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Abstract. The oblique pulsator model accounts for most of the pulsation properties of the rapidly oscillating Ap (roAp)
stars. The model predicts that modes are seen as equidistant multiplets separated by the angular frequency of rotation. The
relative amplitudes of the components may be calculated and directly compared with observations. The effects of rotation
introduce amplitude asymmetry, that is peaks corresponding to azimuthal numbers m and −m are unequal. In this paper we
propose improvements to the model that consist of including effects of the centrifugal force and in using a non-perturbative
treatment of the magnetic field influence. We show that in roAp stars the centrifugal force is the primary source of the rotational
frequency shift. Although the amplitude asymmetry arises from the Coriolis force, its size is strongly affected by the centrifugal
force. For dipole modes (` = 1) we develop a simple geometrical picture of pulsation in the presence of rotation and a magnetic
field. We provide some numerical results for a representative model of roAp stars which is applied to the case of HR 3831.
We find that the mode that agrees with the observed amplitude ratios in this star significantly departs from alignment with
the magnetic axis. We discuss problems posed by the observational data of HR 3831, emphasizing difficulties of the standard
oblique pulsator model which assumes that the excited mode is nearly aligned with the magnetic field.
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1. Introduction

The rapidly oscillating Ap (roAp) stars are high order p-mode
pulsators. The pulsation periods are in the 5–15 min range
which is nearly the same as that of the solar oscillations.
However, the mode amplitudes in roAp stars, with typical val-
ues of one millimagnitude, are higher by three orders of mag-
nitude than those in the Sun. Kurtz (1982) argued that the mag-
netic field must play an essential role in roAp oscillations as the
maxima of the oscillation amplitudes coincide with the max-
ima of the longitudinal field. The properties of the magnetic
field in roAp stars are similar to that in the whole group of
Ap stars. The observed field is predominantly dipolar and has a
kiloGauss strength. Since their discovery two decades ago
(Kurtz 1978), the number of roAp stars has grown to 32.
Most of the pulsation data in roAp stars may be interpreted
in terms of rotating dipole modes that Kurtz assumed to be
symmetric around the magnetic axis. The model provides a
natural explanation of the observed multiplets in the spectrum
of the oscillations in which the components are split by ex-
actly the frequency of rotation. Dziembowski & Goode (1985)
generalized the oblique pulsator model bytaking into account
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effects of the Coriolis force. The signature of this effect is
an inequality in the amplitudes of the side peaks, which is in
fact observed. In this model, the amplitude differences depend
on the ratio of rotational to magnetic frequency perturbation.
Hence the amplitudes yield a constraint on the internal mag-
netic field. The generalized model was further developed by
Kurtz & Shibahashi (1986) who gave analytical relations be-
tween amplitudes of the multiplets in the case of a dominat-
ing magnetic field over rotational effects. Some additional im-
provements have been brought by Shibahashi & Takata (1993)
and Takata & Shibahashi (1995). In all these works, effects of
the centrifugal force were ignored and those of the magnetic
field were treated as a small perturbation. Neither of these ap-
proximations are justified in the case of roAp stars. Our aim
here is to eliminate these shortcomings.

In Sect. 2, we consider the dynamical effects of the mag-
netic field and rotation on arbitrary oscillation modes. We treat
effects of rotation as a perturbation of magneto-acoustic modes.
Since rotation couples nearly degenerate states of different m
values, the degenerate perturbation formalism is used. It leads
to a matrix eigenvalue problem for mode frequencies and rel-
ative amplitudes of spherical harmonics of different m’s. In
Sect. 3, we consider individual modes in the observer’s sys-
tem. Each mode is seen as a multipletwith (2`+1) components.
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We determine their relative amplitudes. In Sect. 4, we explore
the consequences of these improvements for the mode proper-
ties in the special case of ` = 1. Finally in Sect. 5, we apply
these results to a representative model of roAp stars. We also
discuss problems posed by the roAp star HR 3831 for which
the inequality of the side peaks is clearly seen.

2. Rotational perturbation of magneto-acoustic
oscillations

In roAp stars the observed surface magnetic fields have kilo-
Gauss intensities. Even at these large values, the field has al-
most no dynamical effect on acoustic wave propagation ex-
cept in a thin layer at the surface of the star (one or two
percent in radius), where the magnetic pressure is comparable
to (or larger than) the gas pressure. Therefore, in this thin layer
the magnetic field effect cannot be treated as a perturbation.
Non-perturbative treatments of the effects of a magnetic field
on oscillations in roAp stars were developed by Dziembowski
& Goode (1996), Bigot et al. (2000) and Cunha & Gough
(2000). It is known from these previous studies that the mag-
netic field distorts the modes so that the angular dependence is
in general described by a linear combination of spherical har-
monics of different `’s and the same m (as long as the field
is axisymmetric). For a pure dipole field the combination in-
volves only `’s of the same parity. We adopt here the approach
developed by Bigot et al. (2000) with one additional simplifi-
cation. This simplification consists of assuming that the angu-
lar dependence for individual modes may be approximated by
a single spherical harmonic in the magnetic reference system.
The effects of rotation on p-mode oscillations may be regarded
as small perturbations. For the rotation periods of roAp stars,
which are of the order of days or more, the angular velocity of
rotation, Ω, satisfies the strong inequality

Ω � ωdyn =

√
GM
R3
· (1)

