular velocity. _turbulence in as_trophysical discs has bee_n critically reexam-
The inequality (1) is usually regarded as afisient condi- !ned on the baS|_s of a large body of experlmentgl and numer-
tion of linear stability of the hydrodynamic flow in accretiorical evidence (Richard & Zahn 1999; Longaretti 2002). This
discs. Therefore, the origin of turbulence in discs is oftenly afoblem is of particular importance for protoplanetary discs
tributed to the well-known Velikhov-Chandrasekhar instabilitpecause some of them (or their regions) are poorly conducting
(Velikhov 1959; Chandrasekhar 1960) which can arise in mag-eming et al. 2000; Sano et al. 2000), and non-MHD mech-
netic diferentially rotating fluid. This instability has been ana@nisms should be operative to provide aficient turbulent
ysed in detail for stellar conditions (see Fricke 1969; Aches&i@nsport of the angular momentum. However, a non-MHD ori-
1978, 1979). The role of the magnetic shear instability in turb@in of turbulence cannot be excluded in accretion discs as well.
lization of astrophysical discs was first considered by Safronb@" Instance, an.alysmg the behavior of various types of shear
(1969). Later on, Balbus & Hawley (1991) recognized that thfows, Longaretti (2002) has argued that shearing sheet flows
instability can give rise to MHD turbulence in magnetic accréhould be turbulent, and that the lack of turbulence in accretion
tion discs since the necessary condition (a decrease of the arlige Simulations is most likely caused by a lack of resolution.
lar velocity with the cylindrical radius) is fulfilled in thin discs. ~ Likely, hydrodynamic processes in astrophysical discs are
Note that the magnetic shear instability can arise only if tBUch more complex than in simple shear flows because discs
magnetic field is not very strong since a strong field stabiliz8&€ Subject to both vertical and radial stratification. In such con-
differential rotation (see, e.g., Urpin 1996). Numerical simul§itions, the Rayleigh criterion (1) is not true criterion and does
tions done by a number of authors (Brandenburg et al. 1989t apply to accretion discs. Therefore, some linear instabilities
Hawley et al. 1995; Matsumoto & Tajima 1995; Torkelssofi@n arise even if the stability condition (1) is fulfilled. For ex-
et al. 1995) indicate that this instability can provide dh-e ample, the vertical stratification,. despite being.usually. §table,
cient mechanism of the angular momentum transport and fif provide a catalyzingfect which under certain conditions
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induces a linear non-axisymmetric instability of anticyclonin the Boussinesq approximation, and the dispersion equation
cally sheared flow (Molemaker et al. 2001). Recently, this ifier short wavelength perturbations is derived. The stability cri-
stability was reexamine by making use of &elient approach terion is discussed in Sect. 3, and the growth time of instability
by Dubrulle et al. (2002) who enlarged the study towards cois-calculated in Sect. 4. In Sect. 5, we estimate the turbulent vis-
ditions typical of astrophysical discs. They found that thin disesity produced by the considered instability in accretion discs.
are potentially subject to this instability.

Ap_art from being vert|ca_lly and r_adlally stratified, discs ros Dispersion equation for short-wavelength
tate with the angular velocity?, which depends on both the :
cylindrical radius,s, and the vertical coordinate,(see, e.g., perturbations
Kippenhahn & Thomas 1982; Urpin 1984; Kley & Lin 1992). ItConsider a non-magnetic axisymmetric disc of finite verti-
was first argued by Kippenhahn & Thomas (1982) that a slighél extent, not necessarily thin. The unperturbed angular ve-
baroclinity in the angular velocity distribution is necessary tocity depends on botls and z coordinatesQ = Q(s, 2);
fulfil hydrostatic and thermal equilibrium in accretion discss, ¢, z are cylindrical coordinates. We treat axisymmetric
The dependence ¢ onzis relatively weak but it can trigger ashort-wavelength perturbations with the space-time depen-
number of instabilities. For instance, Knobloch & Spruit (198@ence expyt — ik - r) wherek = (ks, 0, k) is the wave vector,
have found that adiabatic baroclinic waves can be unstablgkn r| > 1. Small perturbations will be marked by the sub-
thin accretion discs if vertical and radial stratification is takesript 1, whilst unperturbed quantities will have no subscript,
into account. The instability occurs only for non-axisymmetrigxcept for indicating vector components when necessary. In the
perturbations and is analogous to baroclinic instability encouwmperturbed state, the disc is assumed to be in hydrodynamic
tered in geophysics. Due to the dominafieet of the Kepler equilibrium,
shear, instability is possible only if radial temperature gradie
has a very short lengthscale (of the order of scaleheigh), ol - G- g+ Q2s, (2
the stratification is close to convective instability. Both thesé

