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Abstract. We present a study of the baryonic fraction in galaxy clusters aimed at constraining the cosmological parametersΩm,
ΩΛ and the ratio between the pressure and density of the “dark” energy, w. We use results on the gravitating mass profiles of
a sample of nearby galaxy clusters observed with the BeppoSAX X-ray satellite (Ettori et al. 2002) to set constraints on the
dynamical estimate of Ωm. We then analyze Chandra observations of a sample of eight distant clusters with redshift in the
range 0.72 and 1.27 and evaluate the geometrical limits on the cosmological parameters Ωm, ΩΛ and w by requiring that
the gas fraction remains constant with respect to the look-back time. By combining these two independent probability distribu-
tions and using a priori distributions on both Ωb and H0 peaked around primordial nucleosynthesis and HST-Key Project results
respectively, we obtain that, at 95.4 per cent level of confidence, (i) w < −0.49, (ii) Ωm = 0.34+0.11

−0.05, ΩΛ = 1.30+0.44
−1.09 for w = −1

(corresponding to the case for a cosmological constant), and (iii) Ωm = 1 − ΩΛ = 0.33+0.07
−0.05 for a flat Universe. These results

are in excellent agreement with the cosmic concordance scenario which combines constraints from the power spectrum of the
Cosmic Microwave Background, the galaxy and cluster distribution, the evolution of the X-ray properties of galaxy clusters
and the magnitude-redshift relation for distant type Ia supernovae. By combining our results with the latter method we further
constrain ΩΛ = 0.94+0.30

−0.30 and w < −0.89 at the 2σ level.

Key words. galaxies: clusters: general – galaxies: fundamental parameters – galaxies: intergalactic medium – X-ray: galaxies
– cosmology: observations – cosmology: dark matter

1. Introduction

Several tests have been suggested to constrain the geometry
and the relative amounts of the matter and energy constituents
of the Universe (see recent review in Peebles & Ratra 2002
and references therein). A method that is robust and comple-
mentary to the others is obtained using the gas mass fraction,
fgas = Mgas/Mtot, as inferred from X-ray observations of clus-
ters of galaxies. In this work, we consider two independent
methods for our purpose: (i) we compare the relative amount
of baryons with respect to the total mass observed in galaxy
clusters to the cosmic baryon fraction to provide a direct con-
straint on Ωm (this method was originally adopted to show the
crisis of the standard cold dark matter scenario in an Einstein-
de Sitter Universe from White et al. 1993), (ii) we limit the
parameters that describe the geometry of the universe assum-
ing that the gas fraction is constant in time, as firstly suggested
by Sasaki (1996).

The outline of our work is the following. In Sect. 2, we de-
scribe the cosmological framework that allows us to formulate
the cosmological dependence of the cluster gas mass fraction.
In Sect. 3, we use a sample of nearby clusters to constrain
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mainly the cosmic matter density. Eight galaxy clusters with
z > 0.7 are then presented and analyzed in Sect. 4 and a fur-
ther constraint on the geometry of the Universe is given un-
der the assumption of a constant gas fraction as function of
redshift. A description of the systematic uncertainties that af-
fect our estimates is discussed in Sect. 5. Finally, the combined
probability function and the overall cosmological constraints
(also considered in combination with results from SN type Ia
magnitude-redshift diagram) are described in Sect. 6 along
with prospective for future work.

2. The cosmological framework

We refer to Ωm as the total matter density (i.e., the sum
of the cold and baryonic component: Ωm = Ωc + Ωb) in
unity of the critical density, ρc = 3H2

0/(8πG), where H0 =

100 h km s−1 Mpc−1 is the Hubble constant and G is the grav-
itational constant, and to ΩΛ as the constant energy density
associated with the “vacuum” (Carroll et al. 1992). We con-
sider a generalization from this static, homogeneous energy
component to a dynamical, spatially inhomogeneous form of
energy with still a negative pressure, or “quintessence” (e.g.
Turner & White 1997; Caldwell et al. 1998). We neglect the
energy associated to the radiation of the cosmic microwave
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Fig. 1. (Left) values of the density contrast ∆ (with respect to what expected for an Einstein-de Sitter model) of the density contrast ∆ estimated
in an “Ωm + ΩΛ = 1” universe at redshift 0, 0.1, 0.4, 0.7 and 1 (filled circles, from bottom to top, respectively) and with w equal to –0.2, –0.6,
–1 (diamonds, from top to bottom, respectively; solid line: values at z = 0 for w = −1). (Right) plot of the multiplicative factors that correct
the gas fraction with respect to the initial estimate computed within a density contrast of 1500 in an Einstein-de Sitter universe: corrections due
to the dependence upon d3/2

ang (filled circles, at z = 0.1, 0.4, 0.7 and 1, starting from the bottom, respectively) and the change due to the density
contrast (diamonds; solid line: values at z = 0.1).

background, Ωr ≈ 5 × 10−5, and any possible contributions
from light neutrinos, Ων = (

∑
µν/h2/92.5 eV), that is expected

to be less than 0.05 for a total mass in neutrinos,
∑
µν, lower

than 2.5 eV (see, e.g., the recent constraints from 2dF galaxy
survey in Elgaroy et al. 2002 and from combined analysis of
cosmological datasets in Hannestad 2002). Thus, we can write
Ωm + ΩΛ + Ωk = 1, where Ωk accounts for the curvature of
space.