If the rotation is the only non-spherical perturbation, then in
the coordinate system with the polar axis aligned with the ro-
tation axis, each of the individual modes is described by a sin-
gle spherical harmonic. In that case the frequency shift due to
rotation may be written in the following form (e.g. Gough &
Thompson 1990; Dziembowski & Goode 1992)

δω = mCn`Ω + Q`mDn`Ω
2, (2)

where

Q`m = 2π
∫ 1

−1

(
Ym
`

)∗
(cosθ)P2(cos θ)Ym

` (cosθ)d(cosθ)

=
Λ` − 3m2

4Λ` − 3
with Λ` = `(` + 1). (3)

The first term in Eq. (2) is due to the Coriolis force. The co-
efficient Cn` is called the Ledoux constant (Ledoux 1951). The
coefficient Dn` represents the radial integral of the effect of the
centrifugal distortion of the star on the mode (see Appendix).
We made two approximations regarding the quadratic term.

First, we ignore spherical change of the star due to the sur-
face average of the centrifugal force. It causes a small m-
independent frequency shift, which is not of interest to us. The
second approximation is to include only the effect of the cen-
trifugal distortion, which is much larger than the second-order
effect of the Coriolis force. The reason why in roAp stars,
which are rather slow rotators, the quadratic term of rotation
may exceed the linear one is a consequence of high radial or-
der n of p-modes excited in these stars. For such modes we
have approximately Dn` ∼ n and Cn` ∼ 1/n2. The ratio of the
second to the first term in Eq. (2) is ∼ n3Ω/ωdyn and is greater
than 1 for all roAp stars for which we have data to evaluate it.

The previous approach to calculate the effects of rotation
is not directly applicable to roAp stars. The reason is that in
most of these stars the magnetic and rotation axes are tilted by
a certain angle β, called the obliquity. The combined magnetic
and rotational perturbations do not have axial symmetry. It will
be convenient for us to consider this joint perturbation in the
reference system with the polar axis aligned with the magnetic
axis, which we will call the magnetic system.

We allow the rotational frequency perturbation to be of
the same order as the frequency separations between magnetic
eigenmodes of different m’s. The perturbation due to rotation
is non-axisymmetric which implies coupling of modes of dif-
ferent m’s. We are thus in the situation requiring the use of
a degenerate perturbation theory. Individual eigenmodes are
no longer described by a single value of m. Simultaneous ef-
fects of rotation and inclined magnetic field have already been
investigated (e.g. Dicke 1982; Dziembowski & Goode 1985;
Gough & Thompson 1990). In this paper, we will follow the
approach of Dziembowski & Goode but we improve it in two
different respects. The magnetic field effects are treated with a
non-perturbative approach. We also take into account the effect
of the centrifugal distortion of the star for the reasons already
mentioned.

2.1. A degenerate perturbation theory

In this subsection, we use the reference system with the polar
axis aligned with the magnetic axis. The zeroth order equa-
tion is

(ωmag
|m| )2ξm = L(ξm) + B(ξm) ≡ M(ξm), (4)

where ξm represents the displacement, ωmag
|m| the magnetic

eigenfrequency, L the usual adiabatic oscillation operator
and B the Lorentz force operator (see e.g. Unno et al. 1989).
The B operator introduces a dependence on |m|. Indeed, the de-
generacy with respect to m which exists in absence of symme-
try breaking agents is partially removed by the magnetic field
since it breaks the spherical symmetry of the star. To simplify
notation, we do not put the ` and n subscripts. Numerical so-
lutions of Eq. (4) for more-or-less realistic models of roAp
stars were obtained by Bigot et al. (2000) and by Cunha &
Gough (2000) for polytropic models. The eigenfrequencies
are complex. The non-Hermitian nature of the operator is a
consequence of the boundary condition applied at the base
of the magnetic layer which implicitly assumes an efficient
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dissipation of the downward propagating Alfvénic waves. This
complex nature of the problem will be ignored in our consid-
erations here. In fact, the only quantities obtained from Eq. (4)
that we will use here are differences between eigenfrequencies
ω

mag
|m| at specified ` and n. As we have already pointed out, we

assume a single spherical harmonic dependence for individual
magneto-sonic modes.

Now we consider effects of rotation. The eigenvalue equa-
tion becomes

ω2ξ =M(ξ) + R(ξ), (5)

where R denotes the perturbing rotational operator.
In agreement with the properties of Ap stars we assume that

the rotation and magnetic axes are tilted, hence the perturba-
tion due to rotation is non-axisymmetric. This leads to coupling
of the magnetic states corresponding to different azimuthal or-
ders m. The strength of the coupling depends on the size of
the rotational shift of the frequency relative to the frequency
differences, |ωmag

m − ωmag
m′,m|. Even with typical magnetic fields

found in roAp stars, such as 1 kG, the rotational shift of fre-
quency, dominated by the centrifugal distortion, can be compa-
rable to the above frequency differences. Therefore, a standard
perturbation theory cannot be applied in this model. We have to
use a degenerate perturbation theory as Dziembowski & Goode
(1985) did in the same context. We then consider the following
displacement vector

ξ =
∑̀

m=−`
αmξm, (6)

which takes into account the (2` + 1) coupled magnetic levels.
The ξm are solutions of Eq. (4) and αm are coefficients to be
determined. The sum involves only nearly degenerate modes,
which in the adopted approximation are described by a single
value of `. The orthogonality of ξm follows from orthogonality
of Ym

` . We assume the completeness of the set of ξm.
Using Eq. (6) in Eq. (5), after multiplication by ξ∗j and in-

tegration over the volume, we get the eigensystem,

∑̀
m=−`

αm

{
O jm − ω2δ jm

}
= 0 j = −`, ..., ` (7)

with

O jm =
(
ω

mag
|m|

)2
δ jm + R jm R jm =

∫
V
ξ∗j .R(ξm)ρdV. (8)

The (2` + 1) × (2` + 1) symmetric matrix O is a sum of a
diagonal matrix built with eigenvalues of Eq. (4) and a matrix
whose elements are projections of the operator R onto the base
ξm.