conditions are unlikely to be fulfilled and, probably, baroclinigshereg is the gravity of the central object. Solving Eq. (2) to-
waves play no important role in accretion discs. gether with the thermal balance equation, one can obtaind

The instability first considered by Goldreich & SChUberi_dependenceswf' P, andQ. In a thin disc, these dependences
(1967) seems to be more suitable for the conditions of agan be represented in a simple analytical form (see Kley & Lin
cretion discs. It does not require strong radial stratificatiorpg?).
but is caused by the vertical shear alone. This instability has we use the Boussinesq approximation since the growth
been considered recently byu&ger et al. (2002) who exam-time of instabilities associated with shear is typically much
ined the behaviour of linear and non-linear small-scale p%nger than the period of sound wave with the same wave-

turbations and concluded that the stabilizirfpet of stratifi- |ength. The linearized momentum, continuity and thermal bal-
cation is stficient to stabilize even non-linear perturbationgnce equations read

Simulations have been done by making use of a version of the
ZEUS-3D code which does not allow one to treat properly the/, + 20 x v/, + e,8Vi-VQ = —
effect of thermal conductivity and, therefore, the authors con-

VP sGT, - vkVL, (3)
o

sidered only adiabatic fluctuations. However, small-scale mp-,, _ 4)
tions in discs are likely non-adiabatic. The exchange of heat be- ’
tween perturbations and the surrounding medium substantially, + v/, . (AVT) = —yk?T4, (5)

reduces the influence of the buoyancy force and decreases the
stabilizing dfect of stratification (Urpin & Brandenburg 1998)where Vi1, p1 and T, are perturbations of the hydrody-
As a result, the stability properties of thermally conductingamic velocity, pressure and temperature, respectiyely;
discs can well be dierent from those obtained in the adiabatie (9 1np/dT), is the thermal expansion ceient,y andy are
limit. the thermal dfusivity and viscosity, respectivelyAVT) =

In the present paper, we consider in detail how the verl-T — V44T is the diference between the actual and adiabatic
cal shear instability can operate in the conditions of accretitemperature gradients; we denotepyhe unit vector in the az-
discs. The main diierence to stellar conditions is caused by imuthal direction. In the momentum Eg. (3), it is assumed that
high radiative thermal conductivity that makes the thermal rthe density perturbation in the buoyancy force is mainly deter-
laxation time scale comparable to the hydrodynamic time scateined by the temperature perturbation, thus= —pBT1, in
We compare the growth rates of the vertical and magnetic shaacordance with the idea of the Boussinesq approximation. As
instabilities and find that the latter grows much more slowiywas mentioned, perturbations are generally non-adiabatic in
within a wide range of wavelengths except perturbations witliscs, and theféect of the radiative heat transfer has to be taken
a very short wavelength. The turbulent viscosity caused by timo account in Eq. (5). The disc is assumed to be optically
vertical shear instability is estimated. We argue that the verti¢hick, and the thermal dusivity, y, can be expressed in terms
gradient ofQ2 existing in accretion discs is flicient to enhance of the radiative thermal conductivity, by y = x/pc, wherec,
substantially the angular momentum transport. is the thermal capacity at constant pressure. Viscosity is taken

