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Abstract. It has been clearly observed by the NASA deep-space probes that the solar wind protons do not adiabatically cool
as expected towards larger solar distances, but appear to be heated by non-collisional energy sources. In some papers these
heating sources were directly or indirectly ascribed to pick-up ions incorporated as suprathermal ions into the background solar
wind. Neutral interstellar H-atoms penetrate into the inner heliosphere and at ionization they are converted into pick-up ions.
Here we do not consider how the magnetized solar wind flow incorporates these ions into the plasma bulk when enforcing
their co-motion. We simply take the first step of their incorporation for guaranteed, namely the fast redistribution of pick-
ups from an initially unstable toroidal to a quasistable bi-spherical distribution. The free energy lost by pick-ups during this
redistribution goes into the turbulent MHD waves, and as such cascades down to the proton dissipation scale and finally is
absorbed by solar wind protons. Here we investigate the thermodynamics of solar wind protons being heated by absorption
of this free energy of pick-ups. In addition we also consider as a relevant and competing proton heat source the heating due
to absorption of wave energy of convected MHD turbulences, showing that the latter source always dominates inside some
critical solar distance, whereas the first one dominates in the outer heliospheric regions. We then solve the resulting differential
equation for the solar wind proton temperature and show in the solutions obtained that a quasipolytropic behaviour of the solar
wind protons with a distance-dependent polytropic index is found. The expression for the pressure clearly shows the change
from an adiabatic to a quasipolytropic behaviour with a decreasing polytropic index at increasing distances as observed by the
VOYAGERs. The quantitative run of the temperature and the polytropic index with solar distance thereby is strongly influenced
by the interstellar H-atom density. The (pick-up ion)-induced heating also evidently leads to a wind-asymmetric solar wind
temperature distribution with higher temperatures occuring in upwind direction compared to downwind direction.
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1. Introduction to the dynamics of the distant solar
wind

It has for a long time been clearly recognized that the solar
wind dynamics at larger distances is influenced by the creation
and incorporation of pick-up ions. First we briefly consider this
pick-up ion-induced modulation effect. It has been predicted al-
ready quite early that the solar wind becomes decelerated due
to both the pick-up ion loading (see e.g. Holzer & Leer 1973;
Fahr 1973; Ripken & Fahr 1983; Fahr & Ripken 1984) and,
more recently, also due to the action of the pick-up ion pressure
(Fahr & Fichtner 1995; Lee 1997; Whang 1998; Whang et al.
1999; Fahr & Rucinski 1999). While being decelerated the so-
lar wind plasma is also heated, partly because of adiabatic com-
pression with respect to a non-decelerated flow, partly because
of being loaded with suprathermal pick-up ions. As an overall
effect the effective solar wind sound velocity is increased (see
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Fahr & Rucinski 1999, 2001). Connected to both phenomena,
i.e. deceleration and heating, the solar wind Mach numbers also
decrease with increasing solar distances. We shall only briefly
review these phenomena here.

The effective Mach number and the wind deceleration is
calculated with the help of an expression for the pick-up pres-
sure, Pi. The dynamical effect of this pressure has, however, not
yet been taken into account in a fully consistent form since it
would need the simultaneous and consistent treatment of the
solar wind plasma, the pick-up ions and the involved MHD
waves. Semi-consistent solutions of a kinetic pick-up ion trans-
port equation prescribing the solar wind velocity profile have,
however, meanwhile been presented (see e.g. Chalov et al.
1995, 1997; Fichtner et al. 1996) which also permit the cal-
culation of the pick-up ion pressure as a velocity moment of
the pick-up ion distribution function. Representing this pick-
up pressure in the form Pi = αρiV2

w where α represents a pure
function of the solar distance r, and where ρi and Vw are the
pick-up ion mass density and the solar wind bulk velocity,
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respectively, one then can derive the following differential
equation for the decelerated solar wind (see Fahr & Rucinski
2001):

d
dr

Vw =
−mpβex

1+α
ρw+ρi

+ 2α
r ξVw

1 + αξ
· (1)

Here βex denotes the local injection rate of pick-up ions which
is assumed to be exclusively due to charge exchange processes
with protons (photoionization is neglected) and thus is given
by βex = σexnHnwVw. The function ξ = ρi/ (ρw + ρi) denotes the
relative abundance of pick-ups with respect to all protons and is
adopted here as was calculated by Fahr & Rucinski (1999) us-
ing the “hot” kinetic H-atom model developed by Wu & Judge
(1979). The integration of the differential Eq. (1) then yields:

Vw = Vw0 exp


∫ r

r0

2α
r ξ − nHσex (1 − ξ) (1 + α)

1 + αξ
dr

 · (2)

A fairly realistic expression for Pi was derived from results for
fi obtained by Chalov et al. (1995, 1997) as solutions of the
complete pick-up ion transport equation. As Fahr & Lay (2000)
showed these numerical results can be represented by the fol-
lowing analytical formula:

fpui = z

(
x−0.33

)
wβ exp

[−C(x) (w − w0)κ
]
, (3)

where z is a constant, x = r/r0 is the radial solar distance
in units of r0 = 1 AU, w = (v/Vw)2 is the squared pick-up
ion velocity normalized with Vw , w0 being a typical injection
value. Furthermore it was found: β = − 1

6 ; κ = 2
3 ; and: C(x) =

0.442 x0.2. As shown in Fahr & Rucinski (2001) with the above
representation of fi one obtains the following representation
of Pi:

Pi =
5

16
2
√
πC(x)−

3
2 ρiV2

w = α(x)ρiV2
w. (4)

In this expression for Pi(x) the function α is found as given
by: α = α(x) = 1.83 x−0.3. This means that α decreases
slightly with increasing solar distances, obviously reflecting
the fact that at larger distances the adiabatic deceleration starts
to slowly overcompensate the effect of wave-driven Fermi-2
accelerations. It is, however, interesting to see that even with-
out Fermi-2 accelerations (i.e. resulting for very low turbulence
levels) the ratio of Pi/ρi also turns out to be nearly constant (see
Vasyliunas & Siscoe 1976), its magnitude only being lower.