Therefore, to calculate the effect of an oblique rotation on
magnetic states, one has to find the (2`+1) eigenfrequenciesω2

and the corresponding eigenvectors αm of the matrix O. The
condition for non-trivial solutions requires that the determinant
of Eq. (7) vanishes. This condition yields the eigenfrequencies.

2.2. Calculation of the Rjm elements

The elements of matrix R are given by

R jm = Z jmΩ +W jmΩ
2, (9)

where

Z jm = 2 iω0

∫
V
ξ∗j . (eΩ × ξm) ρdV, (10)

withω0 the frequency in absence of magnetic field and rotation,
eΩ a unit vector along rotation axis, and

W jm = Dn`

∫
Y j
` (θ, φ)∗P2(θR)Ym

` (θ, φ)d(cos θ)dφ. (11)

In the last expression θR is the polar angle in the rotation
system.

The Z jm coefficients couple components with j = m,m ± 1
because eΩ expressed in magnetic system contains only terms
proportional either to sin φ or cosφ. Using the complex spheri-
cal harmonic property Y j∗

` = (−1) jY− j
` , it is easy to show that

Z− j−m = (−1) j+m+1Z jm. (12)

The W jm coefficients couple components with j = m, m ± 1,
m ± 2 because P2(θR) expressed in the magnetic system gen-
erates harmonics with |m| ≤ 2. The property of the integral in
Eq. (11) leads to the relation

W− j−m = (−1) j+mW jm. (13)

After integration the explicit expression for R jm becomes

R jm

2ω0
=

(
mCn`ΩP0

1(β) + Q jmDn`Ω
2P0

2(β)
)
δ j,m

−Hm

(
Cn`ΩP1

1(β) − (2m + 1)Dn`Ω
2

4Λ` − 3
P1

2(β)
)
δ j,m+1

−H−m

(
Cn`ΩP1

1(β) − (2m − 1)Dn`Ω
2

4Λ` − 3
P1

2(β)
)
δ j,m−1

− Dn`Ω
2

4Λ` − 3
P2

2(β)
(

HmHm+1δ j,m+2 + H−mH−m+1δ j,m−2

)
,

(14)

where

Hm =

√
(` − m)(` + m + 1)

2
· (15)

The Pm
` ’s are the usual associated Legendre functions. This ma-

trix is non-diagonal as long as the rotation and magnetic axes
are not aligned (β , 0).

In the calculation of the R jm elements we made an addi-
tional approximation which consists in neglecting the contri-
bution from the thin magnetic layer to the radial integrals in
the Cn` and Dn` coefficients.
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3. A single mode seen as a multiplet
in the observer’s system

In order to calculate fluctuations of luminosity in the observer’s
system, we now express the eigensolutions of Eq. (7) in the ref-
erence system with the polar axis directed towards the observer.
Following Dziembowski & Goode (1985), we assume that the
intensity fluctuation δI/I has the same angular dependence as
fluctuation of photospheric pressure δp/p. In the magnetic ref-
erence system the intensity fluctuations is written

(
δI
I

)
∝

∑̀
m=−`

αmYm
` (θB, φB)eiωt. (16)

From the well-known relation for spherical harmonic transfor-
mation (e.g. Edmonds 1960)

Ym
` (θB, φB) =

∑̀
k=−`

d(`)
mk(β)Yk

` (θR, φR), (17)

we write the intensity fluctuations in the rotation system

(
δI
I

)
∝

∑̀
m=−`

amYm
` (θR, φR)eiωt. (18)

The coefficients am and αm obey the relation

am =
∑̀
j=−`

α jd
(`)
jm(β). (19)

The expression for the luminosity fluctuations in observer’s
system is then obtained by two transformations. One consists
in writing the fluctuations in an inertial reference system with
the same polar axis as the rotation axis but which differs by the
longitudes, i.e.

(
δI
I

)
∝

∑̀
m=−`

amYm
` (θI , φI)ei(ω−mΩ)t , (20)

where we adopted θR = θI and φR = φI −Ωt. The final transfor-
mation consists in a rotation of the coordinate system so that
the new polar axis coincides with the line of sight

(
δI
I

)
∝

∑̀
m′=−`

∑̀
m=−`

amd(`)
mm′(i)Y

m′
` (θO, φO)ei(ω−mΩ)t . (21)

The subscripts B,R, I,O refer to the magnetic, rotational, iner-
tial and observer systems, respectively. In the last expression i
denotes the angle between the rotation axis and the line of sight.
Finally, each eigenmode is seen by an observer as a (2` + 1)-
component multiplet. In the time domain, such a mode will
be observed as an amplitude modulated pulsation with a
modulation period equal to 2π/Ω.