The paper is organized as follows. In Sect. 2, the main equio account in Eq. (3) because we consider short wavelength
tions are presented governing the behaviour of perturbatiggesturbations ana enters this equation in a product wik.
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However, we neglect thefect of viscous dissipation in Eq. (5)3. The criteria of instability

here its contribution isck and is negligible compared to ad- ..
yectionl S toution is 'S neglg! P The condition that at least one of the roots of Eq. (7) has a

In a stratified flow, the buoyancy force acts as a stabili?—O siti\{e r_eal part_ _(unstable mode) is equivalent to one of the
ing factor if the temperature gradient is subadiabatic. Howeveorl,IOWIng inequalities
stabilization due to buoyancy may be drastically reduced ifthe < 0, aja, <ay, ag<0 (11)
exchange of heat proceeds faster than the change of momen- _ _

tum caused by the buoyancy force (Townsend 1958) The Qﬁlng fulfilled (.SGe, e.g., Aleksandrov et al. 1985; Dl.S.tefanO 1l
fect of the thermal conductivity is of particular importance fopt al- 1994). Sincey, andw, (and, henceg,) are positive de-
short-wavelength perturbations which can exchange heat wifted quantities, the first condition, < 0, will never apply,
the surrounding plasma on a very short time scale proportio@éd only the two other conditions determine the instability of

to k2. From Eq. (5), one can express the temperature perturBgcretion discs.
tion in terms ofV/, Substituting the values @, a; anda,, we can transform

the second condition (11) to
V- (AVT)

= ©) () + w,)0? + 20,[Q + (@, + )] < 0. (12)
wherew, = yk? is the inverse time scale of dissipation due t} accretion discs, the radiative viscosity dominates usually the
the thermal conductivity. For very short wavelengths< c0), Molecular viscosity. Then, we havgy ~ (cs/c)” wherec is
one hasT, — 0 and, hence, the stabilizingfect of stratifica- (€ sound speed (Thomas 1930). Estimating the temperature of
tion in Eq. (3) tends to zero for such perturbations. the discas’ ~ 1(;6 K ar;dcs ~210 cnys, we obtain/y ~ 107",
Equations (3)—(5) yield the following dispersion equationSince typicallyw; ~ Q° ~ Q7 we can neglect in Eq. (12) all
terms proportional te, if

3 2
+ayy +ay+ap=0 7
Y 2Y 1Y+ ) a)g ~ Q%> WyWy. (13)
where . . , .
This inequality can be fulfilled for a wide range lobecause
& = w +2w, a=Q+ wj + wy(wy + 2w7), is small, and we consider only perturbation satisfying Eq. (13).
’ Then, the criterion (12) simplifies,
80 = w(Q+w?) + wyw? (8) (12) simp
’ 2

and wy < 0. (14)

K2 (80 50 This inequality describes the condition of convective instabil-
Q= 40°2 + 205~ (kz— - s—), ity in accretion discs. In the case= 0 andg || AVT, Eq. (14)

K k s 0z reduces to the well-known Schwarzschild criterion of convec-

K tion. Note thaty andAVT are generally not parallel in accre-
wf} = —B(AVT) - [G - —(k- G)], w, = VK2, tion discs, therefore a consideration of convection requires a
' K detailed knowlegde of the 2D structure and is beyond the scope
of the present paper.

wy is the frequency of the buoyancy waves, andis the in- The third criterion (11)a < 0, yields

verse time scale of dissipation due to viscos®#; represents
the dfects associated with the angular velocity and its gradiem)é(Q2 + wf) + wyws < 0. (15)
Equation (7) describes three low-frequency modes that can ex- o o
ist in incompressible non-magnetic fluids. The sound waves Migcosity plays no role in this condition if
excluded from consideration in the Boussinesq approximation, v
e . Q°~ Q%> —w,w,. (16)
In the case of vanishing viscosity, — 0, Eq. (7) can be y

rewritten as . - -
This inequality is even less restricting than Eq. (13), and can

be fulfilled for a wider range dk. For perturbations with such

2
Y wy
wavevectors, the inequality (15) is equivalenQb< 0, or

2 2
’y - Q y+wX7

(9)