The above formula is valid at distances of x ≥ xc = 15
where α = αc = α(xc) equal to αc = 0.44. In the following cal-
culations we assume that Pi can be represented with sufficient
accuracy by Eq. (4) setting α(x) = αc.

If we then calculate the solar wind deceleration with
Eq. (2), after expansion of the exponential for small argu-
ments, the relative deceleration of the solar wind ∆X =

(Vw0 − Vw) /Vw0 given by:

∆X(r) =
∫ r

r0

2αc
r ξ − nHσex (1 − ξ) (1 + αc)

1 + αcξ
dr (5)

depending on the interstellar H-atom density nH∞ and the
solar distance r is always in the range of ∆X ≤ 0.1. For

instance approximating ξ by (see Fahr & Rucinski 1999):
ξ(r) ' σex

∫ r

r0
nH(r′)dr′ using formula (5) and adopting the

LISM H-atom density with nH∞ = 0.1 cm−3, then leads one
to a value of ∆X(40 AU) = 0.05 or ∆X(60 AU) = 0.07. On
the basis of these derivations we may conclude that the solar
wind velocity Vw within r ≤ 80 AU can be taken as constant
and given by Vw ' Vw0.

2. Heating sources for the solar wind protons

Here we want to consider heat sources acting upon solar wind
protons at their propagation to large solar distances. A direct
heating of solar wind protons by the keV-energetic pick-up ions
embedded in the solar wind via Coulomb collisions can safely
be excluded at distances beyond 0.3 AU. The only immagin-
able and available mechanism to heat solar wind protons is by
dissipation of MHD turbulent wave energy. This was already
suggested by Parker (1964) and Coleman (1968) who had pre-
dicted that some extended heating due to dissipation of waves
might cause a non-adiabatic expansion of the solar wind to re-
gions beyond its critical point. Further detailed studies of the
coronal proton temperature and temperature anisotropy varia-
tion with solar distance due to ion heating by resonant wave-
particle interaction with coronal ion-cyclotron and fast mag-
netosonic waves were carried out by Marsch et al. (1982).
These studies were later extended to more general conditions
through quasilinear plasma-wave simulation calculations by
Liewer et al. (2001) and Cranmer (2001) and they all could
clearly show that non-adiabatic expansion of the solar wind
protons has to be expected.

This non-adiabatic solar wind temperature behaviour
meanwhile is manifest in data taken by the VOYAGER-1/2
spacecraft up to large solar distances (i.e. r ≥ 20 AU) (see
Richardson et al. 1995; Whang 1998; Whang et al. 1999). A
more quantitative study of the dissipation of non-Alfvénic tur-
bulence energy to solar wind protons even at larger solar dis-
tances was carried out by Matthaeus et al. (1994) with the re-
sult that wave energy is absorbed with a rate qturb ' ρsu3/l
where ρs, u, l are the solar wind mass density, the rms turbu-
lent fluctuation speed, and the turbulent correlation scale. The
dependence of these quantities u and l on distance r was in-
vestigated by Zank et al. (1996) who described the evolution of
low-frequency turbulence power in the solar wind on the basis
of a scale-separated equation developed by Zhou & Matthaeus
(1990) and describing the evolution of amplitude fluctuations
u and b about the mean velocity Vw and the mean magnetic
field B. In this equation for the frequency-averaged fluctuation
power these authors took into account nonlinear dissipation
terms and power sources. Amongst the latter they discussed
terms due to wave-driving by velocity shears and compres-
sional effects associated with solar wind interaction regions and
due to pick-up ions which after their injection populate a distri-
bution function which is unstable with respect to turbulence ex-
citation. In the solutions obtained for u2(r) and l(r) they could
demonstrate that the usual WKB approximations are far from
what realistically can be expected in the solar wind at large
distances. Far away from solar wind interaction regions and at
higher heliographic latitudes one should anyway not expect to
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find shear-induced turbulent energy, but outside of the so-called
ionization cavity one should find pick-up ion induced turbulent
energy and correlation lengths l(r) which from 5 AU outwards
systematically decrease with distance.

On the basis of these results Smith et al. (2001) also anal-
ysed the heating of the distant solar wind due to absorption of
wave turbulent energy by protons, solving a system of coupled
differential equations which describe the evolution with dis-
tance of the mean turbulent energy u2, the correlation length l,
and the proton temperature. The nonlinear dissipative loss term
in the equation for u2 was at the same time taken with the op-
posite sign, as an energy gain term for the protons. Comparison
of results with VOYAGER data seem to show that, though the
main features are explained by this theoretical approach, nev-
ertheless the predicted values both for u2 and the solar proton
temperature Tw are clearly on the low side of the VOYAGER-
2 data. This may partly be due to mixing of high- and low-
velocity solar wind structures and partly due to the fact that
the fraction of adiabatically cooled pick-up ions copopulate the
Maxwell tails of the solar wind protons. In view of these open
problems, in the following part of the paper we shall reconsider
heating sources due to absorption of turbulence energy by solar
wind protons.