Unfortunately, from observations we can get only an aver-
aged luminosity over the visible disk. Then, only the compo-
nents with m′ = 0 survive in the disk-average intensity fluctua-
tions. Thus, the relative luminosity change seen by the observer
has the from of the multiplet

(
δL
L

)
∝

∑̀
m=−`

A`,m cos (ω − mΩ)t, (22)

where the amplitudes are given by

A`,m ∝ d(`)
m0(i) am = d(`)

m0(i)
∑̀
j=−`

α jd
(`)
jm(β). (23)

The mode is represented by a multiplet as long as its geometry
is described by more than one value of m in the rotation system.

It is convenient to use the following amplitude ratios (Kurtz
& Shibahashi 1986),

γ−m =
A`,m − A`,−m

A`,m + A`,−m
γ+m =

A`,m + A`,−m

A`,0
(24)

which are the observables of interest. In order to evaluate these
observables, we need a stellar model as well as information
about rotation and magnetic field. We now have pretty good
ideas about the model for specific stars. The rotation rate Ω is
the most accurately determined parameter, but the inclination
angle i is never reliably known. Regarding the magnetic field,
we are in a worse situation. In all calculations of magnetic ef-
fects on oscillations of roAp stars a simple dipole model has
adopted. In this case the field is fully characterized by its polar
value at the surface, Bp, and the obliquity angle β. We have ob-
servational assessments of Bp but with uncertainties. The only
justification for using a dipole model of the magnetic field is its
simplicity. Therefore the main application of our observables is
to subject the model to an observational test.

From Eq. (23) we get for the amplitude ratios,

γ−m =
|am| − |a−m|
|am| + |a−m| (25)

and

γ+m =

∣∣∣∣∣∣∣
d(`)

m0(i)

d(`)
00 (i)

∣∣∣∣∣∣∣
|am| + |a−m|
|a0| · (26)

Note that γ−m measures the departure from equality of side peak
amplitudes at +m and −m. It is important to note here that
the asymmetry of the amplitudes Am in the observer’s system
comes from the asymmetry of the coefficients of the coupling,
|αm| , |α−m|. Neither the magnetic field nor the centrifugal dis-
tortion can explain this inequality since they affect the com-
ponents +m and −m in the same way. In our problem, only
the Coriolis force affects in a different way these two compo-
nents. Ignoring this force, the problem would have a mirror
symmetry that is invariant to the transformation m → −m.
The formal proof follows from Eq. (13) which implies that
in absence of the Coriolis force α−m = (−1)mαm and thereby
γ−m = 0. The symmetry of d(`)

jm implies the same relation for
the am-coefficients. The value of γ+m depends both on the aspect
angle i (first factor) and relative role of rotation and magnetic
field (second factor).

4. Application to ` = 1

The dipole mode is of special importance because it is domi-
nant in roAp stars. Furthermore, these modes admit a simple
geometrical interpretation.



L. Bigot and W. A. Dziembowski: The oblique pulsator model revisited 239

4.1. The mode polarization

In the present case, equating to zero the determinant of Eq. (7)
leads to the following cubic equation for eigenfrequencies

σ3 − (1 + µ)σ2 + (µs2 − χ2)σ + χ2(1 + µc2) = 0, (27)

where

σ =
ω − ωmag

1

D
+

1
3
, (28)

and

χ = C/D with D = 3/5Dn1Ω
2, C = Cn1Ω. (29)

The obliquity angle appears in s = sin β and c = cos β. The
magnetic field effects come only through the parameter

µ =
ω

mag
0 − ωmag

1

D
, (30)

which, according to the results in Bigot et al. (2000), is always
negative. We should stress that Cunha & Gough (2000) found
situations where µ is positive. We are unable to explain this
disagreement.

The geometrical picture of the ` = 1 modes is a displace-
ment of the sphere representing the stellar surface. In the ab-
sence of a magnetic field, the m = 0 modes represent displace-
ments along the rotation axis, z. The m = ±1 modes represent
motions of the sphere along a circle in the (x, y) plane with two
opposite directions. To describe the modification of the geo-
metrical picture due to the combined effect of magnetic field
and rotation, we consider radial component of the displace-
ment ξr at the star surface. Since we are in the framework of
the linear pulsation theory the horizontal displacement is ir-
relevant. We oriented the axes so that the magnetic field axis
lies in the (x, z)-plane. The radial displacement has the same
angular and temporal dependence as in Eq. (18). In Cartesian
coordinates (x, y, z), this is written

ξr ∝ ( f3z − f1 x) cosωt + f2y sinωt, (31)

where,

f1 ≡ a1 − a−1√
2
= −scµσ,

f2 ≡ a1 + a−1√
2
= −scµχ,

f3 ≡ a0 = σ
2 − χ2 − µσs2. (32)

The displacement vector described Eq. (31) lies in a plane
whose normal makes an angle δ with the rotation axis and is
given by

δ = arctan

(
f3
f1

)
= arctan

(
tan β − σ

2 − χ2

scµσ

)
. (33)

The inclination of the plane is mainly determined by the rela-
tive size of the centrifugal and magnetic shifts. Indeed, in roAp
stars only the centrifugal distortion effects can be comparable
to the magnetic ones. The role of the Coriolis force is marginal
regarding the inclination of the mode.