In this cosmological scenario, the angular diameter distance
can be written as (e.g. Carroll et al. 1992, cf. Eq. (25))

dang =
c

H0(1 + z)
S (ω)
|Ωk|1/2 ,

ω = |Ωk|1/2
∫ z

0

dζ
E(ζ)
, (1)

where S (ω) is sinh(ω), ω, sin(ω) for Ωk greater than, equal to
and less than 0, respectively, and

E(z) =
[
Ωm(1 + z)3+Ωk(1 + z)2+ΩΛ(1 + z)3+3w

]1/2
, (2)

that includes the dependence upon the ratio w between the
pressure and the energy density in the equation of state of
the dark energy component (Caldwell et al. 1998; Wang &
Steinhardt 1998). Hereafter we consider a pressure-to-density
ratio w constant in time (see, e.g., Huterer & Turner 2001;
Gerke & Efstathiou 2002 for the extension of Eq. (2) to a
redshift-dependent form). In particular, the case for a cosmo-
logical constant Λ requires w = −1.

2.1. The cosmological dependence of the observed
cluster gas mass fraction

We assume that galaxy clusters are spherically symmetric grav-
itationally bound systems. For each galaxy cluster observed at
redshift z, we evaluate the gas mass fraction at r∆, fgas(r∆) =
Mgas(< r∆)/Mtot(< r∆), where r∆ is defined according to the
dark matter profile, Mtot(< r), for a fixed density contrast
∆ = Mtot(< r∆)/(4πρc,zr3

∆
). In the latter equation, ρc,z is the

critical density at redshift z and is equal to 3H2
z /(8πG) with

Hz = H0E(z) (see Eq. (2)). In the following sections, we de-
scribe how the dark matter mass profile is obtained for each
object and which density contrast we adopt initially in an
Einstein-de Sitter universe.

The assumed cosmological model affects the definition of
the gas mass fraction, fgas(r∆), given above in two independent
ways:

1. for a galaxy cluster observed at redshift z up to a char-
acteristic angular radius θc and with an X-ray flux S X =

LX(1 + z)−4/(4πd2
ang) ∝ M2

gasθ
−3
c d−3

ang/d
2
ang [where the X-ray

luminosity LX ≈ n2
gasΛ(Tgas) × θ3c d3

ang, and Λ(Tgas) is the
cooling function of the X-ray emitting plasma that depends
only on the plasma temperature] and a total mass, Mtot, esti-
mated through the equation of the hydrostatic equilibrium,
the measured gas mass fraction is

fgas =
Mgas

Mtot
∝ S 1/2

X θ
3/2
c d5/2

ang

θcdang
∝ dang(z,Ωm,ΩΛ, w)3/2, (3)

2. the density contrast, ∆, depends upon the redshift and the
cosmological parameters.
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We have initially evaluated the gas fraction, fgas(∆Ωm=1),
in an Einstein-de Sitter universe with a Hubble constant
of 50 km s−1 Mpc−1. Then, we change the set of cosmological
parameters and evaluate for each cluster at redshift z the new
values of the angular diameter distance dang and the density
contrast with respect to the critical density at that redshift. This
density contrast is calculated according to the formula in Lokas
& Hoffman (2001, Sect. 4.2) for a “Ωm + ΩΛ + Ωk = 1” uni-
verse and in Wang & Steinhardt (1998, Eqs. (5), (7) and (A11);
note that these formula are estimated for a background density
that is Ωm(z) times the critical density) for a “quintessence” flat
model (see left panel in Fig. 1).

Since we want to consider the gas fraction in each clus-
ter estimated within the same ∆ for any given set of cos-
mological parameters, we therefore multiply fgas(∆Ωm=1) by
two factors, the first one that rescales the distance, F1 =

(dang,Ωm,ΩΛ,w/dang,Ωm=1)3/2, and the second one that corrects by
the change in the density contrast, F2 = (∆Ωm ,ΩΛ,w/∆Ωm=1) ×
(H2

z d2
ang)Ωm=1/(H2

z d2
ang)Ωm,ΩΛ,w, where in the latter factor Mtot(<

r∆) and the angular radius θ∆ = r∆/dang are given (see right
panel in Fig. 1). In particular, being ∆ ∝ r−2

∆
and fgas ∝ r0.2

∆

(e.g. Ettori & Fabian 1999a, and Fig. 13 in Frenk et al. 1999),
we conclude that

fgas,Ωm,ΩΛ,w = fgas,Ωm=1 × F1 × F−0.1
2 . (4)

As shown in Fig. 1, the second correction affects the fgas values
by less than 10 per cent and is marginal with respect to the
cosmological effects due to the dependence upon the angular
diameter distance. We apply both these corrections to evaluate
each cluster gas fraction in the following analysis.

3. First constraint: Ωm from the gas fraction value

In this section, we describe how the local estimate of gas mass
fraction provides a robust constraint on the cosmic matter den-
sity. We make use of the further assumption of a constant gas
fraction with redshift in the next section, where we consider a
sample of galaxy clusters with z > 0.7.

The observational constraints on the abundance of the
light elements (e.g. D, 3He, 4He, 7Li) in the scenario of
the primordial nucleosynthesis gives a direct measurement
of the baryon density with respect to the critical value, Ωb.
Moreover, the BOOMERANG, MAXIMA-1 and DASI exper-
iments have recently shown that the second peak in the angu-
lar power spectrum of the cosmic microwave background pro-
vides a constraint on Ωb completely consistent with the one
obtained from calculations on the primordial nucleosynthesis
(e.g. de Bernardis et al. 2002).