Smith et al. (2001) describe MHD-waves, both convected
and locally generated ones, by one common power spectrum
characterized by two parameters, namely the turbulence level
and the correlation length. Here, we are going to present be-
low we consider convected background MHD-waves and MHD
waves locally generated by pick-up ions as two independent
contributions to the turbulence power spectrum resulting in two
additive heating sources. We use as a distance-dependent quan-
tity the outer scale l0 = 2π/k0, similar to the correlation length
used by Smith et al. (2001), to characterize the evolution of the
background turbulence and to describe its contribution to the
heating. In our approach here this outer scale increases mono-
tonically with increasing solar distance. The main reason for
treating the pick-up ion induced heating source as being sep-
arate from the one connected with the background turbulence
is due to the fact that the wavenumber ki ' Ω/Vw of max-
imum power generation by pick-up ions (see Huddleston &
Johnstone 1992) is only one order of magnitude smaller than
the main dissipation wavenumber kdis = Ω/vA whereas the dif-
ference between ki and k0 amounts to more than three orders of
magnitude.

2.1. A: Convected turbulence

It is well known that the solar wind transports turbulent energy
distributed over an extended range of wavenumbers k, with a
typical “flicker” spectrum at low frequencies up to a critical
wavenumber k0, and with a typical inertial spectrum from the
critical wavenumber upwards to the solar proton dissipation
wavenumber kdis �Ω /vA ( e.g. see Goldstein & Roberts 1999).
Here Ω denotes the proton gyrofrequency, and vA is the Alfvén
velocity. The spectrum of this convected MHD turbulence thus
is given by:

Wk (k) = Dk−η for wavenumbers: k 6 k0

and

Wk(k) = Dkλ−η0 k−λ for wavenumbers: k ≥ k0

where D is a structure constant. Here 0 ≤ η ≤ 1 is the spectral
index of the so-called “flicker” spectrum, and λ is the spectral
index of the inertial spectrum, i.e. λ = 5/3 for the Kolmogorov
turbulence, or λ = 3/2 for the Kraichnan turbulence.

We consider now the locally constant wavepower flux in
the inertial branch of the spectrum given by Zhou & Matthaeus
(1990) or, in a more general form, by Tu & Marsch (1995)

Φk(r) = −Dkk
∂

∂k
Wk = −λCkk kvA (4πkWk/ B2)χ(kWk) (6)

where Dkk is the nonlinear wave-wave diffusion coefficient for
isotropic turbulence, Ckk ≈ 0.1 = const., B is the static back-
ground magnetic field, and with χ = 1/2 (or χ = 1) for the
Kolmogorov turbulence (or for the Kraichnan turbulence), re-
spectively. The fluxΦk(r) given by Eq. (6) represents a constant
in the non-dissipative range. Its value can simply be found by
evaluating the above equation at the critical wavenumber k0,
where the wavepower is given by

Wk(k0) = Dk−η0 . (7)

This then leads to the wavepower flux:

Φk(k = k0, r) = λCkkvAk1+(χ+1)(1−η)
0 Dχ+1(4π/B2)χ. (8)

We make use here of the expected radial dependence of the
critical wavenumber k0 and the average field fluctuation energy.
From Chashei & Shishov (1982) and Chashei (1986) requiring
that at k0 the rates of linear processes and nonlinear interactions
should be equal we then obtain

Vwk0Wk(k0) ≈ rΦk(k0)

where Vw is the solar wind speed. Combining Eqs. (6)
through (8) one can find the following relation for the turbu-
lence critical scale k0,

k1+χ(1−η)
0 = (Vw/CkkrvA)(B2/4πD)χ. (9)

Taking into account Eq. (9) we can now evaluateΦk(k0) given
in Eq. (8):

Φk(k0) = (Vw/r)Dk1−η
0 . (10)

We furthermore consider the radial dependence of the criti-
cal wavenumber k0(r) and of the structure constant D(r). For
that purpose we assume, that based on the confirmed validity
of Parker’s field B (see e.g. Balogh et al. 1992) and a spher-
ically symmetric solar wind expansion geometry at distances
r ≥ 1 AU, the following relations are valid:

B2 = B2
0(r0 /r)2,

and

vA = B/(4πρw)1/2 = vA0 = const.

The structure constant D is proportional to the wavenum-
ber average of the magnetic field fluctuation power, i.e. to
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< δB2/4π >, and in the low frequency spectral range is domi-
nated by linear processes, thus

D(r)/D(r0) = < δB2
lin(r) >/< δB2(r0) > (11)

where < δB2
lin(r) > = D(r) k1−η

0 (r0). We assume below that

D(r) = D(r0)(r0/r)2 (12)

for distances r ≥ 1 AU.
The following arguments can be presented in favour of the

radial dependence adopted in Eq. (12):
It is well known that the wave vectors of Alfvén waves

have a tendency to approach the radial direction at increasing
distances from the sun (Völk & Alpers 1973; Hollweg 1975).
Under these conditions, MHD turbulence convected outwards
consists of right-handed and left-handed MHD waves which
can be treated (see Malara & Elaoufir 1991; Grappin et al.
1993) as typical Alfvén wave instabilities with respect to the
excitation of magnetosonic waves, i.e. the Alfvén waves prop-
agating at large angles to the quasi-azimuthal ambient mag-
netic field become unstable with respect to exciting magne-
tosonic waves. Thus if the relevant magnetic field disturbances
are connected with Alfvén waves then their energy density has
to fall off as < δB2(r)/4π >A ∼ r−3 in the WKB approach at
distances r ≥ 1 AU, while the radial dependence would be
slower for the fast magnetosonic waves, rather falling off as
< δB2(r)/4π >F∼ r−2. Indeed, the level or turbulence δB2 in
the WKB approach can be found from the principle of wave
action flux conservation given by:

r2Vw(ω/ω′)δB2 = const.