We now rotate the coordinate system around the y-axis by
the angle δ. In the new coordinate system (X, y, Z) the displace-
ment is writen

ξr ∝ F1X cosωt − f2 y sinωt (34)

with,

F1 = f1/ cos δ. (35)

During the pulsation cycle, the maximum of the displacement
vector describes an ellipse in the (X, y) plane. The three solu-
tions of Eq. (27) correspond to three different polarizations of
the motion which are described by the parameter

ψ = arctan
(

f2
F1

)
· (36)

Its value does not depend on the choice of the reference
system. The special cases are:

ψ = 0 – linear polarization along the X-axis,
ψ = ±π/2 – linear polarization along the y-axis,
ψ = ±π/4 – circular polarization.

The geometry of the problem is illustrated in Fig. 1. The
Coriolis force plays an essential role in the polarization of the
displacement vector. Indeed, as we have already mentioned
only this force creates unequal coefficients for the components
m = ±1 and thereby f2 , 0, which leads to an elliptical
polarization. When it is neglected ( f2 = 0), we have three
linearly polarized modes along the three orthogonal axes of
the reference system except for the singularity at F1 = 0, as we
have for β = 0.

In absence of rotation two modes are degenerate with the
same frequency, ωmag

1 . If we take into account only the effect
of the centrifugal distortion as a manifestation of the rotation,
it would raise this degeneracy as long as β , 0, but it would
also lead to equal amplitudes for the coefficients |a±1| since the
centrifugal distortion does not introduce asymmetry. These two
modes would be therefore linearly polarized along two orthog-
onal axes.

The effects of the Coriolis force and the mode ellipticity
decrease if the rotation axis is approaching the mode plane
(|δ| → π/2). When the rotation axis is inside the mode plane
(δ = ±π/2), the effects of the Coriolis force vanish and the
mode is linearly polarized.

The three dipole modes are completely characterized by the
(σ, δ, ψ) parameters. In Fig. 2 these parameters are plotted as
functions of the obliquity angle β for three different values of µ
which depends on magnetic field strength. For better visualiza-
tion, we have selected χ = 0.1, though the realistic values for
roAp stars are generally smaller (χ ∼ 0.01). The fourth quan-
tityDwill be introduced in Sect. 4.2. The efficiency of the cou-
pling between m-components of the mode by rotation depends
on the size of the frequency separation of the unperturbed mag-
netic modes compared with the rotational shift (Coriolis + cen-
trifugal). Two regimes exist depending on the value of µ.

For small values of |µ| � 1, the rotational (centrifugal)
effects dominate over the magnetic effects. In the frame with
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X

y

BΩz

Z nMode plane

Dipole axis

and magnetic field in phase.
Extrema of pulsation 

δ

β

ξ
r

Fig. 1. Representation of the dipole mode geometry. During one periode of oscillation, the maximum of the displacement vector ξr describes an
ellipse in the mode plane whose normal n makes an angle δ with the rotation axis. The line which joins the two angular extrema of ξr is the axis
of symmetry of the dipole mode. The thick arrows correspond to different positions of the dipole axis during the pulsation cycle. The magnetic
and rotation axes are in the same plane (X,Z) but they are tilted by the angle β. For this figure we plot δ = 40 deg and β = 10 deg which are
the values found for HR 3831, see Sect. 5. For clarity, we draw on this plot an ellipticity ψ that is much larger than the one found for HR 3831
(ψ ≈ 4 deg). For each period of oscillation, the maxima of the dipole mode and the magnetic field are in phase when the mode axis crosses the
plane formed by the magnetic and rotation axes, i.e. the (X,Z) plane.

the polar axis aligned with the rotation axis, each eigenmode
is represented by a single spherical harmonic. One mode is lin-
early polarized along the rotation axis (δ ≈ π/2, ψ ≈ 0) whereas
the two other modes are circularly polarized in two opposite
senses (δ ≈ 0, ψ ≈ ±π/4) in the rotational equatorial plane.

For large values of |µ| � 1, the magnetic effects domi-
nate over the rotational ones. In that case, this axisymmetric
harmonic (m = 0), defined in the system with the polar axis
aligned with the magnetic axis, is not coupled with the non-
axisymmetric ones (m = ±1). The axisymmetric mode is lin-
early polarized along the magnetic axis. As shown in Fig. 2
two modes are circularly polarized (ψ = ±π/4) for β = 0 and
tend to be linearly polarized as β → π/2 since the effects of
the Coriolis force decrease. For almost perpendicular rotation
and magnetic axes, β ≈ π/2, the three dipoles modes are lin-
early polarized along the three orthogonal axes of the magnetic
system.

In the intermediate regime, |µ| ≈ 1, the situation is more
complex. In that case the centrifugal and magnetic effects are
comparable which leads to an inclination of the mode system
between magnetic and rotation axes.

4.2. Magnetic dipole modes

It is generally believed that modes excited in roAp stars are
nearly aligned with the magnetic axis. In principle, as long as
β , 0, none of the three dipole modes is strictly aligned with
the magnetic field. Let us note that the strict alignment requires

|δ| = |π/2− β| and ψ = 0. From the three modes, we would like
to select the one which is the most aligned with the magnetic
axis.