If the regions that collapse to form rich clusters maintain
the same ratio Ωb/Ωc as the rest of the Universe, a measure-
ment of the cluster baryon fraction and an estimate of Ωb can
then be used to constraint the “cold”, and more relaxed, compo-
nent of the total matter density. This method alone cannot pro-
vide a reliable limit on the amount of the mass-energy presents
in the Universe as hot constituents (e.g. WIMPS, like massive
neutrino) or energy of the field (e.g.ΩΛ, quintessence), as both
do not cluster on scales below 50 Mpc.

Table 1. The local sample from BeppoSAX MECS observations. The
quoted values are obtained from the deprojection of the spectral re-
sults and assuming a functional form of the total mass profile (see
Ettori et al. 2002 for details). A Hubble constant of 50 km s−1 Mpc−1

is considered in an Einstein-de Sitter universe.

cluster z Tmw(r∆) fgas(r∆)

∆ = 1500

A85 0.0518 5.77 ± 0.32 0.121 ± 0.008
A426 0.0183 7.31 ± 0.16 0.172 ± 0.009
A1795 0.0632 5.53 ± 0.27 0.130 ± 0.009
A2029 0.0767 7.68 ± 0.46 0.126 ± 0.007
A2142 0.0899 8.47 ± 0.46 0.176 ± 0.011
A2199 0.0309 4.53 ± 0.21 0.123 ± 0.009
A3562 0.0483 4.82 ± 0.64 0.117 ± 0.027
A3571 0.0391 5.91 ± 0.33 0.104 ± 0.009
PKS 0745 0.1028 8.36 ± 0.47 0.143 ± 0.009

∆ = 500

A85 0.0518 4.84 ± 0.27 0.134 ± 0.011
A426 0.0183 8.12 ± 0.17 0.235 ± 0.015
A1795 0.0632 4.59 ± 0.22 0.122 ± 0.013
A2029 0.0767 6.30 ± 0.37 0.142 ± 0.011
A2142 0.0899 7.19 ± 0.34 0.203 ± 0.018
A2199 0.0309 4.21 ± 0.20 0.183 ± 0.014
A3571 0.0391 4.24 ± 0.23 0.132 ± 0.017
PKS 0745 0.1028 8.81 ± 0.50 0.126 ± 0.012

X-ray observations show that the dominant component of
the luminous baryons is the X-ray emitting gas that falls into
the cluster dark matter halo. Therefore, the gas fraction alone
provides a reasonable upper limit on Ωc:

Ωc <
Ωb

fgas
∝ h−1/2, (5)

where the dependence of the ratio Ωb/ fgas on the Hubble con-
stant is factored out (White et al. 1993; White & Fabian 1995;
David et al. 1995; Evrard 1997; Ettori & Fabian 1999a; Mohr
et al. 1999; Roussel et al. 2000; Erdogdu et al. 2002; Allen et al.
2002).

To assess this limit, we use the gas mass fraction esti-
mated in nearby massive galaxy clusters selected to be relaxed,
cooling-flow systems with mass-weighted Tgas > 4 keV from
the sample presented in Ettori et al. (2002; cf. Table 1). To date,
this sample is the largest for which the physical quantities (i.e.
profiles of gas density, temperature, luminosity, total mass, etc.)
have all been derived simultaneously from spatially-resolved
spectroscopy of the same dataset (BeppoSAX observations, in
this case). Through the deprojection of the spectral results, and
assuming a functional form for the dark matter distribution to
be either a King (King 1962) or a Navarro et al. (1997) profile,
the gas and total mass profiles are recovered in a self-consistent
way. Hence, the density contrast, ∆ = Mtot(< r∆)/(4πρc,zr3

∆
),

and the gas fraction at r∆, fgas(r∆) = Mgas(< r∆)/Mtot(< r∆),
can be properly evaluated.

In Fig. 2, we compare the estimatedΩb from primordial nu-
cleosynthesis calculation with the probability distribution (ob-
tained following a Bayesian approach discussed in Press 1996)
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Fig. 2. Probability distributions (see Press 1996) at different density
contrast ∆ of the values of the gas mass fraction for cooling-flow clus-
ters with Tgas > 4 keV from the sample in Ettori et al. (2002). The cen-
tral and 1−σ values are (0.126, 0.024) and (0.152, 0.020) at ∆ = 1500
and 500, respectively. These values have to be compared with the
mean and standard deviation of (0.134, 0.025) and (0.152, 0.043), re-
spectively. The estimated Ωb from primordial nucleosynthesis results
(Burles et al. 2001) is overplotted for comparison.

of the values of the gas mass fraction for nine (at ∆ = 1500) and
eight (at ∆ = 500) nearby massive objects. This plot shows that
at lower density contrast (i.e. larger radius) the amount of gas
mass tends to increase relatively to the underlying dark matter
distribution. Even if there is indication that the gas fraction be-
comes larger moving outward and within the virialized region,
we decide to adopt fgas at ∆ = 500 as representative of the clus-
ter gas fraction. In fact, at ∆ = 500 the gas fraction is expected
to be not more than 10 per cent less than the universal value, a
difference which is smaller than our statistical error, and in any
case is likely to be swamped by other effects (see comments in
the first item in Sect. 5).