Equation (9) illustrates well the filerence between the adia—k_§ ) 1(5492) B
batic and non-adiabatic calculationsylf: 0, Eq. (9) is cubic k2 s39s

and has three derent roots corresponding to three COmpleﬁote the diterence between the criterion (17) and the condition

thde;' I;.we a;surrée agla:jbatmlty of perturbat|3n§ €0 of instability of adiabatic perturbation®?+w3 < 0, that can be
then the dispersion Eq. (9) degenerates to a quadratic equatb%rﬂained from Eq. (10). This fference is of crucial importance
V2 = —Q% - w2, (10) for convectively stable discs withj > 0. For thin disks, the ra-

g dial dependence db is approximately given by the Keplerian
which describes only two modes. Thus, one mode is lostlaw, Q « 52 and, hence, the first term on the l.h.s. of the in-
the adiabatic approximation and, occasionally, this lost modquality (17) is positive. The sign of the second term depends

is most unstable in the conditions of accretion discs. on the direction of a wave vector, and this term may cause a

kks . 90
o 2052 <0, (17)
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destabilizing &ect. In thin disks witle/s <« 1, the vertical de- and
pendence of) can be calculated analytically (see, e.g., Urpin Wy (2 ) ) 1, )
1984; Kley & Lin 1992), and we have 9=+5 (—wX +2Q° - wy), p= §(Q + Wy — w}) (25)

0Q/9z~ qQz/< (18) (see, e.g., Bronstein & Semendyaev 1957). These expressions
are rather cumbersome but they can be simplified very much in

whereq is the parametgr in the series expansion(t, z) some limiting cases. We consider the most important cases of
around the equator. This parameter can be calculated usiNd, - thermal frequency

Eq. (A31) of the paper by Kley & Lin (1992) and is of the
order of 005-0.13 depending on the zone of a disc. Then, the, < |Q? + w?|"?, (26)
term associated with the vertical shear dominates the r'h's'a% a high thermal frequency,
the inequality (17) if '
wy > |QF + w2 (27)

_ B _ _ _ (but still assuming that Egs. (13) and (16) hold). The condi-
The instability arises for perturbations with the wavelenggon (26) corresponds to perturbations with a relatively large
much shorter in the radial direction than vertically. Evidentlyengthscale, the condition (27) is adopted to relatively small

the necessary condition of instability can not be fulfilled at thg:ale perturbations. In the Keplerian disc, we have
central plane of the disk whet€/6z = 0.

Note that for any dependence@bnz, there exists a region W, = We~Q (L) (KH)2, (28)
in the plane ks, k,) where the condition of instabilityQ? < CsH

0, is satisfied. In the general case, the instability arises if tigereH is the half-thickness of the disc; we took into account

ks > | (kz/20)(s/2) | . (19)

components of a wave vector satisfy the inequality thatcs/H ~ Q. Then,w, ~ Q if

ks| _ 10(s"Q%)/ds Q\Y? 1 (cH\Y?

> — 20 ~ ko =22 ~ = .

k|~ 120860702’ (20) ki~ ke = ( ) H ( " ) (29)
and ks and ks are of the samepposite sign if the quantity The radiative thermal dusivity, y, is large in accretion disc
[0(s"Q?) /0] /[6©/7] is positivgnegative. models, and usually/csH > 1. Therefore, the thermal fre-

quency is typically larger then the Keplerian frequency for
short wavelength perturbations wikd > 1. Sincelw,| ~ Q,
the conditions (26) and (27) are equivalenkta k. (relatively
Since the coficients of Eq. (7) are real there exist three reddrge scales) ankl> k. (relatively small scales), respectively.
roots or one real and two complex conjugate roots. The num- Under the condition (26) (ok < k), we have from the
ber of roots with a positive real part is determined by Routixpressions (23)—(25) with the accuracy in term,,

criterium (DiStefano Ill et al. 1994), which states that the num-

4. The growth rate of instability

2 2
ber of unstable modes of a cubic Eq. (7) is given by the numhgr _ @ Q ~ +i /Qz + w2 — X%y 30
of changes of sign in the sequence g Q? + w2 728 7 2(Q + w2) (30)
aay — In convectively stable Keplerian discs»j( > 0), we have
{1’ B ao}- @) 2, w? > 0 (Urpin & Brandenburg 1998; Riiger et al. 2002)

