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The effects of blending on the light curve shape of Cepheids
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Abstract. A short analysis is presented of the effects on the cepheid light curve shape, i.e. on the Fourier parameters usually
adopted for its description, of the blending of the stellar image with other close stars. The conclusion is that, within reasonable
error, the effects are in general small and the Fourier decomposition is confirmed to be a useful tool for pulsation mode discrim-
ination. A large effect has been found on the phase differences in a narrow period range corresponding to the known resonance
centers between pulsation modes.
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1. Introduction

Cepheids are primary distance indicators for external galaxies
and those used for this application pulsate in the fundamen-
tal mode. First overtone mode Cepheids are brighter by about
0.4 mag than fundamental mode pulsators with the same pe-
riod. Since the period–luminosity relation has an intrinsic dis-
persion, which depends on several parameters (e.g. different
effective temperature or color, different reddening, contribution
from stellar companions), it is essential to remove the contam-
inating stars that are pulsating in a different mode. The large
surveys of the Magellanic Clouds performed by MACHO (e.g.
Welch et al. 1997), EROS (e.g. Beaulieu et al. 1995) and OGLE
(e.g. Udalski et al. 1999) projects proved that the Fourier de-
composition is a good technique for discriminating the mode
among short period (P <∼ 6 d) Cepheids. More recently, the
technique began to be applied to Cepheids of farther galaxies
in the Local Group, such as IC 1613 (e.g. Antonello et al. 1999;
Dolphin et al. 2001) and M 33 (Mochejska et al. 2001).

The large surveys offered also the opportunity of discussing
the problems related to blending. Mochejska et al. (2000) de-
fine the blending as the close projected association of a Cepheid
with one or more intrinsically luminous stars, which cannot be
detected within the observed point-spread function by the pho-
tometric analysis. There is some debate about the implications
for the distance determination related to the blending and more
generally to poor resolution of the stellar images in these galax-
ies. The blending also has other effects on the light and the
color curves. Mochejska et al. (2000) note that in the case of
a red or blue companion the light curve exhibits a flatter min-
imum. As regards binaries, it is well-known that the observed
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amplitude of the light curve is affected by the luminosity of
a bright companion. Could it be that the blending, apart from
producing a lower amplitude, also mimics a different pulsation
mode? Recently, we recalled that in principle such an effect on
the Fourier parameters is small in the context of mode identi-
fication (Antonello et al. 2002). Here we report the results of
simulations that support this conclusion, and we discuss some
unexpected characteristics.

2. Analysis

The problem by itself would not be important if we adopt in-
tensities instead of magnitudes to measure stellar brightness.
Indeed, an increased intensity due to a close star, assuming no
measurement error, would produce a light curve with a sim-
ilar shape to that without such a close star. The average in-
tensity would be larger, the absolute amplitude would be the
same, and the relative amplitude would be of course decreased.
Let < L > be the average stellar intensity (that is, the aver-
age number of collected photons), ∆L the absolute amplitude,
A = ∆L/ < L > the relative amplitude, and ε ∼ √< L > the
mean absolute error on the measurement. Let us assume a close
constant star with intensity a < L >. The relative amplitude of
the system will be A1 = ∆L/[(a + 1) < L >] and the mean ab-
solute error ε1 ∼ √(a + 1) < L >. A close star has the effect of
decreasing the relative amplitude and increasing the absolute
error. This implies a lower order of fit of the reliable Fourier
decomposition of the intensity curve, and larger formal errors
of the Fourier parameters; however, the parameters themselves
are unchanged (within the formal errors).