A convenient measure of the departure from strict align-
ment is the quantityD defined as follows

D =
∑

m,0
α2

m∑
m
α2

m
· (37)

For a pure axisymmetric mode (αm,0 = 0) we have D = 0,
and in the opposite case for a pure non-axisymmetric mode
(α0 = 0) we have D = 1. For dipole modes, with the
help of Eqs. (19), (32), (33) and (36), we can express D in
terms of the polarization angles (δ, ψ) defined in the rotation
system, as follows

D = 1 − sin2(δ − β) cos2 ψ. (38)

This quantity is plotted in Fig. 2 as function of the obliquity
angle β and the magnetic strength parameter µ. For large mag-
netic fields, |µ| > 1, we see that there is a mode which for all
values of β remains linearly polarized along the magnetic axis
(D → 0). At weaker fields (|µ| ≤ 1) various modes may ap-
proachD = 0 and at the same time have significant values of ψ
implying elliptical polarizations. The case of the mode repre-
sented by the dashed line is quite interesting for large β. The
geometrical picture is that the mode moves the sphere along
an elongated ellipse whose major axis is close to the magnetic
axis.
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Fig. 2. Plots of the mode parameters for (` = 1) as functions of the obliquity angle β. The dimensionless frequency σ, the inclination of the
mode δ, the polarization angle ψ and the quantity D are plotted on the four rows of the graph. Each column corresponds to a specific magnetic
regime represented by three values of |µ|. The left column corresponds to a rotation dominating regime (|µ| = 0.2) in which two modes (dotted
and dashed) can be nearly aligned (D) with the magnetic axis. For a dominating magnetic regime plotted in the right column (|µ| = 5), only
one mode (dashed) is aligned with the magnetic axis.

These results show that generally speaking, for reasonable
values of µ and for β , 0 [π/2], none of the three dipole modes
is linearly polarized along the magnetic axis (D , 0).

4.3. Amplitudes in observer’s system

As it follows from Sect. 3, each of the three ` = 1 eigenmodes
is seen as a triplet with peaks separated exactly by the rotation
rate, Ω. Further, the inequality of the side peaks, A±1, arises
only from the Coriolis force. From Eqs. (23) and (25) we have

γ− =
A1 − A−1

A1 + A−1
=


tanψ
cos δ if | tanψ| < cos δ

cos δ
tanψ if | tanψ| > cos δ.

(39)

The role of the Coriolis force is essential for this inequality
since it modifies the ellipticity ψ of the mode which determines
the size of γ−. The sign of γ− is related to the sense of polariza-
tion. Negative values means counter-clockwise elliptical polar-
ization. Note that |γ−| ≤ 1. The value of γ− = 1 corresponds to
A−1 = 0 and γ− = −1 to A1 = 0.

This equation emphasizes also the role of centrifugal force
in determining the inequality of side peaks through the angle δ.

The sum of the side peak amplitudes to central peak ratio,
γ+, depends on two effects as we have already discussed in
Sect. 3. For ` = 1, Eq. (26) becomes

γ+ =
A1 + A−1

A0
=


tan i cot δ if | tanψ| < cos δ

tan i | tanψ|
sin δ if | tanψ| > cos δ.

(40)

The value of γ+ is determined by the inclination of the mode
plane to the rotation axis and the inclination of the rotation axis
to the line of sight. In Fig. 3 we plot γ− and γ+/ tan i as func-
tions of β and for the same values of µ used in Fig. 2. Note
the rapid decline of |γ−| with β that corresponds to a decreasing
effect of the Coriolis force as discussed in Sect. 4.1.

In the strong magnetic field regime, |µ| � 1, we find for the
mode which is the most aligned with the magnetic field axis
(D = 0), the well-known relations for amplitude ratios of the
oblique pulsator model (e.g. Kurtz & Shibahashi 1986; Unno
et al. 1989),

γ− ≈ χ

µ
→ 0 and γ+ ≈ tan i tan β. (41)
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Fig. 3. Plots of the amplitude ratios γ− (top) and γ+ (bottom) as functions of the obliquity angle β and for different magnetic regimes |µ| = 0.2
(left), 1.0 (middle) and 5.0 (right). The curves correspond to the three dipole modes. The notation remains the same as in Fig. 2.

In the weak magnetic field regime, |µ| � 1, the triplet reduces
to a single dominant peak. Indeed, for the mode linearly polar-
ized along the rotation axis (δ ≈ π/2, ψ ≈ 0) we have A±1 ≈ 0
and A0 , 0. For the two circularly polarized modes in the rota-
tional equatorial plane (δ ≈ 0, ψ ≈ ±π/4), we have A0 ≈ 0. One
of the two amplitudes A1 or A−1 also vanishes depending on
the mode that we consider (ψ = +π/4 or −π/4). This situation
is the worse for asteroseismology since we lose information
about the triplet.

Here we see the role of the centrifugal force in the side peak
inequality because it is this force that determines the value of
|µ| and then the regime to consider.

5. Application to a representative model of roAp
star

We select a model characterized by the following parameters
M/M� = 2.0, R/R� = 1.85, Teff = 8100 K, Xc = 0.61. These
parameters are not far from those adopted for HR 3831 – the
roAp star with accurately measured unequal side peak ampli-
tudes. The rotation period of this star is Prot = 2π/Ω ≈ 2.85 d
and the central peak frequency of the multiplet is 1.428 mHz.
Unfortunately our calculations are not applicable to this ob-
ject if the polar Bp value of 14 kG, as inferred by Bagnulo
et al. (1999), is true. The validity of our theory cannot be much
extended beyond a 1 kG field. This is illustrated in Fig. 4 which
shows in particular that the assumption of single ` at fields
above 1 kG is incorrect. The µ dependence on Bp is compli-
cated and it would be foolish to extrapolate the results by 1 or-
der of magnitude.