We plot in Fig. 3 the dependence upon the Hubble constant
of the fgas value (∝ h−3/2) estimated at ∆ = 500 for the ob-
jects in the local sample. Assuming h = hHST = 0.72 ± 0.08
(from the results of the HST Key Project on distances mea-
sured using Cepheid variables, Freedman et al. 2001) and
Ωbh2 = Ωb,PNh2 = 0.019 ± 0.001 (from primeval deuterium
abundance and calculations on the primordial nucleosynthesis,
Burles et al. 2001), we obtain thatΩc in Eq. (5) is less than 0.54
(95.4 per cent confidence level).

Including a contribution from stars in galaxies of about
fgal = 0.02(±0.01)h−1

50 (White et al. 1993; Fukugita et al. 1998)
and excluding any further components to the baryon budget
(see e.g. Ettori 2001), one can write Ωb/Ωc = fgas + fgal = fb
and, consequently from the definition of Ωm, Ωb/Ωm = fb/(1+
fb). (Note that the estimate of Mtot does not include the con-
tribution of the gas mass, that would require the solution of a
second order differential equation instead of a much simpler,

Fig. 3. The observed gas fraction at ∆ = 500 for the eight galaxy
clusters in Table 1 is here plotted as function of the Hubble constant
(shaded region: constraints from Freedman et al. 2001). The solid line
indicates the central value and the dashed lines the 1 and 2 σ uncer-
tainties.

and usually adopted, first order equation of the spherical hy-
drostatic equilibrium).

Finally, we consider the eight relaxed nearby clusters i with
T > 4 keV (see Table 1) to evaluate the baryon fraction at
redshift zi, fb,i, and within ∆(Ωm = 1,ΩΛ = 0, w = −1) =500.
For a given set of parameters (Ωm,ΩΛ, w) in the range [0, 1],
[0, 2] and [−1, 0], respectively, we estimate fb,i (and its relative
error εb,i as propagation of the estimated error on fgas,i and fgal,
where the error on fgas,i comes from the measured uncertainties
on the gas and total mass estimates in Ettori et al. 2002, and
the error on fgal is 0.01 h−1

50 ) after considering the cosmological
dependence of both dang and ∆(Ωm,ΩΛ, w) (more relevant for
high−z systems, see Sect. 2) and calculate

χ2
A=
∑

i

(
fb,i −Ωb/Ωm

)2
ε2b,i

+

(
Ωb −Ωb,PN

)2
ε2
Ωb

+
(h − hHST)2

ε2h
, (6)

where Ωb,PN and hHST are defined above.

The χ2-distribution in Eq. (6) is used to construct a
∆χ2 statistics, ∆χ2 = χ2

A − χ2
A,min, by which we generate re-

gions and intervals of confidence (e.g., the 1σ level of confi-
dence for one and two degrees of freedom is ∆χ2 = 1 and 2.3,
respectively. A χ2

A,min = 29.3 is obtained).

Marginalizing over the accepted ranges of Hubble constant
from the HST Key Project (Freedman et al. 2001) and Ωb from
primordial nucleosynthesis, we obtain (2σ)Ωm = 0.37+0.07

−0.08 and
Ωb = 0.032+0.017

−0.010, that are well in agreement with Ωm,CMB from
CMB and Ωb/Ωm from large scale structures analysis of the
“2dF” data (see Fig. 4).
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Fig. 4. (Left) probability distribution contours (solid lines: 1, 2, 3 σ for two interesting parameters) in the Ωb − Ωm plane from marginalization
of the likelihood provided from the baryon fraction in clusters assuming a fgal = 0.02(±0.01) h−1

50 (White et al. 1993; Fukugita et al. 1998),
Ωb,PN (Burles et al. 2001), and H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001). As reference, Ωb,CMB (horizontal shaded region) and Ωm,CMB

(vertical shaded region; Netterfield et al. 2002), and (Ωb/Ωm)2dF (dashed line indicates the central value; Percival et al. 2001) are indicated.
(Right) maximum likelihood distribution in the Ωm axis after marginalization over the other parameters (dotted line: 1σ, dashed line: 2σ).

4. Second constraint: Gas fraction constant
in time

In this section, we present a sample of galaxy clusters with
z > 0.7 and compute their gas mass fraction. These values
are compared to the local estimates to put cosmological con-
straints under the assumption that the gas fraction remains con-
stant with redshift when computed at the same density contrast.
It is worth noticing that this method, originally proposed from
Sasaki (1996; see also Cooray 1998; Danos & Ue-Li Pen 1998;
Rines et al. 1999; Ettori & Fabian 1999b; Allen et al. 2002),
does not require any prior on the values of Ωb and H0, tak-
ing into account just the relative variation of the gas fraction
as function of time. In other words, the method assumes that
gas fraction in galaxy clusters can be used like a “standard can-
dle” to measure the geometry of the Universe. This is a reason-
able assumption in any hierarchical clustering scenario when
the energy of the ICM is dominated by the gravitational heat-
ing and is supported by numerical and semianalytical models
for the thermodynamics of the ICM, also when including pre-
heating and cooling effects. In recent hydrodynamical simula-
tions with an entropy level of 50 keV cm−2 generated in the
cluster at z = 3 (see Borgani et al. 2002), the baryon fraction
in clusters with an observed temperature around 3 keV is con-
stant in time within few percent (see also Fig. 13 in Bialek et al.
2001). Similar results are obtained in the semianalytical model
of Tozzi & Norman (2001), where a constant entropy floor is
initially present in the cosmic baryons. In Fig. 5, we show the
prediction for the baryonic fraction (in terms of the universal
value) within an average overdensity ∆ = 1500 as a function of
the emission weighted temperature Tew, computed in a ΛCDM
cosmology and with an entropy level of 0.3×1034 erg cm2 g−5/3