The nonlinearity of the relation between intensity and mag-
nitude introduces some changes. The simplest method for
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Fig. 1. Lower panel: blending effect on the V light curve of a Cepheid,
for different values of the luminosity of the companion star (Lc). Upper
panel: comparison between the light curve for Lc = 0 (continuous line)
and Lc = 4 < L > (dotted line) scaled to the same amplitude.

studying them is by means of simulations. We considered light
curves of some stars pulsating in the fundamental or first over-
tone mode (e.g. X Cyg, DT Cyg) observed by Moffett & Barnes
(1984; data retrieved from McMaster Cepheid Photometry and
Radial Velocity Data Archive), and we adopted the best fitting
curve as a synthetic light curve. We simulated several time se-
ries, adopting the original observing dates, and changing the
synthetic light curve by introducing the contribution of a close
constant star, and different mean errors of the measurement.
In Fig. 1 we show the effects of increasing luminosity on the
synthetic light curve of X Cyg. In the upper panel one can see
the changes of light curve shape due to a four times brighter
companion; the two curves are scaled to the same amplitude.
The flattening of the minimum does not appear very promi-
nent, even in this case where the magnitude difference between
the Cepheid and the blended image is large, 1.75 mag.

The time series were constructed applying a random num-
ber generator for a Gaussian error distribution. The series were
then Fourier decomposed and the resulting Fourier parameters
are plotted in Fig. 2 for the case of X Cyg, as an example. One
can see clearly that the increasing blending implies a decreas-
ing order of the reliable fit.

When performing the simulations, we also analyzed some
OGLE stars in the SMC, and we noted different trends with
respect to the above Cepheids. We suspected some depen-
dence on the P, therefore we decided to analyze all the
Cepheids in OGLE database of the SMC (Udalski et al. 1999).

The fitting curves of the Fourier decomposed I-band light
curves were modified by introducing the contribution of a com-
panion star with Lc = 2 < L >, then they were analyzed and
we computed the difference between the Fourier parameters for
Lc = 2 < L > and Lc = 0. The results for the lowest order are
shown in Figs. 3 and 4 for the fundamental and first overtone
mode, respectively. Although the effect on the amplitude ratio
is always small, the trend with P is confirmed. The unexpected
result is the large effect on the phase difference very close to
the resonance centers at P ∼ 10 d for the fundamental mode,
and P ∼ 2.2 d for the first overtone mode. Outside these narrow
P ranges the effect is small.

3. Discussion and conclusion

The cases discussed here concern reasonable light curves; we
do not consider the problems related to very faint variables,
which can hardly be detected at minimum light. The require-
ment is that in the P interval where it is possible to find stars
pulsating in different modes, the Fourier parameters must al-
low us to make the discrimination. It is known that this occurs
for P <∼ 6 d for the fundamental and the first overtone mode,
using only light curves parameters. The results of the simula-
tions show that in this P range the blending has a negligible
effect when we compare the differences introduced by it with
the size of the parameters themselves. In particular, a blended
fundamental mode pulsator will have slightly larger amplitude
ratios than a non-blended one; we recall that the amplitude ra-
tios of fundamental mode pulsators are intrinsically larger than
those of first overtone mode ones in this P range. The same
occurs for a first overtone mode pulsator compared with a sec-
ond overtone one, for P <∼ 1.3 d. On the other hand, a heavily
blended first overtone pulsator increases its R21 value, but in
general not so much so as to be confused with a fundamental
mode pulsator. In conclusion, the blending due to various rea-
sons is not an issue for the pulsation mode discrimination.

The color of the companion stars is not relevant for the
present discussion, as long as their contribution is constant;
some (second order) effects could be related to their intrin-
sic variability, both in terms of photometric variability and/or
Doppler shift. The influence of the photometric variability of
the companion itself can be usually accurately estimated, since
an adequate time series analysis is sufficient to disentangle the
different contributions, because of the different periodicities or
timescales involved. Also in this case, however, it is wise to
work with intensities rather than with magnitudes. Variable see-
ing conditions could have some effect on the estimate of the in-
tensity through the PSF fitting procedure; however in this case
we would expect just an increased error in the measurement.