. - and, hence, only the first mode can be unstab@ik 0. The
If we assume that conditions (13) and (16) are satisfied aﬁ%wth time of instabilityz , is given by

viscosity is negligible then this sequence reads

) ) 1 |Q+a?
1, wy, vy, 0Q7%) (22) ol
Assuming the disc to be convectively stabié (> 0), we 0b- |t the thermal conductivity is small or the wavelength of pertur-
tain that under the condition (17) only one real mode is URations is relatively long, then the growth time becomes large,
stable. If the disc is convectively unstabkeg(< 0) and the gndthe instability is in@iicient.

condition (17) holds then again there should be only one un- ¢ the condition (27) is fulfilled then, with the accuracy in
stable mode. However, if disc is convectively unstable but thgms.,-1 the roots are

condition (17) is not fulfilled then two modes are unstable. x

(31)

2

The rootsy; (i = 1, 2, 3) of the cubic Eg. (7) can be repre- L Y 5
sented ay; = x; — a»/3. The expressions fo¢ are VIR —wy, Y23~ £ VQF - o, (32)
X1 =U+v, Xo=gU+ew, X3=&U+ &, (23) Inconvectively stable discs, one of the mode is unstalf)8 i

0. In this case, the growth time of unstable morig,is given
where by
1 . 13
ST (o= o) ey - (33)
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Since the condition (17) can be satisfied only for perturbatiombe magnetic shear instability represents instability of Affv”
with |ks/k| > 1, the growth rate depends on the ratigks waves which are better adopted to the magnetic field and, there-
rather than on the wavelength of perturbations. The maximdare, requires generally a stronger field to be suppressed. In this

growth rate is reached at case, the stabilizing field is
k, S'Q(0Q/02) Q
ke~ 9(F0D)os B9 Bus ~ V1250 - (41)

In the Keplerian disc, this ratio is L . . .
P This field is approximately §H) times greater tharBys.

ke q- A (35) Therefere, if the magnetic field satisfies the conditBay >
ks S B > Bys then only the magnetic shear instability can exist in
the disc. In a weaker fieldB < Bys, both instabilities arise.

and the corresponding maximum growth rate is given b . . . .
sponding maximumg SV Y To have impression about the stabilizing fields, we can esti-

1 gz mate Bys and Bys in the accretion disc around the neutron
~ Q|—]|- (36) . .
TS max S star with more or less standard mas4.4 My) and accretion
[~ 8 I I -
Thus, the growth time of instability is short and is comparab[«%lte E) 1%— Me/igégsmg thbetd_lzzc moldellcalculaltgfja, forr(;);am
to the time scale of vertical shear. ple, by Urpin ( ) we obtai ~ 157, p ~ g/en,

The mechanism of instability is qualitatively simple, parJt—?1 - 108| cmtitosle 109187m' Then,hfordgerturblzgéogs Wc'jth
ticularly in the limit of highw,. Let us assume that the initial.'c Wave engm-L.%H ~ L7 cm, We avebys ~ an

~ \/
laminar rotation is slightly perturbed and a perturbation of thg"S 10" G. Note that both values are rather strong compared,

azimuthal velocity)1,, depends both og andz-coordinates. or example, to the dipole magnetic field of the “standard” neu-

This additional rotation produces a perturbation of the pret%(—)n star which '5”103._104 G at _th|s d'Sta’?"e- Theref(_)re, ItIs
ausible thaB < Bys in a significant fraction of the disc vol-

sure, p; which depends ors and z as well. If we neglect P

stratification, the magnitude qf; can be estimated from the!Me: and bOththtab'“t;]es can gfenhera_llly e)k()l'T't.' h h
“geostrophic equlibrium” which implies a balance of the pres- Compare the growth rates of the instabilities. The growt

sure and Coriolis forces isdirection. Ifks > k,, one has for rate of the magn_etiq shear instability under the condition (27)
the pressure perturbation and forB < Bus is given by