(see Tozzi & Norman 2001 for details). A significant decrease

of the baryonic fraction is expected at z = 1 (dashed line) with
respect to the local value (solid line) only for temperatures be-
low 4 keV. In particular, at temperatures above 6 keV, the bary-
onic fraction is constant or possibly 5 per cent higher at z = 1
with respect to z = 0. This strongly supports the assumption of
a baryon fraction constant with the cosmic epoch for clusters
with kT > 4 keV.

With this assumption, we expect to measure a constant av-
erage gas fraction locally and in distant clusters. However, the
gas fraction is given by a combination of the observed flux
and of the angular distance, and thus it depends on cosmol-
ogy (see discussion in Sect. 2). As shown in Fig. 1, the high
redshift objects are more affected from this dependence and
show lower fgas with respect to the local values when universes
with high matter density are assumed. By requiring the mea-
sured gas fractions to be constant as a function of redshift, one
can constrain the range of values of cosmological parameters
which satisfies such a condition.

4.1. The high−z sample

We define a local sample considering all the relaxed systems
in Ettori et al. (2002) that have a mass-weighted temperature
larger than 4 keV within ∆ = 1500 (cf. Table 1). Within this
density contrast, we measure fgas as described in Sect. 2. The
density contrast is chosen to be 1500 as a good compromize
between the cluster regions directly observed in the nearby sys-
tems and those with relevant X-ray emission in the high−z ob-
jects. This sample includes eight high redshift (z > 0.7) hot
(T > 4 keV) clusters, four of which selected from the ROSAT
Deep Cluster Survey (RDCS; Rosati et al. 1998; Stanford et al.
2001; Holden et al. 2002), two from the Einstein Extended
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Table 2. The high redshift sample from Chandra observations. The results are obtained applying a β−model in an Einstein-de Sitter universe
with a Hubble constant of 50 km s−1 Mpc−1. All the quoted errors are at 1σ level. Note that MS1054.5-0321 presents significant substructure
(e.g. Jeltema et al. 2001). The temperature and the best-fit of the surface brightness profile are estimated from the main body of the cluster once
a circular region centered at (RA, Dec; 2000) = (10h56m55′′7,−3◦37′37′′) and with radius of 36 arcsec is masked.

cluster z rout Tgas rc β nele(0) Mtot(rout) ∆(rout) fgas(rout)
′′/ kpc keV kpc 10−2 cm−3 1013 M�

RDCS J0849+4452 1.261 29.5 / 254 5.0+1.4
−1.0 97+56

−31 0.68+0.28
−0.13 0.96+0.24

−0.19 8.3+2.9
−2.1 1506+529

−376 0.048+0.016
−0.012

RDCS J0910+5422 1.101 29.5 / 253 5.0+1.3
−1.0 114+61

−42 0.65+0.33
−0.17 0.81+0.19

−0.13 7.9+2.6
−2.0 1802+583

−460 0.046+0.015
−0.010

MS1054.5-0321 0.833 82.7 / 685 10.1+1.1
−0.9 576+51

−43 1.36+0.16
−0.12 0.54+0.01

−0.01 61.3+7.2
−6.0 1064+125

−103 0.109+0.011
−0.011

NEP J1716.9+6708 0.813 33.5 / 276 7.1+1.0
−0.8 116+14

−13 0.60+0.03
−0.03 1.36+0.12

−0.11 11.1+1.6
−1.3 3048+433

−360 0.080+0.012
−0.011

RDCS J1350.0+6007 0.804 68.9 / 567 4.1+0.8
−0.6 191+61

−43 0.57+0.13
−0.08 0.47+0.06

−0.06 13.2+3.3
−2.5 425+106

−81 0.192+0.041
−0.036

MS1137.5+6625 0.782 45.3 / 370 6.3+0.4
−0.4 116+7

−7 0.67+0.02
−0.02 1.69+0.08

−0.07 15.9+1.1
−1.0 1895+132

−125 0.104+0.008
−0.008

WARPS J1113.1-2615 0.730 51.2 / 412 5.0+0.8
−0.7 109+27

−22 0.65+0.12
−0.09 0.97+0.11

−0.09 14.1+3.1
−2.5 1336+297

−239 0.063+0.012
−0.012

RDCS J2302.8+0844 0.720 49.2 / 394 6.7+1.1
−0.9 118+24

−16 0.57+0.07
−0.05 0.75+0.06

−0.06 15.3+3.0
−2.5 1681+332

−273 0.075+0.013
−0.012

Fig. 5. The gas fraction in unit of the cosmic baryon budget at ∆ =
1500 as a function of the observed (emission weighted) temperature
computed for the model of Tozzi & Norman (2001) with a constant
entropy of 0.3 × 1034 erg cm2 g−5/3 in a ΛCDM (Ωm = 1 − ΩΛ = 0.3)
Universe. The solid line is for z = 0, and the dashed line for z = 1.
Note the 20 per cent offset from the universal value, which reduces
to 10 per cent for ∆ = 500 (see comments on the baryonic depletion
in Sect. 5).