The plots in Figs. 3 and 4 suggest some interesting con-
siderations. A light curve with an altered value of the mean
luminosity, such as that depicted in Fig. 1, or expressed with
a different, nonlinear mathematical function (e.g. the intensity
instead of the magnitude) is characterized of course by (usually
slightly) different Fourier parameters. If we estimate the differ-
ences related to these changes, we note that the largest ones are
for the phases of the Fourier components with smaller ampli-
tude; for example, at about 10 d some stars have R21 < Ri1,
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Fig. 2. The plots show how the Fourier parameters and light curve am-
plitude of a Cepheid change according to the luminosity of a compan-
ion star (Lc/ < L > is the ratio of the luminosity of the companion to
the average value of the Cepheid). The symbols indicate different val-
ues of the mean error σ of measurements adopted in the simulations:
filled circle: σ = 0, filled triangle: σ = 0.02; open circle: σ = 0.05;
open triangle: σ = 0.1 mag. The errorbar indicates the formal error
of the respective parameter. ∆mag is the average magnitude difference
between the Cepheid and the blended image.

for i from 3 up to 6 or more. The large differences are not due
to errors or to uncertainties, since here we are not dealing with
observed data but with synthetic light curves (i.e. the fitting
curves), which are in principle error–free. In other words the
differences are intrinsically real and reflect directly the change
of the shape introduced by the different mathematical function.
The interpretation of this feature is reported in the Appendix;
from that, we conclude that the observed dispersion is strictly
related to the smallness of the Fourier component involved. In
our example, the small second Fourier component has changed
its phase value by several tenths of a radian, while for the other
components the change is much smaller. For the same reason
we should expect an analogous results for φ41, i.e. we should
have some dispersion at P ∼ 7 d, where R41 is small since

Fig. 3. Simulated blending effect on the I-band light curves of all the
OGLE fundamental mode Cepheids in the SMC. The plots show the
difference of R21 and φ21 between the light curves for Lc = 2 < L >
and Lc = 0.

another resonance, P0/P4 = 3, should be operating there (e.g.
Antonello 1994). Indeed this is shown in Fig. 5; note also that
the discontinuity of ∆R21 located at 10 d is replaced by
that of ∆R41 at about 7 d. In a certain sense, plots such as those
shown in Figs. 3–5 are better indicators of resonance effects
than the classical ones, because they are free of subjective cor-
rections of the phase differences by ±2π, which could be uncer-
tain, mainly for the higher orders. Finally, it is possible to note
two minima in the lower panel of Fig. 3, one at the resonance
center, and the other at log P ∼ 1.5. Kanbur et al. (2002) noted
the structural change of the light curves at this P; these features
still await a theoretical interpretation.

Last but not least, we remark further that several problems
with the time series analysis of stellar luminosities would be
simplified by adopting intensity scales instead of magnitude
scales. This statement is not new, of course. Our comment is
just further support to the proposal of abandoning the mag-
nitudes. In fact, the blending has no effect on the light curve
shape when we use intensity light curves, and this is an ad-
vantage, since one is always dealing with observed parameters
which are affected by errors.

Appendix A: Intensity and magnitudes

Note that the increasing blending produces a light curve,
expressed in magnitudes, with a shape which is similar to
the shape of the intensity light curve. That is, for very
large Lc, the amplitude becomes very small, and the Fourier
parameters become those of the intensity–light curve (for the
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Fig. 4. Simulated blending effect on the I-band light curves of all the
OGLE first overtone mode Cepheids in the SMC. The plots show
the difference of R21 and φ21 between the light curves for Lc = 2 < L >
and Lc = 0.

phase differences one has to consider the different sign). The
diagrams of the differences between intensity– and magnitude–
light curves of the SMC Cepheids look similar to those of the
diagrams shown in Figs. 3–5, but with slightly different ranges
of the ordinate; for example, the range of ∆R21 values would be
about ±0.05 instead of about ±0.035 as indicated by Fig. 3.