where ω and ω′ are the wave frequencies in the immovable
rest frame and in the frame co-moving with the solar wind
plasma bulk, respectively. In the case of Alfvén waves (ω/ω′)
is proportional to r, since ω′ ∼ k‖ ∼ (1/r), and in case of
fast magnetosonic waves (ω/ω′) is approximately constant, be-
cause ω′ ∼ k⊥ ' const., where k‖ and k⊥ are the components
of the wave vectors parallel and perpendicular to the ambient
magnetic background field.

The radial dependence of the magnetic field fluctuations
adopted in Eq. (12) for regions r ≥ 1 AU was also supported
by Jokipii & Kota (1989) and Zank et al. (1996). For these rea-
sons we can expect that the local MHD turbulence at r ≥ 1 AU
represents a mixture of Alfvén and magnetosonic waves, with
< δB2 >A≈< δB2 >F assumed as being valid, but the fast mag-
netosonic waves finally are responsible for the successive radial
transport of turbulent energy at larger distances. In this case
the relation (11) is valid, and the radial dependence of k0(r) in
Eq. (9) is defined only by the first factor, since the second fac-
tor is a constant, i.e. B2/ D = const. Assuming futhermore that
< δB2

0/4π >≈ G0ρ0v
2
A0 with G0 = const. ≤ 1 being the frac-

tional turbulence level at r = r0 = 1 AU, and, consequently,
k0(r0) ≈ Vw / (vA0 r0) , we finally obtain:

Φk(k = k0, r) = Φ0 × (r/r0)−s (13)

with

Φ0 = Φk(k = k0, r0) = G0(VwB2
0)/(4πr0) (14)

and

s = [3 + 3(χ + 1)(1 − η)]/[1 + χ(1 − η)]· (15)

In the special cases of Kolmogorov (χ = 1/2) turbulence or
Kraichnan (χ = 1) turbulence we thus have from Eq. (15):

s = (11 − 5η)/(3 − η) at χ = 1/2,

or

s = (7 − 4η)/(2 − η) at χ = 1.

In the most interesting case of the low frequency “flicker” spec-
trum with η = 1 (Matthaeus & Goldstein 1986; Hourbury &
Balogh 2001) the radial profile of Eq. (13) does not depend on
the turbulence model, and in both cases leads to s = 3. A de-
crease in η up to η = 0 in case of a flat spectrum leads to an
increase in s in Eq. (15) up to an extreme value of s = 11/3
in the case of the Kolmogorov turbulence and up to s = 7/2
in the case of the Kraichnan turbulence. In any case, the radial
decrease of Φk(k = k0, r) given in Eq. (13) is considerably
slower, than that considered by Smith et al. (2001) for purely
Alfvénic turbulences when s > 4.

When estimating the heating source due to convected tur-
bulences we neglected a possible anisotropy in the wavenum-
ber vector distribution of the turbulence power which is un-
fortunately not known in detail (Goldstein & Roberts 1999).
However, even taking anisotropies into account will not result
in considerable changes in our conclusions because we used
only rough energetic characteristics of the solar wind turbu-
lence, such as the fractional level of fluctuations and the turbu-
lence outer scale. The turbulent energy Φk(k = k0, r) is locally
cascading down to the solar wind proton dissipation scale, i.e.
to the wavenumber kdis = Ω/vA, and is absorbed by solar wind
protons there. Turbulent energy cascading in the k‖ – wavenum-
ber space is caused by nonlinear wave – wave interactions with
the cooperation of Alfvén and magnetosonic waves.

Fractional absorption of Φk prior to arriving at wavenum-
bers kdis by dissipation to heavier solar wind ions obviously
can be also neglected in view of inertial power law spectra
which are observed up to the highest frequencies (see Leamon
et al. 1998; Goldstein & Roberts 1999). Convected turbulent
energy thus serves as one of two relevant heat sources for dis-
tant solar wind protons considered in this paper. The other one
is connected with the turbulent energy generated by pick-up
ions through their free kinetic energy immediately after injec-
tion and, since then partly also cascading to the proton dissipa-
tion scale by means of nonlinear wave-wave interactions, also
serves as a relevant heat source which we consider next.

2.2. B: Pick-up ion-generated turbulence

Pick-up ions are produced by ionization of interstellar neutral
atoms in the heliosphere. Then they are convected outwards
with the solar wind flow constituting a separate suprathermal
ion fluid. The thermodynamic behaviour of this pick-up ion
fluid at its motion outwards to the outer heliosphere till now
has not been fully understood. Some new aspects, however, of
their thermodynamic action were discussed in recent papers by
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Williams et al. (1995), Fahr & Rucinski (1999, 2001, 2002) and
Smith et al. (2001). Pick-up ions could excite waves by virtue
of their initial distribution function which is unstable with re-
spect to the excitation of wave power (see e.g. Wu & Davidson
1972; Hartle & Wu 1973; Lee & Ip 1987; Freund & Wu 1988;
Fahr & Ziemkiewicz 1988; Gray et al. 1996). While imme-
diately after their injection pick-up ions first generate some
wavepower via kinetic instabilities they, after some first-order
pitch-angle isotropization has occured, also experience Fermi-2
energizations (energy diffusion) by nonlinear wave-particle in-
teraction with already preexisting, convected wave turbulences
(see Chalov et al. 1995, 1997; Fichtner et al. 1996; le Roux &
Fichtner 1997).