Medium Sensitivity Survey (MS; Gioia et al. 1990), one from
the Wide Angle ROSAT Pointed Survey (WARPS; Perlman
et al. 2002; Maughan et al. 2002) and one part of the North
Ecliptic Pole survey (NEP; Gioia et al. 1999; Henry et al.
2001). We reprocess the level= 1 events files retrieved from
the archive and obtain a spectrum and an image for each clus-
ter (see details in Tozzi et al., in preparation). Seven of these
objects were observed in ACIS-I mode (only MS1054 has
been observed with the back-illuminated S3 CCD). Following

Fig. 6. Distribution as function of redshift of the gas fraction relative to
the mean local value and estimated for the clusters in our sample at the
same overdensity ∆ = 1500. Filled circles are the values calculated in
an Einstein-de Sitter universe, whereas diamonds indicate the results
for a low density universe (Ωm = 1 −ΩΛ = 0.3).

the prescription in Markevitch & Vikhlinin (2001), the effec-
tive area below 1.8 keV in the front-illuminated CCD is cor-
rected by a factor 0.93 to improve the cross calibration with
back-illuminated CCDs. The spectrum extracted up to the ra-
dius rout to optimize the signal-to-noise ratio is modelled be-
tween 0.8 and 7 keV with an absorbed optically–thin plasma
(wabs(mekal) in XSPEC v. 11.1.0, Arnaud 1996) with fixed
redshift, galactic absorption (from radio HI maps in Dickey
& Lockman 1990) and metallicity (0.3 times the solar values
in Anders & Grevesse 1989) and using a local background
obtained from regions of the same CCD free of any point
source. The gas temperature and the normalization K of the
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thermal component are the only free parameters. The surface
brightness profile obtained from the image is fitted with an
isothermal β−model (Cavaliere & Fusco-Femiano 1976; Ettori
2000), which provides an analytic expression for the gas den-
sity and total mass of the cluster. In particular, the central elec-
tron density is obtained from the combination of the best-fit
results from the spectral and imaging analyses as follows:

n2
0,ele =

4πd2
ang × (1 + z)2 × K × 1014

0.82 × 4πr3
c × EI

(7)

where the emission integral is estimated by integrating along
the line of sight the emission from the spherical source up to
10 Mpc, EI =

∫ x1

0
(1+x2)−3βx2dx+

∫ x2

x1
(1+x2)−3βx2(1−cos θ)dx,

with θ = arcsin(rout/r), x1 = rout/rc and x2 = 10 Mpc/rc,
(β, rc) are the best-fit parameters of the β−model and we as-
sume np = 0.82ne in the ionized intra-cluster plasma. After
1000 random selections of a temperature, normalization and
surface brightness profile (drawn from Gaussian distributions
with mean and variance in accordance to the best-fit results),
we obtain a distribution of the estimates of the gas and total
mass and of the gas mass fraction. We adopt for each cluster
the median value and the 16th and 84th percentile as central
and 1σ value, respectively (see Table 2).

In Fig. 6, we plot fgas of the clusters in exam as a function of
redshift, as computed in an Einstein-de Sitter (filled dots) and
a low density (Ωm = 1 − ΩΛ = 0.3) universe (open squares).

4.2. The analysis

We compare our local estimate of the gas mass fraction with
the values observed in the objects at z > 0.7 within the same
density contrast ∆ = Mtot(< r∆)/(4πρc,zr3

∆
), where Mtot(< r∆)

is estimated from the β−model. Initially, we estimate the gas
fraction for all the clusters at ∆ = 1500 in an Einstein-de Sitter
universe. Then, we proceed as described in Sect. 2.

As discussed above, we consider a set of parameters
(Ωm,ΩΛ) in the range [0, 1] and [0, 2], respectively, both fixing
w equals to −1 as prescribed for the “cosmological constant”
case and exploring the range w ∈ [−1, 0] (in this case, we re-
quire Ωk = 0), and evaluate the distribution

χ2
B =
∑

j

[
fgas, j(Ωm,ΩΛ) − fgas

]2
ε2gas, j + εgas

2
, (8)

where fgas and εgas are the mean and the standard deviation
of the values of the gas fraction in the local cluster sample,
and εgas, j is the error on the measurement of fgas, j for j ∈ [high–
z sample]. It is worth noticing that the use of the standard devi-
ation around the mean is a conservative approach. For example,
at (∆,Ωm,H0) = (1500, 1, 50), we measure a mean of 0.134 and
standard deviation of 0.025, the latter being about 8 times larger
than the measured error on the weighted mean and slightly
larger than the dispersion obtained with the Bayesian method
illustrated in Fig. 2. Using just the results obtained on the
χ2

B distribution, we obtain a best-fit solution that requires the
following upper limits at 2σ level (one interesting parameter),
Ωm < 0.64 and ΩΛ < 1.69 (cf. Fig. 7).

Fig. 7. Maximum likelihood distributions in the “Ωm + ΩΛ + Ωk =

1” region obtained from the application of the method that requires
“ fgas = constant” (cf. Sect. 4; shaded region: no-big-bang solution,
dotted line: “Ωk = 0” region). The contours enclose the regions with
∆χ2 = 2.30, 6.17, 11.8 (with respect to the minimum of 11.7 with
eight objects in exam), corresponding to 1, 2, 3 σ, respectively, for a
distribution with two interesting parameters.