~ (21Q/c2ke) V1. 37
p1/p ~ (21Q2/cks) Vi, (37) Vo ~ —250

The buoyancy force is strongly suppressed for short-

wavelength perturbations, therefore the vertical component of . . )
the pressure force cannot be compensated by other forces. Yhig§rewa = (k-B)/ y4zp is the Alfven frequency (see Urpin &

uncompensated component generates a flow with the vertiegndenburg 1998). On contrast to the vertical shear instability,
acceleration yms IS maximal fork, > ks. For such perturbations, we obtain

_ from Eq. (42) the following expression for the growth time in
Viz  iKzp1/p. (38) the case of Keplerian rotation

(42)

k W3 (02 90
K 2\ 7ds coz)

SinceQ depends orz, the vertical flow redistributes the an- 1 V3
gular momentum. Advection of the angular momentum by th,% ~ Vwa.
vertical flow altersvy, with the rate

(43)

It is easy to check that everywhere within the rafje Bys

AVy ~_s. 3_9\/12_ (39) Where both instability can exist the growth rate of the vertical
At 0z shear instability is greater.
Depending on the sign ob{2/d2)(k,/ks), this additional ro- Since bothBys andBys depends on the wavevector of per-

tation can increase or decrease the initial perturbation of fitbations, we can describe the above regimes in terms of the
azimuthal velocity causing instability or stability of theffer- Wavelengths as well. In a given magnetic fieilthe condition
ential rotation. B < Bvs is equivalent to

The origin of turbulence in accretion discs is oftenly at-
tributed to the magnetic shear instability (Balbus & Hawle V2r ca s
1991). It is interesting, therefore, to compare the properties of q Q H (44)
these instabilities. In the presence of a poloidal field, both in-
stabilities can arise in a filerentially rotating fluid only if the wherea = 2x/k is the wavelength andx = B/ \np is the
field strength is weaker than some critical value which depenal§y en velocity. Therefore, the vertical shear instability grows
on the type of instability (Urpin & Brandenburg 1998). In theaster for perturbations with the wavelength satisfying the in-

Keplerian disc, the stabilizing field that suppresses the vertiegjuality (44). The conditioBys > B > Bys can be rewritten as
shear instabilityBys, is given by

Q V2r ca s 2 ¢
BVSNV&quE 2' (40) =LA 25 s = A (45)
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If the wavelength satisfies this condition then only the magiay be unstable. The turbulent viscosity, is determined
netic shear instability arises but the vertical shear instabilityly the largest among the unstable scales satisfying the condi-

suppressed. If tion (47),Ln, and can be estimated as (see, e.g., Zahn 1983)
1 ,dw
~ 2. 48
A<%%\ @) T3 a (48)
We will use this estimate ofy for turbulence associated with
then the both instabilities do not exist. the vertical shear in discs.

Since only perturbations witk;/ks < gz/s are unstable
in accretion discs, the vertical shear instability likely gener-
ates a highly anisotropic turbulence. For such turbulence, the
eddy viscosity is also anisotropic and, hence, should be rep-

We have shown that accretion discs always are subject to iisénted by a tensor. The angular momentum transfer in the
stability for short wavelength perturbations. This instability i§2dial direction is determined by tfgp-component of the vis-
associated with the heat transport and the vertical shear, a8ty tensor, therefore we will estimate this component alone.
can arise at any dependence of the angular velocity on the v@ice the growth rate of unstable perturbations with ker
tical coordinatez. The most rapidly growing perturbations in #l€creases rapidly with an increase of the wavelength, the main
thin accretion discs have the growth rate of the orde|qt/s. contribution to the .eddy viscosity is Ilkely provided by small
For these perturbations, the ratio of the vertical and radial cofif:ale turbulence witk > ker. By analogy with a plane-parallel
ponents of the wavevector is smakl/ks ~ /s, or, in other flow, the radial component of viscosity can be represented in
words, the radial wavelength has to be approximately a f48€ form (48) but, in our case\Mdz should be replaced by
tor s/z shorter than the vertical one. Perturbations arise fastBf Vertical sheasfQ/0z ~ g2/, and the lengthscaley,