In the following we consider the balance of these relevant
energy production mechanisms and study the effect of the pick-
up ion-generated turbulent energy at a consecutive absorption
by solar wind protons which indicates the possibility that so-
lar wind protons might be globally and continuously heated
at their motion to larger solar distances. Since we thereby do
not aim at a kinetic description, but simply want to describe
the thermodynamics of solar wind protons on the basis of their
pressure Pw, it suffices to take into account the total dissipation
of turbulent energy at whatever wavenumber due to pick-up ion
induced wave power cascading down to the main dissipation
scale, i.e. up to kdis ' Ωp/vA.

We assume that pick-up ions just after their injection un-
dergo fast pitch-angle scattering, redistributing them from an
initial torus configuration in velocity space onto a bi-spherical
hemispheric shell configuration (see Huddleston & Johnstone
1992). Rigorously taken, even in this bi-spherical mode, pick-
up ions have not yet attained a strictly pitchangle-isotropic dis-
tribution function and still may continue to generate some more
turbulent energy which, however, is poorly quantifyable and
thus is not taken into account in our following calculation. We
instead consider only the free energy of the primary pick-up
ions pumped into the turbulent wave field untill they arrive at
the quasistatic bi-spherical distribution. We intend to calculate
this energy in the following paragraphs.

At larger distances the tilt of the magnetic field −→B (espe-
cially in the ecliptic) quickly becomes nearly rectangular with
respect to the radial solar wind velocity −→Vw. Thus the asso-
ciated bi-spheres are nearly symmetrically configured around
the systems of upgoing and downgoing Alfvén waves and they
are equally distributed by newly created pick-up ions. Under
these conditions at the event of injection the pick-up ion ve-
locity in the SW frame is equal to the solar wind velocity Vw.
Consequently after pitch angle scattering to the accessible bi-
spheres (i.e. no energy gain!) within each of these fractional
shells for upstream and downstream waves one derives the fol-
lowing permitted pick-up ion velocity vwhen judged in the SW
frame by:

v2 = v2A + (V2
w + v

2
A) − 2vA

√
V2
w + v

2
A cosϑ (16)

where ϑ is the pitch angle of the resulting velocity v in the
upstream wave frame. Since the newly generated pick-up ions
are assumed to quickly become randomly distributed on the
accessible spherical shells, the distribution function for the

populated velocities v is then simply given by the associated
velocity space volume ∆v = vd cosϑ(v), i.e. is hence given by:

f (v) =
−d cosϑ(v)
1 − cosϑmax

(17)

where the maximum possible tilt angle ϑmax is simply given by:

cosϑmax =
vA√

V2
w + v

2
A

· (18)

From the above expression (17) one obtains the mean squared
velocity

〈
v2(ϑ)

〉
of the bi-spherically distributed pick-up ions

with the following expression:

〈
v2(ϑ)

〉
=

1
1 − vA√

V2
w+v

2
A

·
∫ 1

cosϑmax

[
v2A + (V2

w + v
2
A) − 2vA

√
V2
w + v

2
AX

]
dX (19)

which easily becomes:

〈
v2(ϑ)

〉
= V2

w

1 −
vA√

V2
w + v

2
A

 + 2v2A (20)

and now allows one to respect the fact that the energy Ξi =
1
2 mpV2

w of primarily injected pick-up ions after a first vio-
lent period of wave-driving is reduced to the average energy
εi =

1
2 mp

〈
v2(ϑ)

〉
. This means that in average the energy ∆εi =

Ξi − εi is pumped into the turbulent wave field, mainly occur-
ing at or around the injection wavenumber ki ' Ωp/Vw (see
e.g. Huddleston & Johnstone 1992). The loss of free energy to
the wave fields with the change of the redistribution from the
initial torus configuration into the bi-spherical configuration is
thereby properly taken into account.

Now we assume that this energy input ∆εi into the turbulent
wavepower is producing a local power peak at ki with decreas-
ing spectral power left and right of the injection wavenumber
due to wave power diffusion. It can thus be assumed that due to
nonlinear wave-wave interactions, i.e. diffusion in k-space, this
energy input is cascading up and down from ki, more or less
at equal parts, i.e. one half of it cascades to smaller wavenum-
bers and thus may contribute to Fermi-2 accelerations of pick-
up ions to higher energies, the other half cascades up to larger
wavenumbers and finally is absorbed by solar wind protons at
the dissipation wavenumber kdis = Ωp/vA.

The energy injection to solar wind protons due to pick-up
ion wave energy thus is given by:

Qi(r) = βex(r)∆εi
1
4
=

1
4
βex(r)mp

V2
w

vA√
V2
w + v

2
A

− 2v2A

 · (21)

Here βex(r) denotes the local charge exchange rate of solar wind
protons and interstellar H-atoms also describing the local rate
of pick-up proton injections. This rate is given by:

βex(r) = nw(r)nH(r)σexVw (22)
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where nw and nH are the local proton and H-atom densities,
respectively, σex is the charge exchange cross section and Vw is
the solar wind velocity.