5. Systematic uncertainties

The intrinsic scatter in the distribution of the fgas values of ap-
proximately 20 per cent is the most relevant statistical uncer-
tainty affecting our cosmological constraints. We discuss in this
section how a number of systematic uncertainties contribute to
a lesser extent.

– We have assumed that the intracluster medium is in hy-
drostatic equilibrium, distributed with a spherical geome-
try, with no significant (i) clumpiness in the X-ray emitting
plasma, (ii) depletion of the cosmic baryon budget at the
reference radius, and (iii) contribution from non-thermal
components. The hydrostatic equilibrium in a spherical po-
tential is widely verified to be a correct assumption for local
clusters, but it cannot be the case (in particular on the geom-
etry of the plasma distribution, but see Buote & Canizares
1996; Piffaretti et al. 2002) for high redshift clusters. The
level of clumpiness in the plasma expected from numeri-
cal simulations (e.g. Mohr et al. 1999) induce an overesti-
mate of the gas fraction. On the other hand, the expected
baryonic depletion (still from simulations; e.g. Frenk et al.
1999) underestimates the observed cluster baryon budget
by an amount that can be comparable (but of opposite
sign) to the effect of the clumpiness (see discussion in
Ettori 2001). For the high redshift objects observed within
∆ = 1500, a larger clumpiness can be present as con-
sequence of on-going process of formation that, on the
other hand, might still partially compensate for a residual
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depletions of baryons observed in the simulations in the
range 4–6 keV (cf. Fig. 5). The combination of these ef-
fects induce however an uncertainty in the relative amount
of baryons of less than 10 per cent, percentage that is below
the observed statistical uncertainties.
Moreover, the radial dependence of fgas can be slightly
steeper in the inner cluster regions due to the relative
broader distribution of the gas with respect to the dark mat-
ter (but see Allen et al. 2002 for fgas profiles observed flat
within ∆ = 2500). Finally, from the remarkable match
between the gravitational mass profiles obtained indepen-
dently from X-ray and lensing analysis (e.g. Allen et al.
2001), it seems negligible any non-thermal contribution to
the total mass apart from a possible role played in the inner
regions;

– The high redshift sample has been analyzed using an
isothermal β−model. From recent analyses of nearby clus-
ters with spatially resolved temperature profiles, it appears
that this method can still provide a reasonable constraint
on the gas density, but surely affect the estimate of the to-
tal mass, in particular in the outskirts and, more dramat-
ically, when an extrapolation is performed. On the other
hand, the physical properties of nearby clusters at over-
density of 1500 (e.g. Ettori et al. 2002) guarantee that the
expected gradient in temperature is not significantly steep
and, therefore, does not affect the estimate of the total gravi-
tating mass. However, the presence of a gradient in the tem-
perature profile would reduce the total mass measurements
and increase, consequently, the derived gas mass fraction;

– We assume that relaxed nearby and high-z clusters, both
with Tgas > 4 keV, represent a homogeneous class of ob-
jects. If we relax this assumption and include non-relaxed
nearby systems (or equivalently no-cooling-flow clusters in
the sample of Ettori et al. 2002), we obtain the same cos-
mological constraints though the scatter in the distribution
of the gas fraction values becomes larger (e.g., at ∆ = 1500,
the scatter is 0.025 for relaxed systems only and 0.033 for
the complete sample).

In conclusion, we check our results against two effects: (i) by
increasing the gas mass fraction in the high−z sample by a fac-
tor 1.15, and (ii) by changing the slope of the radial dependence
of fgas(r) (cf. factor F2 in Sect. 2) by ±0.1. All these corrections
do not change significantly the results quoted in the next sec-
tion on Ωm due to heavier statistical weight given from the first
method, that is the one less (or completely not) affected from
the above mentioned effects. On the other hand, they mostly
affect the second method in such a way that (i) gas fraction val-
ues at high−z higher by 15 per cent reduce the 2σ upper limit
on ΩΛ by 10 per cent, but increase the one on w by 50 per cent,
(ii) steeper radial fgas profiles (i.e. larger dependence upon the
density contrast ∆) raise the limit on ΩΛ, but have not relevant
effects on w. In details, when the slope changes from 0 to −0.1
and −0.2, the upper limit onΩΛ increases from 25 to 5 per cent,
respectively.

6. Conclusions

We show how the combined likelihood analysis of (i) the
representative value of fgas in clusters of galaxies and
(ii) the requirement that fgas(z) = constant for an assumed ho-
mogeneous class of objects with T > 4 keV can set stringent
limits on the dark matter density and any further contribution
to the cosmic energy, i.e. Ωm and ΩΛ respectively.