In this Appendix we will use some approximations to un-
derstand the effect seen near the resonances between pulsation
modes of Cepheids, or more generally the effect on the smaller
Fourier components, given by different mathematical descrip-
tions of the light curve. In this context, the intensity–light curve
could be considered, in a certain sense, as a magnitude–light
curve for an extremely large blending value.

Let us assume that the intensity curve is expressed by

L = Lo + x = Lo +
∑

[Ai cos(iωt) + Bi sin(iωt)] , (A.1)

where Lo is the mean intensity value, which may include the
contribution from a companion star or blending, and ω is
the pulsation frequency. The observed light curve can be writ-
ten as

V = −2.5 log(L) + k1, (A.2)

where k1 is an appropriate constant. By considering the natural
logarithm, we can write

V ′ = ln(L) + k′1 = ln(1 + x/Lo) + k2, (A.3)

Fig. 5. The difference of R41 and φ41 between the simulated light
curves for Lc = 2 < L > and Lc = 0 of fundamental mode Cepheids.
It should be compared with Fig. 3.

where V ′ = −V/1.0857 and k2 = −k1/1.0857 + ln(Lo). We
assume a relatively small amplitude, and expand (A.3) in the
series

V ′ = k2 + x/Lo − (x/Lo)2/2 + . . . (A.4)

where the Fourier series of espression (A.1) is introduced,
and we assume for simplicity that i ≤ 3. After some manip-
ulation, we get the following expressions for the coefficients of
the cosine terms, from i = 1 to i = 6,

A1/Lo − (A1A2 + B1B2 + A2A3 + B2B3)/2L2
o (A.5)

A2/Lo − (A1A3 + B1B3 + A2
1/2 + B2

1/2)/2L2
o (A.6)

A3/Lo − (A1A2 − B1B2)/2L2
o (A.7)

−(A1A3 − B1B3 + A2
2/2 − B2

2/2)/2L2
o (A.8)

−(A2A3 − B2B3)/2L2
o (A.9)

−(A2
3/2 − B2

3/2)/2L2
o, (A.10)

respectively. Six Fourier components are needed instead of just
three to describe the V ′ light curve. Analogously for the sine
terms we get

B1/Lo − (A1B2 − B1A2 + A2B3 − B2A3)/2L2
o (A.11)

B2/Lo − (A1B1 + A1B3 − B1A3)/2L2
o (A.12)

B3/Lo − (A1B2 + B1A2)/2L2
o (A.13)

−(A1B3 + B1A3 + A2B2)/2L2
o (A.14)

−(A2B3 + B2A3)/2L2
o (A.15)

−(A3B3)/2L2
o, (A.16)

and the correcting term for the mean value:

−(A2
1 + B2

1 + A2
2 + B2

2 + A2
3 + B2

3)/4L2
o. (A.17)
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If we had considered a further cubic power of x in the expan-
sion (A.4), the previous expressions for the coefficients would
have included another correcting term containing cubic power
and cross–products of Ai and Bi multiplied by 1/3L3

o, and the
number of Fourier components would have been nine.

We will assume that the absolute values of the coeffi-
cients A2, B2 are much smaller than those of A1, B1 and A3, B3,
that is, the second Fourier component is very small with re-
spect to the first and third ones. We note that here we are not
dealing with the nonlinear oscillator problem (e.g. Antonello
1994a, 1994b). In the coefficient of the second cosine and sine
term, (A.6) and (A.12), the first elements, A2/Lo and B2/Lo

are, according to our assumption, small in comparison with the
absolute value of the correcting terms which contain squares
and cross–products of A1, A3, B1, B3. On the other hand, for
the same reason the corrections of the coefficients of the first
and third cosine and sine terms are small. In other words,
while the first and third Fourier components are only slightly
changed, we must expect a very different second component
of the Fourier decomposed V ′ light curve from that of the
L light curve. This conclusion applies, of course, to any value
of blending.
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