For the upwind hemisphere the following approximative,
so-called “cold” representation of the H-atom density can be
used here (see Fahr 1971; Axford 1972):

nH(r,Θ) = nH∞ exp

− β0r2
0Θ

VH∞r sinΘ

 (23)

where Θ denotes the off-wind angle, β0 ' nw0σexVw is the ion-
ization rate of H-atoms at the reference distance r0, and where
VH∞ is the bulk velocity of the inflowing interstellar H-atoms
at large distances.

To apply formula (23) to the upwind axis one simply con-
siders this formula in the limit Θ→ 0 and then obtains:

nH(r,Θ = 0o) = nH∞ exp

−nw0σexVwr2
0

VH∞r

 · (24)

For the downwind axis, i.e. forΘ = π, one has, however, to take
into account the interstellar H-atom temperature TH,∞ and here,
when solar gravity is compensated by solar H-Lyman-Alpha
radiation pressure, one can use the following approximative
representation:

nH(r,Θ = π) = nH∞ exp

− β0r2
0Θ

t

VH∞r sinΘt

 (25)

with the angle Θt given by:

Θt = π − arctg


√

2KTH∞
mpV2

H∞

 · (26)

Coming back to the Eq. (21) one can simplify the expression
for Qi by setting:

Qi(r) =
1
4
βex(r)mpV2

wεf . (27)

Here the following shorthand notation for the factor εf has been
introduced:

εf =
µ√

1 + µ2
− 2µ2 ' µ − 2µ2 − 1

2
µ3 ' µ0 (1 − 2µ0)

where µ = vA/Vw ' vA0/Vw0 � 1 was used. It should be
noted that in the other limiting case, when the dissipated energy
is distributed between the primary protons and pick-up ions
proportionally to their abundances, the factor 1/4 in Eq. (27)
should be replaced with the value approximately equal to 1/2.

3. Thermodynamics of wave-heated solar wind
protons

We now give the equation for the thermodynamic behaviour of
the solar wind protons in terms of proton pressure Pw under the
effects of adiabatic cooling and of heating both by convected
turbulence energy Φk(k = k0, r) and by locally originating tur-
bulent energy Qi pumped into the wavefield by freshly injected

pick-up ions. For the proton thermal pressure Pw we then ob-
tain the following equation (see Fahr & Ziemkiewicz 1988; or
Fahr & Rucinski 2002):

div
(
γ

γ − 1
Pw
−→Vw

)
−

(−→Vw · grad
)

Pw =

−βex(KTw) + Qb(r) + Qi(r) (28)

where

Qb(r) = Φk(k = k0, r),

and

Qi(r) =
1
4
βex(r)mpV2

wµ0(1 − 2µ0).

Furthermore K is the Boltzmann constant, and mp is the pro-
ton mass. The left-hand side of the above equation describes
the divergence of the proton enthalpy flow and the work done
by the pressure Pw, while the right-hand side represents en-
ergy sinks due to the charge-exchange losses of thermal pro-
ton energy KTw and energy sources due to absorption of con-
vected turbulent energy Qb(r) (defined by Eqs. (13) and (14)
and of turbulent energy pumped by pick-up ions Qi(r) (defined
by Eq. (27)).

Below we will make use of the assumption Vw = Vw0 �
vA = vA0 valid at distances r ≥ 1 AU. We also assume that
the solar wind plasma can be considered as a one-atomic ion
gas, suggesting γ = 5/3. Furthermore, comparing the charge-
exchange energy sink and the pick-up ion induced source on
the right-hand side of Eq. (28), one can find that

βex(KTw)/Qi(r) = (4KTw)/(mpVwVvA) =

2c2
w/(VwvA)� 1 for r ≥ 1

where cw is the mean thermal speed of solar wind protons. The
above inequality shows that the charge-exchange sink can be
neglected in the energy Eq. (28).

This equation, if reduced to an equation for the proton
temperature Tw by setting Pw = nwKTw, and adopting that
Vw = const. and nw = nw0(r0/r)2 can be used, then attains
the following form:

dTw
dr
+

4
3

Tw
r
= qb(r) + qi(r) (29)

where as new denotations qb,i(r) = 2Qb,i(r)/3nwKVw have been
introduced which on the basis of the aforementioned definitions
attain the following form:

qb(r) = (2G0mpv
2
A/3Kr0)(r0/r)s−2 (30)

and

qi(r) = (ΛmpVwvA/6Kr0) exp
(
−Λ Vw

VH∞
nw0

nH∞
r0

r

)
· (31)

Defining Λ = nH∞σexr0, g0 = ΛVw/4vA, x = (r/r0), TS =

2mpv
2
A/3K we then find with Eqs. (30) and (31):

dTw
dx
+

4
3

Tw
x
= TS[G0x2−s + g0 exp(−Λ1/x)] (32)
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where Λ1 = Λ(nw0Vw/nH∞VH∞). The radial profile of the pro-
ton temperature Tw(x) at x ≥ 1 is thus defined by the solution
of Eq. (32) given in the following form:

Tw(x) = x−4/3[Tw0 + TS(Ib(x) + Ii(x))] (33)

where Tw0 is the solar wind proton temperature at x = 1, and
the expressions Ib(x) and Ii(x) are defined by:

Ib(x) =
3G0

13 − 3s
(x(13−3s)/3 − 1) (34)

and

Ii(x) = g0

∫ x

1
ς4/3 exp(−Λ1/ς)dς. (35)

Instead of by the temperature profile, the heating process can
also be characterized by the local effective polytropic index
γeff = γeff(x) which is defined by

γeff = 1 − (
x

2Tw
)
dTw
dx
= 1 − 1

2
d ln Tw
d ln x

· (36)

Using Eq. (32) and its solution given by Eq. (33) we find the
following relation describing the x-dependence of γeff(x):

γeff = 5/3 − TS
[G0x(13−3s)/3 + g0x7/3 exp(−Λ1/x)]

[2Tw0 + 2TS(Ib(x) + Ii(x))]
· (37)

If we neglect any form of heating considered here, i.e. setting
G0 = g0 = 0, then, evidently, the adiabatic constant is retained
with γeff,0 = 5/3. In the case when the proton temperature is
dominated by the absorption of the background turbulence, i.e.
if Ib(x) � Ii(x), and TSIb(x) � Tw0, then we easily obtain
from Eq. (37)

γeff = (s − 1)/2. (38)

The relation (38) shows that 1 ≤ γeff ≤ 4/3, because we obtain
9/3 ≤ s ≤ 11/3 for the model of convected turbulence con-
sidered here in this paper. It should be noted that only in the
case of a low frequency flicker spectrum with a low frequency
exponent η = 1 and s = 3 the proton heating dominated by
absorption of convected turbulences would result in an almost
isothermal behaviour with γeff = 1 and an asymptotic temper-
ature Tw,b(x → ∞) = G0(mpv

2
A/2K) which can be called the

temperature of the MHD waves. This shows the tendency of
the approach towards an energy equipartition between MHD
waves and solar wind protons with a temperature Tw,b which
is fully controlled by the background turbulence. In all other
cases the temperature Tw would decrease with increasing he-
liocentric distance r.

On the other hand, if the solar wind proton heating would
be dominated by the pick-up ion source, i.e. if Ib(x) � Ii(x),
TSIi(x) � Tw0, then we find from Eq. (37):

γeff = 5/3 − x7/3 exp(−Λ1/x)

2
∫ x

1
ς4/3 exp(−Λ1/ς)dς

· (39)

We can see from Eq. (39) that for Λ1/x → 0 (pick-up ion)-
induced heating can even result in a polytropic behaviour with
γeff,i < 1, i.e. in an increase of the proton temperature Tw(x)
with increasing heliocentric distance x. One can see from
Eq. (39) that formally the asymptotic value for γeff(x → ∞)
leads to γeff(∞) = 1/2. It can be concluded that without (pick-
up ion)-induced heating, the polytropic index γeff as given by
the more general formula (37) never would fall below 1.
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Fig. 1. The ratio Rib = qi/qb is shown as function of the solar distance
in units of AU for various values of g0 = 1.5; 3.0; 6, 0 × (10−3). The
other relevant parameters are taken to be G0 = 0.1 and s = 9/3.

4. Concluding remarks

In the following we shall discuss the most important results
of the theoretical derivations presented in the aforegoing sec-
tions. We first select appropriate values for the relevant pa-
rameters occuring in the calculations. With nH∞ = 0.05 cm−3

(see e.g. Izmodenov et al. 1999; Izmodenov 2000; Fahr 2000)
and σex(440 km s−1) = 2 × 10−15 cm2 (see e.g. McNutt et al.
1999) one obtains for the standard value of Λ = nH∞σexr0 =

1.5 × 10−3. With nw0 = 7 cm−3 and Vw = 440 km s−1 (see
Whang 1998) one then obtains the critical ionization distance
by Λ1 · r0 = Λ · (nw0Vw/nH∞VH∞) · r0 = 3.7 AU. The stan-
dard value of the parameter g0 = Λ · (Vw/4vA) for these stan-
dard values thus amounts to g0 = 3.3 × 10−3 adopting the
Alfvén speed with vA = 50 km s−1. As the standard value for
G0 =

〈
δB2/4π

〉
/(ρ0v

2
A) we may take here G0 = 0.1.

First we want to compare the strength of the local energy
sources qb(r) due to absorption of convected turbulence energy
and qi(r) due to absorption pumped by pick-up ions turbulence
energy. In Fig. 1 we thus display the ratio Rib(r) of the two
relevant sources qi(r) and qb(r) given by Eqs. (30) and (31),
respectively, obtained in the form:

Rib(x) =
qi(x)
qb(x)

=
g0

G0

exp(−Λ1
x )

x2−s
· (40)

We can see that dependent on the value adopted for g0 es-
sentially determined by the interstellar H-atom density nH∞,
the region of pick-up ion dominance is shifted to regions pro-
gressively farther away from the sun with a decrease of nH∞.
For instance an increase of the density nH∞ from 0.025 cm−3

to 0.01 cm−3 (i.e. 1.5 × 10−3 ≤ g0 ≤ 6 × 10−3) shifts the re-
gion of pick-up ion dominance inwards from 60 AU to 20 AU.
This clearly manifests that for values of nH∞ presently under
discussion the solar wind proton heating at distances beyond
distances of 20 AU always is dominated by turbulence energies
pumped by pick-up ions.
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Fig. 2. The temperature Tw is shown as function of the solar distance in
AU for various values of the parameter g0, with G0 = 0.1 and s = 9/3.