First, a total χ2 distribution is obtained by combining the
two distributions presented in Eqs. (6) and (8), i.e. χ2 =

χ2
A+χ

2
B. The resulting likelihood contours (Fig. 8) are obtained

marginalizing over the range of parameters not investigated.
With further a priori assumptions on Ωb and H0, and assuming
a flat geometry of the universe, we constrain (see right panel in
Fig. 8) the dark energy pressure-to-density ratio to be

w < −0.82(1σ),−0.49(2σ),−0.17(3σ). (9)

This constraint is in excellent agreement with the bound on
w obtained with independent cosmological datasets, such as the
angular power spectra of the Cosmic Microwave Background
(e.g. Baccigalupi et al. 2002), the magnitude-redshift relation
probed by distant type Ia Supernovae and the power spectrum
obtained from the galaxy distribution in the two-degrees-field
(for a combined analysis of these datasets, see, e.g., Hannestad
& Mörtsell 2002 and reference therein). Moreover, this upper
bound is completely in agreement with w = −1 as required
for the equation of state of the “cosmological constant”. Fixing
w = −1, we obtain (for one interesting parameter)

Ωm = 0.34+0.03
−0.03(1σ), +0.11

−0.05(2σ), +0.17
−0.08(3σ)

ΩΛ = 1.30+0.30
−0.46(1σ), +0.44

−1.09(2σ), +0.52
... (3σ).

(10)

Finally, imposing a flat Universe (i.e. Ωk = 0) as the recent
constraints from the angular power spectrum of the cosmic mi-
crowave background indicate (e.g. de Bernardis et al. 2002 and
references therein), we obtain that Ωm = 1 − ΩΛ = 0.33+0.07

−0.05
at 95.4 per cent confidence level.

Our limits on cosmological parameters fit nicely in the cos-
mic concordance scenario (Bahcall et al. 1999; Wang et al.
2000), with a remarkable good agreement with independent es-
timates derived from the angular power spectrum of Cosmic
Microwave Background (Netterfield et al. 2002; Sievers et al.
2002), the magnitude–redshift relation for distant supernovae
type Ia (Riess et al. 1998; Perlmutter et al. 1999; the like-
lihood region from a sample of SN type Ia as described in
Leibundgut 2001 is shown in Fig. 8, panel at the bottom-left),
the power spectrum from the galaxy distribution in the 2dF
Galaxy Redshift Survey (e.g., Efstathiou et al. 2002) and from
galaxy clusters (e.g. Schuecker et al. 2003), the evolution of
the X-ray properties of clusters of galaxies (e.g. Borgani et al.
2001; Arnaud et al. 2002; Henry 2002; Rosati et al. 2002). For
example, combining the constraints in Fig. 8 between the al-
lowed regions from the gas mass fraction and the magnitude–
redshift relation for SN-Ia, we obtain (2 σ statistical error)
Ωm = 0.34+0.07

−0.05 and ΩΛ = 0.94+0.28
−0.32. These values are 0.5

and 0.6 σ higher, respectively, than the CMB constraints ob-
tained with the SN-Ia prior (see Table 4 in Netterfield et al.
2002). Moreover, by combining fgas and SN-Ia measurements



S. Ettori et al.: Cosmological constraints from the cluster gas fraction 887

Fig. 8. (Left) maximum likelihood distributions in the “Ωm + ΩΛ + Ωk = 1” region. Contour plots (thick solid lines) from the combination of
the two likelihood distributions (A: cluster baryonic content, B: gas fraction constant with redshift; dashed lines indicate the constraints from
the second method only, see Fig. 7; the cross indicates the best-fit result at Ωm = 0.34, ΩΛ = 1.30) with overplotted the constraints from
the magnitude-redshift method applied to a set of SN Ia (cf. Leibundgut 2001, thin solid lines). (Right) constraints on the parameter w of the
cosmological equation of state (thick solid lines from the combination of the method A and B; dashed lines from the second method only; the
crosses show the best-fit results, that is located at Ωm = 0.35 and w = −1 for the combined probability distribution). The thin solid lines indicate
the constraints from SN Ia (P. Garnavich, priv. comm.; updated version of Garnavich et al. 1998 combining Riess et al. 1998 and Perlmutter
et al. 1999 dat sets). The contours enclose the regions with ∆χ2 = 2.30, 6.17, 11.8, corresponding to 1, 2, 3 σ, respectively, for a distribution
with two degrees-of-freedom.

we can obtain a very tight constraint onw (right panel in Fig. 8):
w < −0.89 and Ωm = 0.32+0.05

−0.05 at the 95.4 per cent confidence
level.

We have demonstrated how the measurements of the clus-
ter gas mass fraction represent a powerful tool to constrain the
cosmological parameters and, in particular, the cosmic matter
density, Ωm. Nonetheless, the limits on ΩΛ and w, though
weaker, provide a complementary and independent estimate
with respect to the most recent experiments in this field. On
this item, it is worth noticing that our constraints on ΩΛ are
mostly due to the dang dependence of fgas (cf. Fig. 1). Thus, a
larger sample of high−z clusters with accurate measurements
of the gas mass fraction will significantly shrink the confidence
contours, as we show in Fig. 9. Compilations of such datasets
will be possible in the near future using moderate-to-large area
surveys obtained from observations with Chandra and XMM-
Newton satellites.
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Fig. 9. Constraints in the Ωm −ΩΛ plane as in Fig. 7 for simulated sets
of gas mass fraction measurements. The contours are at 1 σ confidence
level. A cosmological model withΩm = 1−ΩΛ = 0.34 is assumed and
only the d3/2

ang dependence is considered. In the redshift range [1, 2], the
increase by a factor of two of the sample allows to reduce the upper
limit on ΩΛ by about 10 per cent.
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Fig. A-1. Data and best-fit MEKAL model of the spectrum of the galaxy clusters at high redshift in our sample.
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Fig. A-2. Data and best-fit β-model of the surface brightness profile of the galaxy clusters at high redshift in our sample. Dotted lines indicate
the best-fit background value.
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