near the disc surface than near the central plane. The growfuld be taken equal to the maximal radial wavelength of un-
time of the most unstable perturbations is relatively short arfiaPle small scale perturbations (see Eq. (29))

likely, the considered instability may be a candidate for the ori- (X )1/2 (49)

gin of turbulence in discs. Lm~— ~2n o
r

5. Discussion

We can estimate the turbulent viscosity associated with the ) )
vertical shear instability. The turbulent viscosity concept is di'€n: the order of magnitude estimatevpfis
limited validity in complex situations and has beenrightly crit- 4 , /7
icized (see, e.g., Tennekes & Lumley 1972). In simple shedr™ 37 q)((g)'

flows, however, this concept provides more or less accuratﬁ. |  turbul . ity is fiCi id f
scalings of mean flow properties, and it has been widely usgy’s value of turbulent viscosity is ficient to provide an ef-

to describe turbulent transport in accretion discs. A calculf:f-Ct'Ve_ angular momentum transport in accretion dlscs_. The
.viscosity depends on both the radial and vertical coordinates

tion of the codficient of viscosity requires generally a numeri- q hes i ) he di ‘ £ ion (50
cal solution of hydrodynamic equations with non-linear term@nd reaches its maximum near the disc surface. Equation (50)

However, the order of magnitude estimate of turbulence pr’8— not probably applicable near the equatorial plane where

duced by the vertical shear can be obtained by making l,? /6z ~ 0. At smallz, the viscosity can be enhanced due to

the qualitative approach developed by a number of authgr\éershooting by turbulent eddies generated above and below

for laboratory experiments with shear flows (see, for a deteHI‘,e centraLpIarr:ea q . . d by i bil
Townsend 1958; Zahn 1983). _ N.ote that hydrodynamic motions generated by instabil-
ity will try to redistribute the angular momentum in the disc

&nd smooth the vertical gradient @f The characteristic time

s A tioned ab the b ¢ ‘ ; cale of this processinst, should obviously be longer than the
zaxis. As men |20ne above, In€ buoyancy 1orce acts as a stal, 1 time of instability. For typical conditions of accretion
lizing factor if g > 0. The influence of this force can be char:

) ) ) ) ) discs, howeverinst > 75 is longer than both the time scale re-
acterized by the dimensionless numBet w7/(dW/d2)<. The

CeEE : quired to reach hydrostatic equilibriuay, ~ H/cs ~ Q71, and
stabilizing influence of buoyancy is strongRt Rer ~ 1 and  ha thermal time scalery, ~ w;l_ Therefore, @-dependence

theﬂc_)wis st_ak_)le. On the contrary, the stabilizatio_n QUeto buoyr a1 quantities (including) in z-unstable discs is primarily
ancy is negligible at smal < Re; ~ 1. However, this inference geermined by hydrostatic equilibrium and thermal balance but

is invalid for dissipative flows where the stabilizinf&ct of jysiapility leads only to small departures from the equilibrium
buoyancy can be suppressed by #iiteent heat transport. This gi510 This justifies the choice ofalependence in Eq. (17) and
effect was first estimated by Townsend (1958) who showed thaly ;es that instability will lead to disc turbulence rather than

the critical valueRe, is increased by the factar,/(dW/d2) for  gef siapilize the flow by redistributing the angular momentum
perturbations withw, > (dW/dz). Due to this, the perturbations ihe state with) = (9.

with the wavelength satisfying the inequality

(50)

Consider a stratified inviscid plane Couette flow with th
velocity W(2) directed alongk-axis and the gravityy against

In the present paper, we have addressed the behaviour only
of axisymmetric perturbations. Most likely, however, that the
w; (dw/d2) obtained results can apply to non-axisymmetric perturbations