The temperature profiles Tw(x) resulting with Eq. (33) for
these parameter conditions are shown in Fig. 2. As one can see
the temperatures Tw(x) fall off less steaply, or even increase
more strongly with distance x, the higher the value g0, i.e. the
H-atom density nH∞. Both the temperature itself and the tem-
perature gradient in the outer heliosphere are systematically
increased with the increase of nH∞. How the temperature in-
creases in the outer heliosphere not only is determined by nH∞,
but is also influenced by the properties of the convected turbu-
lence which we have parametrized with the two parameters G0

and s. As shown in Fig. 3, increasing the relative strength of
the convected turbulences from the standard value G0 = 0.1 to
values G0 = 0.2 and G0 = 0.3 shifts the location of the tem-
perature minimum outwards from 15 AU to 35 AU and also
increases the value of the minimum temperature. On the other
hand, as shown in Fig. 4, the increase of the spectral power
index s from its standard value s = 9/3 to values s = 10/3
and s = 11/3, though moving the location of the tempera-
ture minimum outwards, decreases the value of the temperature
minimum.

The variation of the temperature with distance can also be
studied in terms of a locally resulting effective polytropic in-
dex γeff(x) derived by Eq. (37). This is done in Fig. 5 adopt-
ing our standard parameter values describing the convected
turbulences and varying g0 (i.e. nH∞) in the range between
1.5 × 10−3 ≤ g0 ≤ 6.0 × 10−3. As one can notice the index γeff

drops down even to values below 1 with absolute values be-
ing lower the higher the value of the H-atom density nH∞. Two
things emerge from this figure: the solar wind protons even not
at small distances 1.0 ≤ x ≤ 5 behave like an adiabatic fluid but
reflect the heating due to absorption of convected turbulences,
and second at larger distances in all cases shown, the polytropic
index falls below 1, reflecting a temperature increase with the
expansion of the solar wind to larger distances. This latter result
differs from a similar study carried out by Fahr (2002) where
only a drop-off of the effective polytropic index γeff (x) with
distance x to asymptotic values of γeff(x → ∞) ' 1.1 ≥ 1
was obtained. This study by Fahr (2002) was, however, carried
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Fig. 3. The temperature Tw is shown as function of the solar distance
in AU for various values of the parameter G0, with g0 = 3 × 10−3 and
s = 10/3.
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Fig. 4. The temperature Tw is shown as function of the solar distance
in AU for various values of the parameter s, with g0 = 3 × 10−3 and
G0 = 0.1.

out assuming two important physical prerequisites; first it was
asssumed that pick-up ions, when being convected outwards
with the solar wind, behave isothermal, and second that the
two-fluid solar wind plasma, consisting of original solar wind
protons and pick-up ions, as its joint energy source only has
available the kinetic energy of freshly injected pick-ups. Here
instead we have taken into account that solar wind protons not
only profit from the pick-up ion induced heat source, but also
from convected turbulence energy absorbed by them. From
VOYAGER-1/2 and PIONEER-11 data no clear indication of a
temperature increase with distance in the upwind hemisphere
can be gained, but it nevertheless seems to be a well estab-
lished fact that proton temperatures hardly do fall off, if at all,
in the region between 20 to 40 AU but rather stay constant there
(see Gazis et al. 1994). This nicely seems to be represented by
the curves shown in Fig. 3 where it is evident that the level of
the constant temperature is variable, perhaps depending on the
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Fig. 5. The polytropic index γeff is shown as a function of the solar
distance in units of AU for various values of the parameter g0, with
G0 = 0.1 and s = 9/3.
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Fig. 6. The temperatures Tw in upwind and in downwind direction,
respectively, are shown as functions of the solar distance in units of
AU for the parameters g0 = 3 × 10−3, G0 = 0.1 and s = 9/3.

level of turbulence parametrized by G0. The theoretical values
of Tw for heliocentric distances larger than 10 AU given in
Fig. 3 also are in reasonably good agreement with correspond-
ing values found by Gazis et al. (1994) with VOYAGER-1/2
and PIONEER-11.

Furthermore, it is very interesting to study the tempera-
ture profile on the downwind side of the heliosphere. For that
purpose in Figs. 6 and 7 we compare temperature results ob-
tained with Eq. (23) for the upwind axis with those obtained
with Eq. (25) for the downwind axis. As one can notice the
pick-up ion induced heating of the solar wind protons is less
pronounced on the downwind side, resulting in lower temper-
atures and weaker temperature increases there. This result is
evidently connected with H-atom depletions and thus lower
pick-up ion injection rates on the downwind side (see e.g.
Fahr & Rucinski 1999) and seems to be supported by data
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Fig. 7. The ratios Rib = qi/qb in upwind and in downwind direction,
respectively, are shown as functions of the solar distance in units of
AU for the parameters g0 = 3 × 10−3, G0 = 0.1 and s = 9/3.

obtained with PIONEER-11 observations on the upwind, and
PIONEER-10 observations on the downwind side, since Gazis
et al. (1994) emphasize the fact that PIONEER-11 tempera-
tures are significantly higher than PIONEER-10 temperatures,
suggesting the existence of a temperature gradient with solar
heliographic longitude, at least in the period of the solar ac-
tivity minimum. It should be noted that the difference between
upwind and downwind temperatures given in Fig. 6 is not very
strong. A very careful analysis of observational data is needed
to disentangle this difference in measured upwind/downwind
proton temperature data from differences caused by different
conditions of convected MHD turbulence during the solar
activity cycle.
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