Let us stress that the value of β = 8 ± 1 deg determined by
Bagnulo et al. (1999) is very different from that assumed by
Kurtz for modelling light variations in this star (e.g. Kurtz
1992). We also emphasize that it is quite surprising to see any
inequality of the side peaks if the mode is aligned with the mag-
netic axis and if Bp is as large as Bagnulo et al. (1999) found
since the effects of the Coriolis force would be negligible com-
pared to the magnetic ones.

In view of the controversial data about magnetic field in
HR 3831 we have arbitrarily assumed Bp = 1 kG to calculate µ
shown in Fig. 5. Note that our values are always negative. In
the same figure we show corresponding values of χ.

At the fastest rotation and the adopted value of Bp we are
in the |µ| < 1 regime (first column in Fig. 2). As soon as we
depart from β = 0 the alignment of the mode with the magnetic
axis is lost. At the lowest rotation, we are in the |µ| � 1 regime
(third column in Fig. 2). At all values of β one mode is aligned
with the magnetic axis, D ≈ 0. We may suppose that with the
Bagnulo et al. (1999) value of Bp we will be in the same regime.

One sees that even at the longest rotational period the value
of χ is below 0.1 that we have adopted in Fig. 2. The centrifu-
gal distortion is thus always the dominant rotational effect in
determining the orientation of the mode plane, δ.

The two angles that are related to the side peak inequality
are ψ and δ. When looking at Figs. 2 and 3 we have to keep
in mind that we have used here the value of χ which is at least
one order of magnitude larger than the values seen in Fig. 5,
which are realistic. Qualitatively the pattern remains the same,
however the values of ψ stay close to 0 or ± π/2 through much
wider range of β. Such values of ψ imply linear polarizations.
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Fig. 4. (Left panel) Plots of the magnetic parameter µ as function of the photospheric magnetic strength Bp obtained with the stellar model
given in the text, for three different periods of rotation, Prot = 3 d (full line), = 6 d (dotted), = 12 d (dashed). The frequency is 1428 µHz.
Note that these ratios are always negative. When |µ| > 1 the magnetic effects dominate over the rotational (centrifugal) effects. (Right panel)
Plots of the relative kinetic energies of each `-components of the mode generated by the magnetic field, as functions of Bp. In all cases m = 0,
k = 1 (full line), k = 3 (dashed line), k = 5 (dot-dashed line) and k = 7 (dotted line), see Bigot et al. (2000) for more details. For Bp < 1 kG,
the k = 1 component dominates and the mode is almost a dipole.

Fig. 5. The values of the parameter µ, see Eq. (30), and χ, see Eq. (29), are plotted against mode frequencies for three values of rotational
periods, Prot = 3 d (∗), 6 d (♦), 12 d (4). The value of Bp = 1 kG is assumed. The parameters of the adopted Main Sequence star model of 2 M�
are given in the text.

In Fig. 6 we plot the amplitudes of the triplet (A0, A1, A−1)
as functions of the magnetic field. It is clear that the struc-
ture of the triplet is strongly affected by the magnetic field’s
configuration (Bp, β). In the weak field regime, the triplet re-
duces to a single peak, since in rotation system each eigenmode
is represented by a single spherical harmonics. In the strong
field regime, the tendency is to have almost equal side peaks,
A1 ≈ A−1, for the mode nearly aligned with the magnetic field
(D = 0).

For the mode verifying D ≈ 1, the inequality of the side
peaks increases with the magnetic field strength, Bp, since as
we have already emphasized in Sect. 4.1, the ellipticity of the
mode increases.

This inequality of side peaks increases when β decreases
since in that case the Coriolis effects are stronger.

For HR 3831, the measured values of the γ’s are

γ(−)
obs = 0.097 ± 0.003 and γ(+)

obs = 8.619 ± 0.187, (42)

(Kurtz et al. 1997). We made an attempt to reproduce the ob-
served values allowing wide ranges of Bp, β and i values.
The value of χ is 0.012. Following the standard assumption,
we first considered modes with D ≈ 0, i.e. nearly aligned
with the magnetic field. None of the combination of the three
parameters brought us even close to the observational data.
We have succeeded only for a mode which is well inclined
to the magnetic axis. In view of the geometrical picture, this
dipole mode moves the sphere along a very elongated ellipse
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Fig. 6. Plots of the amplitudes A0 (full line) A1 (dashed line) and A−1 (dot-dashed line) of the triplet as functions of the magnetic field strength Bp

and for two values of the obliquity angle β. Each row corresponds to one of the three dipole mode solutions of Eq. (7). The amplitudes are
normalized by (A2

0 + A2
1 + A2

−1)1/2. The dotted line corresponds to the quantity D that measures the mode inclination with the magnetic field
(D = 0 means alignment). The aspect angle is i = 80 deg.

(2 < ψ < 5 deg) in a plane which is very inclined from the
magnetic axis (2 < δ−β < 65 deg). The range of the parameters
leading to γ’s consistent with observations are Bp ∈ [1−2] kG,
β ∈ [4−19] deg and i ∈ [75−87] deg.

These large ranges of parameters are reduced if we fix one
of these, e.g. the inclination angle i. If we consider that i =
84 deg, we get more precise values: β = 6.9−7.3 deg, δ − β =
41.2−41.4 deg, ψ = 3.60−3.82 deg and Bp = 700 G. We cannot
determine them more precisely because of the error bars in the
observations of the γ’s. They also depend on the stellar model
that we consider which is subject to uncertainties.