(dW/d2)? ’ wy <1 (47) as well, if the azimuthal wavelength is much longer than the
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vertical onek; > k,. Note that, generally, the time behaviouAcheson, D. J. 1978, Phil. Trans. Roy. Soc. Lond. A, 289, 459

of non-axisymmetric perturbations can be rather complicatégheson, D. J. 1979, Sol. Phys., 62, 23

Korycansky (1992) studied non-axisymmetric perturbations Blbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214

a rotating flow with the radial shear and vertical stratificatiofsrandenburg, A., Nordlund, A., Stein, R., & Torkelsson, U. 1995, ApJ,
taking into account dissipativefects but neglecting the ver- 46, 741 .
tical shear. He found that if heatfHlision and viscosity are BrOStéin. I., & Semendyaev, K. 1957, Handbook on Mathematics

. . . . . (Moskow: GITTL)
included, then non-axisymmetric perturbations with some P& ndrasekhar. S. 1960 Proc. Natl. Acad. Sci. 46. 253

ticula_r dependence o:ercay a.symptotically.after the initial pisietano 111, 3. J., Stubberud, A. R., & Williams, 1. J. 1994,
transient growth (even if the disc is convectivelly unstable or - gchaum's outline of Feedback and Control Systems (McGray-Hill
the angular momentum gradient is negative but not very large). professional Publishing)
This conclusion has been obtained by making use of the “shemuibrulle, B., Marie, L., Normand, C., et al. 2003, A&A, submitted
ing sheet” approximation that is quitefidirent from the “eigen- Fleming, T. P., Stone, J. M., & Hawley, J. F. 2000, ApJ, 530, 464
function” approach used in this paper. The eigenfunctions clricke, K. 1969, A&A, 1, 388
grow or decay only exponentially independently whether locgpldreich, P., & Schubert, G. 1967, ApJ, 150, 571
or global instabilities are considered. Of course, a superpositfd@viey, J- F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742
of eigenfunctions can exhibit a much more complex behavid{fPPens: R., Casse, F., & Goedbloed, J. P. 2002, ApJ, 569, L121
like that treated by Korycansky (1992). As it was correctly refiPPenhahn, R., & Thomas, H.-C. 1982, A&A, 114, 77

. . RO . ley, W., & Lin, D. N. C. 1992, ApJ, 397, 600
ognized by the auther, the ultimate dissipation of any particu

) . _ hobloch, E., & Spruit, H. C. 1986, A&A, 166, 359
sheared perturbations does not imply that an entire wave paq&%cansky D. 1992, ApJ, 399, 176

has to decay. Longaretti, P.-Y. 2002, ApJ, 576, 587
Likely, turbulence produced by the instability consideregiatsumoto, R., & Tajima, T. 1995, ApJ, 445, 767
should be substantially anisotropic since the radial turbulevblemaker, M. J., McWilliams, J. C., & Yavneh, I. 2001, Phys. Rev.
lengthscale is abou/Z| times shorter than the vertical one for  Lett., 86, 5270
unstable perturbations. In spite of a relatively short radial c&ichard, D., & Zahn, J.-P. 1999, A&A, 347, 734
herence length, the generated turbulence mayfment in the Rudiger, G., Arlt, R., & Shalybkov, D. 2002, A&A, 391, 781
radial transport of angular momentum. Our estimates show te&fronov, V. S. 1969, Evolution of the protoplanetary cloud and
in thin accretion discs the turbulent viscosity can be compara- formation of the Earth (Moskow: Nauka)
ble to the radiative thermal dlusivity. Direct numerical simu- Sano, T., Miyama, S. M., Umebayashi, T., & Nakano, T. 2000, ApJ,
. . . R . . 543, 486
lations of the vertical shear instability in accretion disc and ca11-

. ) nnekes, H., & Lumley, J. 1972, A first course in turbulence
culations ofa and other turbulent parameters will be addresse (Cambridge: MIT Press)

in a forthcoming paper. Thomas, I. H. 1930, Quart. J. Math., 1, 239
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