This inclination of the mode axis is very different from the
common interpretation of the oscillations in roAp stars in terms
of a mode axis aligned, or nearly aligned, with the magnetic
axis. The role of centrifugal force in producing this mode ge-
ometry is essential. Only with this force, we have modes which
are nearly linearly polarized along an inclined axis in the plane
formed by the magnetic and rotation axes.

There are two observational constraints generally accepted
to discuss the geometry of the mode in roAp stars. The first
one is the phase jump by π radians of the oscillation at the
amplitude minimum. This is clearly seen in HR 3831 (e.g.

Kurtz et al. 1997). This indicates that the mode is a dipole,
or very close to a dipole, say with two hemispheres shifted by
π radians, one in contraction and one in expansion. For any in-
clination of the mode axis, except when the mode is aligned
with the rotation axis (|δ| = π/2), a phase shift occurs as the
star rotates since we see alternatively the two hemispheres.

The second observational fact is the “apparent” coincidence
between the times of magnetic and pulsation maxima, e.g.
Kurtz et al. (1992) for HR 3831. In fact, for a near coincidence
of the envelope of the luminosity-variation curve and magnetic
field maxima, it suffices that the pulsation axis stays close to
the plane that is formed by the magnetic axis and the rotation
axis. This condition is fulfilled with our small value of ψ.

In short, the inclined dipole mode that we found is consis-
tent with these observational constraints.

6. Conclusion and discussion

The aim behind our project was to improve the oblique pulsator
model and the hope was that this would solve problems posed
by the pulsation data of the roAp star HR 3831. We have shown
that the hitherto ignored effect of centrifugal force in modelling
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pulsations in roAp stars is quite important. In fact, the contribu-
tion of the Coriolis force to the total rotational frequency shift is
two orders of magnitude less than that of the centrifugal force.
Another improvement is the treatment of the magnetic field
effects by a non-perturbative approach. However, the adopted
treatment is still approximate and needs further improvements.

The observables of interest have been the relative ampli-
tudes of the (2` + 1) components of the multiplet in observer’s
system. We showed that the inequality of side peak amplitudes
is determined by the Coriolis force. Only this force can make a
difference between prograde and retrograde components of the
mode, which is essential for the inequality of amplitudes. Even
if the centrifugal force is not responsible for that inequality, at
the quantitative level it is very significant.

In greater detail we have discussed the case of ` = 1
modes – the most important ones for modelling pulsations in
roAp stars. We have developed a simple geometrical picture for
these modes in the presence of rotation and a magnetic field.
We have shown that during the pulsation cycle these dipole
modes displace the star in general along an ellipse whose ori-
entation in the stellar reference system is determined mostly
by the balance between the centrifugal distortion and the mag-
netic field effects. We also showed that the shape of this ellipse
is determined by the Coriolis force. The amplitude ratios in the
observer’s system are given in terms of the geometrical proper-
ties of this ellipse, i.e. orientation and eccentricity.

We did not succeed in solving problems of HR 3831 within
the framework of the standard version the oblique pulsator
model in which the mode is nearly aligned with the magnetic
field. Indeed, we found that the observed mode in HR 3831
is significantly inclined from the magnetic axis; this then is in
contradiction with the common idea of aligned magnetic and
pulsation axes. Perhaps our failure is due to inadequacies of our
treatment of the magnetic field. Still, we would like to point out
that we succeeded in reproducing the observed amplitude ra-
tios with this mode inclined to the magnetic field. The max-
ima of pulsation amplitude for this mode occur close to the
plane determined by the rotation and magnetic axes. Such a
mode geometry is possible only if effects of centrifugal force
are taken into account. The Coriolis force is much weaker and
hardly influences the inclination. However, it is responsible for
small departure of the maxima from that plane and for the
observed inequality of the side-peaks. Such a possibility of
a dipole mode inclined with respect to the magnetic axis de-
serves some consideration in view of the fact that the problem
of mode selection in roAp stars is far from being understood.
Balmforth et al. (2001) explained preferential excitation of the
mode aligned with the magnetic field by invoking an inhibit-
ing effect of the magnetic field on convection and an inhibiting
effect of convection on oscillations. Both effects are very dif-
ficult to study and this explanation must be regarded only as a
possibility.
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Appendix A: The Cn` and Dn` coefficients

For our application, we use the standard expression for eigen-
vectors in a non-rotating and non-magnetic star. These are de-
fined by

ξn`m = ξn`,rYm
` er + ξn`,h∇Ym

` . (A.1)

The radial eigenfunctions, ξn`,r and ξn`,h, which in general must
be determined only numerically, are m-independent (e.g. Unno
et al. 1989).

The Ledoux constant is given by

Cn` =
1

In`

∫ R

0

(
2 ξn`,r ξn`,h + ξ2

n`,h

)
ρ r2 dr, (A.2)

where

In` =

∫ R

0

(
ξ2

n`,r + Λ`ξ
2
n`,h

)
ρ r2 dr. (A.3)

At n � 1 we have ξn`,r/ξn`,h ∝ n−1. However, we have Cn` ∝
n−2 because the contribution from the leading term in ξn`,rξn`,h

vanishes upon integration.
The distortion coefficient has a more complex form but

for high radial order p-modes, a good approximation is
(Dziembowski & Goode 1992)

Dn` =
4
3

ωn`

In`ω
2
dyn

∫ R

0

( r
R

)3
ξ2

n`,r ρ r2 dr. (A.4)

With ωn` ∝ n we roughly have Dn` ∝ n.
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